Multiple hard scattering and parton correlations in the proton

M. Diehl

Deutsches Elektronen-Synchroton DESY

QCD Evolution Workshop, Santa Fe, 12 May 2014

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Hadron-hadron collisions

standard description based on factorization formulae

cross sect = parton distributions \times parton-level cross sect

• factorization formulae are for inclusive cross sections $pp \rightarrow Y + X$ where Y = produced in parton-level scattering, specified in detail X = summed over, no details

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Hadron-hadron collisions

standard description based on factorization formulae

cross sect = parton distributions \times parton-level cross sect

▶ factorization formulae are for inclusive cross sections pp → Y + X where Y = produced in parton-level scattering, specified in detail X = summed over, no details

 also have interactions between "spectator" partons their effects cancel in inclusive cross sections thanks to unitarity but they affect the final state (namely X)

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Multiparton interactions (MPI)

- secondary (and tertiary etc.) interactions generically take place in hadron-hadron collisions
- ▶ at high collision energy (esp. at LHC) can be hard → multiple hard scattering
- many studies:

theory: phenomenology, theoretical foundations (1980s, recent activity)
experiment: ISR, SPS, HERA (photoproduction), Tevatron, LHC
Monte Carlo generators: Pythia, Herwig++, Sherpa
and ongoing activity: see e.g. the MPI@LHC workshop series
https://indico.cern.ch/event/231843

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Relevance for LHC

example: $pp \rightarrow H + Z \rightarrow b\bar{b} + Z$

Del Fabbro, Treleani 1999

multiple interactions contribute to signal and background

same for $pp \to H + W \to b\bar{b} + W$

study for Tevatron: Bandurin et al, 2010

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Double vs. single hard scattering

- ▶ double hard scattering: net p_T of produced system (Z or $b\bar{b}$ pair) \ll hard scale Q (e.g. M_Z)
- single hard scattering:
 p_T distribution up to values ~ Q
- ▶ no generic suppression for transv. mom. $\ll Q$:

$$rac{d\sigma_{\mathsf{single}}}{d^2 oldsymbol{p}_Z \, d^2 oldsymbol{p}_{bar{b}}} \sim rac{d\sigma_{\mathsf{double}}}{d^2 oldsymbol{p}_Z \, d^2 oldsymbol{p}_{bar{b}}} \sim rac{\Lambda^2}{Q^2}$$

but since single scattering populates larger phase space :

$$\sigma_{
m single} \sim rac{1}{Q^2} \ \gg \ \sigma_{
m double} \sim rac{\Lambda^2}{Q^4}$$

 \blacktriangleright however: double hard scattering enhanced at small x

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	●0000	000000	000000	0

Space-time structure

- ► transverse parton momenta not the same in amplitude A and in A^* cross section $\propto \int d^2 \mathbf{r} F(x_i, \mathbf{k}_i, \mathbf{r}) F(\bar{x}_i, \bar{\mathbf{k}}_i, -\mathbf{r})$
- ► Fourier trf. to impact parameter: $F(x_i, k_i, r) \rightarrow F(x_i, k_i, y)$ cross section $\propto \int d^2 y F(x_i, k_i, y) F(\bar{x}_i, \bar{k}_i, y)$
- interpretation: y = transv. dist. between two scattering partons
 = equal in both colliding protons

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	0000	000000	000000	0

Cross section formula

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, dx_2 \, d\bar{x}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2 \int d^2 \boldsymbol{y} \, F(x_1, x_2, \boldsymbol{y}) \, F(\bar{x}_1, \bar{x}_2, \boldsymbol{y})$$

$$C = \text{combinatorial factor}$$

$$\hat{\sigma}_i = \text{parton-level cross sections}$$

$$F(x_1, x_2, \boldsymbol{y}) = \text{double parton distribution (DPD)}$$

y = transv. distance between partons

- follows from Feynman graphs and hard-scattering approximation no semi-classical approximation required
- can make $\hat{\sigma}_i$ differential in further variables (e.g. for jet pairs)
- can extend σ̂_i to higher orders in α_s
 get usual convolution integrals over x_i in σ̂_i and F

Paver, Treleani 1982, 1984; Mekhfi 1985, ..., MD, Ostermeier, Schäfer 2012

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	0000	000000	000000	0

Cross section formula

▶ for measured transv. momenta

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, d^2 \boldsymbol{q}_1 \, dx_2 \, d\bar{x}_2 \, d^2 \boldsymbol{q}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2 \\ \times \left[\prod_{i=1}^2 \int d^2 \boldsymbol{k}_i \, d^2 \bar{\boldsymbol{k}}_i \, \delta(\boldsymbol{q}_i - \boldsymbol{k}_i - \bar{\boldsymbol{k}}_i) \right] \int d^2 \boldsymbol{y} \, F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) \, F(\bar{x}_i, \bar{\boldsymbol{k}}_i, \boldsymbol{y})$$

• $F(x_i, k_i, y) = k_T$ dependent two-parton distribution

has structure of a Wigner function:

 k_1, k_2 = transv. parton momenta averaged over A and A^* y = transv. distance between partons averaged over A and A^*

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	0000	000000	000000	0

Cross section formula

▶ for measured transv. momenta

$$\frac{d\sigma_{\text{double}}}{dx_1 \, d\bar{x}_1 \, d^2 \boldsymbol{q}_1 \, dx_2 \, d\bar{x}_2 \, d^2 \boldsymbol{q}_2} = \frac{1}{C} \, \hat{\sigma}_1 \, \hat{\sigma}_2 \\ \times \left[\prod_{i=1}^2 \int d^2 \boldsymbol{k}_i \, d^2 \bar{\boldsymbol{k}}_i \, \delta(\boldsymbol{q}_i - \boldsymbol{k}_i - \bar{\boldsymbol{k}}_i) \right] \int d^2 \boldsymbol{y} \, F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) \, F(\bar{x}_i, \bar{\boldsymbol{k}}_i, \boldsymbol{y})$$

• $F(x_i, k_i, y) = k_T$ dependent two-parton distribution

operator definition as for TMDs

 $F(x_i, \boldsymbol{k}_i, \boldsymbol{y}) = \mathcal{FT}_{z_i \to (x_i, \boldsymbol{k}_i)} \langle p | \bar{q} \left(-\frac{1}{2} z_2 \right) \Gamma_2 q \left(\frac{1}{2} z_2 \right) \bar{q} \left(y - \frac{1}{2} z_1 \right) \Gamma_1 q \left(y + \frac{1}{2} z_1 \right) | p \rangle$

- essential for studying factorization, scale dependence, etc.
- similar def for collinear distributions F(x_i, y)
 bilinear op's q
 [¯]Γ_iq at different transv. positions
 ⇒ not a twist-four operator but product of two twist-two operators

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Pocket formula

if two-parton density factorizes as

$$F(x_1, x_2, \boldsymbol{y}) = f(x_1) f(x_2) G(\boldsymbol{y})$$

where $f(x_i) = usual PDF$

if assume same G(y) for all parton types then cross sect. formula turns into

$$\frac{d\sigma_{\text{double}}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2} = \frac{1}{C}\,\frac{d\sigma_1}{dx_1\,d\bar{x}_1}\,\frac{d\sigma_2}{x_2\,\bar{x}_2}\,\frac{1}{\sigma_{\text{eff}}}$$

with $1/\sigma_{\rm eff} = \int\! d^2 {\bm y} \; G({\bm y})^2$

→ scatters are completely independent

- underlies bulk of phenomenological estimates
- pocket formula fails if any of the above assumptions is invalid and if further terms must be added to original expression of cross sect.

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	0000●	000000	000000	0

Experimental investigations (only a sketch)

• double charm production $(c\bar{c}c\bar{c})$ at LHCb (2011, 2012): $J/\Psi + J/\Psi$, $J/\Psi + C$, C + C with $C = D^0, D^+, D_s^+, \Lambda_c^+$

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	●00000	000000	0

Parton correlations

if neglect correlations between two partons

$$F(x_1, x_2, \boldsymbol{y}) = \int d^2 \boldsymbol{y}' f(x_1, \boldsymbol{y}' + \boldsymbol{y}) f(x_2, \boldsymbol{y}')$$

where $f(x_i, y) = \text{impact parameter dependent single-parton density}$

and if neglect correlations between x and y of single parton

$$f(x_i, \boldsymbol{y}) = f(x_i)F(\boldsymbol{y})$$

with same $F(\boldsymbol{y})$ for all partons

then $G(\boldsymbol{y}) = \int d^2 \boldsymbol{y}' \; F(\boldsymbol{y}') \, F(\boldsymbol{y}' + \boldsymbol{y})$

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	●00000	000000	0

Parton correlations

if neglect correlations between two partons

$$F(x_1, x_2, \boldsymbol{y}) = \int d^2 \boldsymbol{y}' f(x_1, \boldsymbol{y}' + \boldsymbol{y}) f(x_2, \boldsymbol{y}')$$

where $f(x_i, y) = \text{impact parameter dependent single-parton density}$

and if neglect correlations between x and y of single parton

$$f(x_i, \boldsymbol{y}) = f(x_i)F(\boldsymbol{y})$$

with same $F(\boldsymbol{y})$ for all partons

then $G(\boldsymbol{y}) = \int\! d^2 \boldsymbol{y}' \; F(\boldsymbol{y}') \, F(\boldsymbol{y}'+\boldsymbol{y})$

 \blacktriangleright for Gaussian $F(oldsymbol{y})$ with average $\langle oldsymbol{y}^2
angle$

 $\sigma_{\rm eff} = 4\pi \langle \boldsymbol{y}^2 \rangle = 41 \, {\rm mb} \ \times \langle \boldsymbol{y}^2 \rangle / (0.57 \, {\rm fm})^2$

determinations of $\langle y^2 \rangle$ from GPDs and form factors: $(0.57 \text{ fm} - 0.67 \text{ fm})^2$ is $\gg \sigma_{\text{eff}} \sim 10$ to 20 mb from experimental extractions if F(y) is Fourier trf. of dipole then $41 \text{ mb} \rightarrow 36 \text{ mb}$ complete independence between two partons is disfavored or something is seriously wrong with σ_{eff}

cf. Calucci, Treleani 1999; Frankfurt, Strikman, Weiss 2003-04; Blok et al 2013

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	00000	000000	0

Correlations involving x

▶ $F(x_1, x_2, y) = f(x_1) f(x_2) G(y)$ cannot hold for all x_1, x_2

- ▶ most obvious: energy conservation $\Rightarrow x_1 + x_2 \le 1$ often used to suppress region of large $x_1 + x_2$: $F(x_1, x_2, y) = (1 - x_1 - x_2)^n f(x_1) f(x_2) G(y)$
- significant x₁ x₂ correlations found in constituent quark model Rinaldi, Scopetta, Vento: arXiv:1302.6462

plot shows $\int d^2 y F_{uu}(x_1, x_2, y) / f_u(x_2)$ is x_2 independent if factorization holds

• unknown: size of correlations when one or both of x_1, x_2 small

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	00000	000000	0

Correlations involving x and y

- single-parton distribution f(x, y) is Fourier trf. of generalized parton distributions(GPDs) at zero skewness
 - \rightsquigarrow information from exclusive processes and theory
 - ► HERA results on $\gamma p \rightarrow J/\Psi p$ give $\langle y^2 \rangle \propto \text{const} + 4\alpha' \log(1/x)$

with $\alpha' \approx 0.15 \, {\rm GeV}^{-2} = (0.08 \, {\rm fm})^2$ for gluons at $x \sim 10^{-3}$

- Iattice simulations → strong decrease of ⟨y²⟩ with x above ~ 0.1 seen by comparing moments ∫ dx xⁿ⁻¹ f(x, y) for n = 0, 1, 2
- expect similar correlations between x_i and y in two-parton dist's even if two partons are not independent
- ▶ in double parton scattering y unobservable:

 $d\sigma \propto \int d^2 \boldsymbol{y} F(x_i, \boldsymbol{y}) F(\bar{x}_i, \boldsymbol{y})$

in $f(x, \boldsymbol{y})$ impact parameter is Fourier conjugate to measurable momentum transfer

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	00000	000000	0

Correlations involving x and y

- single-parton distribution f(x, y) is Fourier trf. of generalized parton distributions(GPDs) at zero skewness
 - \rightsquigarrow information from exclusive processes and theory
 - ► HERA results on $\gamma p \rightarrow J/\Psi p$ give $\langle y^2 \rangle \propto \text{const} + 4\alpha' \log(1/x)$

with $\alpha' \approx 0.15 \, {\rm GeV}^{-2} = (0.08 \, {\rm fm})^2$ for gluons at $x \sim 10^{-3}$

- Iattice simulations → strong decrease of ⟨y²⟩ with x above ~ 0.1 seen by comparing moments ∫ dx xⁿ⁻¹ f(x, y) for n = 0, 1, 2
- expect similar correlations between x_i and y in two-parton dist's even if two partons are not independent

Consequence for multiple interactions:

- if interaction 1 produces high-mass system
 - \rightarrow have large x_1, \bar{x}_1
 - ightarrow smaller $oldsymbol{y}$ ightarrow more central collision
 - $\rightarrow\,$ secondary interactions enhanced

Frankfurt, Strikman, Weiss 2003, study in Pythia: Corke, Sjöstrand 2011

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000		O

Spin correlations

 polarizations of two partons can be correlated even in unpolarized target already pointed out by Mekhfi (1985)

- quarks: longitudinal and transverse pol.
- gluons: longitudinal and linear pol.
- in general not suppressed in hard scattering
 - for $q\bar{q} \rightarrow \ell^+ \ell^-$ have $d\hat{\sigma}_{\Delta q \Delta \bar{q}}/d\Omega = -d\hat{\sigma}_{q\bar{q}}/d\Omega$
 - for many channels parton pol. also changes angular distribution

consequences for double scattering rate and differential distributions Manohar, Waalewijn 2012; Kasemets, MD 2012

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Spin correlations

how important are spin correlations? large effects expected in valence quark region

study in bag model: Chang, Manohar, Waalewijn: arXiv:1211:3132

plots show $F(x_1,x_2=0.4,k_{\perp})$ for different pol. combinations $k_{\perp}= {\rm Fourier\ conjugate\ to\ } {\pmb y}$

- unknown: size of correlations when one or both of x_1, x_2 small
- \blacktriangleright change with scale \rightarrow talk by Tomas Kasemets on Thursday

Color structure

 quark lines in amplitude and its conjugate can couple to color singlet or octet:

 ${}^{1}F \to (\bar{q}_{2} 1 q_{2}) (\bar{q}_{1} 1 q_{1}) \qquad {}^{8}F \to (\bar{q}_{2} t^{a} q_{2}) (\bar{q}_{1} t^{a} q_{1})$

- ⁸F describes color correlation between quarks 1 and 2 is essentially unknown (no probability interpretation as a guide)
- ▶ for two-gluon dist's more color structures: 1, 8_S , 8_A , 10, $\overline{10}$, 27
- for k_T integrated distributions: color correlations suppressed by Sudakov logarithms

... but not necessarily negligible for moderately hard scales Manohar, Waalewijn arXiv:1202:3794 used SCET methods

 $U={\sf Sudakov}$ factor, $Q={\sf hard}$ scale

Mekhfi 1988

Introduc 0000	tion	Theory basics 00000	Correlat 0000	tions 00	More theory issue •00000	5	Summary O
	Scale and	energy depe	endence	$\frac{s d\sigma}{\prod_{i=1}^2 dx_i d\bar{x}_i d^2 \boldsymbol{q}_i}$	$\frac{sd\sigma}{\prod_{i=1}^2 dx_i d\bar{x}_i}$		
			q1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\frac{1}{\Lambda^2 Q^2}$	1		
		l_1 l_2 l_2		$\frac{1}{\Lambda^2 Q^2}$	$\frac{\Lambda^2}{Q^2}$		
		l_1 l_2 l_2	with a	$\frac{1}{\Lambda^2 Q^2}$	$\frac{\Lambda^2}{Q^2}$		

- interference between single and double scattering:
 - leading power when differential in $oldsymbol{q}_i$
 - power suppressed when $\int d^2 {m q}_i$, twist-three parton distributions
- at small $x_1 \sim x_2 \sim x$ expect
 - single scattering $\propto x^{-\lambda}$
 - double scattering $\propto x^{-2\lambda}$
 - interference? how do three-particle correlators behave for small x?

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	00000	0

Behavior at small interparton distance

• for $y \ll 1/\Lambda$ in perturbative region $F(x_1, x_2, y)$ dominated by graphs with splitting of single parton

▶ find strong correlations in x_1, x_2 , spin and color between two partons e.g. 100% correlation for longitudinal pol. of q and \bar{q}

can compute short-distance behavior:

$$F(x_1,x_2,oldsymbol{y})\sim rac{1}{oldsymbol{y}^2}$$
 splitting fct \otimes usual PDF

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	00000	0

Scale evolution for collinear distributions without color correlation

 if define two-parton distributions as operator matrix elements in analogy with usual PDFs

 $F(x_1, x_2, \boldsymbol{y}; \mu) \sim \langle p | \mathcal{O}_1(\boldsymbol{0}; \mu) \mathcal{O}_2(\boldsymbol{y}; \mu) | p \rangle \quad f(x; \mu) \sim \langle p | \mathcal{O}(\boldsymbol{0}; \mu) | p \rangle$

where $\mathcal{O}({m y};\mu)=$ twist-two operator renormalized at scale μ

•
$$F(x_i, y)$$
 for $y \neq 0$:

separate DGLAP evolution for partons 1 and 2

$$\frac{d}{d\log\mu}F(x_i,\boldsymbol{y}) = P \otimes_{x_1} F + P \otimes_{x_2} F$$

two independent parton cascades

$$\blacktriangleright \int d^2 \boldsymbol{y} F(x_i, \boldsymbol{y})$$
:

extra term from 2
ightarrow 4 parton transition since $F(x_i, m{y}) \sim 1/m{y}^2$

Kirschner 1979; Shelest, Snigirev, Zinovev 1982 Gaunt, Stirling 2009; Ceccopieri 2011

which evolution eq. is relevant for double hard scattering?

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Deeper problems with the splitting graphs

- ▶ contribution from splitting graphs in cross section gives divergent integrals $\int d^2 y F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y) \sim \int dy^2/y^4$
- double counting problem between double scattering with splitting and single scattering at loop level

MD, Ostermeier, Schäfer 2011; Gaunt, Stirling 2011; Gaunt 2012 Blok, Dokshitzer, Frankfurt, Strikman 2011; Ryskin, Snigirev 2011, 2012 same problem for jets: Cacciari, Salam, Sapeta 2009

possible solution: subtract splitting contribution from two-parton dist's when y is small will also modify their scale evolution; remains to be worked out

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	0

Deeper problems with the splitting graphs

- ► contribution from splitting graphs in cross section gives divergent integrals $\int d^2 y F(x_1, x_2, y) F(\bar{x}_1, \bar{x}_2, y) \sim \int dy^2/y^4$
- ▶ also have graphs with single PDF for one and double PDF for other proton

What is double parton scattering?

Blok et al, 2011-13; Gaunt 2012

- for k_T dependent distributions, i.e. measured q_i: Sudakov logarithms for all color channels close relation with physics of parton showers
- ▶ for double Drell-Yan process can adapt Collins-Soper-Sterman formalism for single Drell-Yan
 → include and resum Sudakov logs in k_T dependent parton dist's MD, D Ostermeier, A Schäfer 2011

for jet production inherit problems of usual TMD factorization

- at leading double log accuracy: singlet and octet dist's ¹F and ⁸F have same Sudakov factor as in single scattering
- beyond double log: Sudakov factors mix singlet and octet dist's

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	00000●	0

Factorization?

 open problem (for TMD and collinear formulations): exchange of gluons in Glauber region

Not discussed in this talk:

- multiparton interactions in pA collisions
- small-x approach connection with diffraction, AGK rules ridge effect in pp and pA

Bartels, Salvadore, Vacca 2008 Dumitru et al 2011; ...

Introduction	Theory basics	Correlations	More theory issues	Summary
0000	00000	000000	000000	•

Conclusions

- multiple hard scattering is not generically suppressed in sufficiently differential cross sections
- current phenomenology relies on strong simplifications
- have several elements for a formulation of factorization but important open questions still unsolved
 - crosstalk with single hard scattering at small distances closely related with evolution equations (1 → 2 parton splitting)
 - Glauber gluon exchange
- double hard scattering depends on detailed hadron structure including correlation and interference effects
 - corresponding nucleon matrix elements largely unknown theoretical activity only started
 - transverse distance between partons essential
- subject remains of high interest for
 - understanding high-multiplicity final states at LHC
 - study of hadron structure in its own right