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ABSTRACT
o

TMDs of definite rank
Piet Mulders (Nikhef/VU University Amsterdam)

Transverse momentum dependent (TMD) parton distribution functions include path-
dependent Wilson lines. Using moments in x and pT, it is possible to study the
operator structure which is relevant for evolution as well as for modelling of TMDs or
lattice calculations. Using the moments it is possible to categorize the TMDs according
to their rank which labels the relevant azimuthal behavior in pT. For quark TMDs of
rank 2, such as the Pretzelocity TMD, and gluon TMDs of rank 1 and higher, such as
the TMD describing linear polarization of gluons, one finds multiple TMDs depending
on the color structure of the operators. The explicit appearance of these TMDs in
scattering processes, including diffractive scattering, involves factors depends on the
color flow in the process in two ways, namely a factor depending on the gluonic rank
of the TMD as well as an additional process-dependent factor if multiple TMDs are
involved in a process, such as double Sivers asymmetries in the Drell-Yan process.

[thanks to: Maarten Buffing, Andrea Signori, Sabrina Cotogno, Cristian Pisano,
Thomas Kasemets, Miguel Echevarria, Paul Hoyer and Asmita Mukherjee] 5



Starting point
o °F

m TMD's: color gauge invariant correlators, describing distribution and
fragmentation functions including partonic transverse momentum.

m Nonlocality in field operators including transverse directions

m Observable in azimuthal dependence, i.e. noncollinearity in hard
processes (convolution in kT)

m Transverse separation complicates gauge link structure

m TMDs encode novel aspects of hadronic structure, e.g. spin-orbit
correlations, such as T-odd transversely polarized quarks or T-even
longitudinally polarized gluons in an unpolarized hadron, thus possible
applications for precision probing at the LHC, but for sure at a polarized
EIC.



Un)integrated correlators
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m o = p integration makes time-ordering automatic.
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m collinear (light-cone)
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m local

m Local operators with calculable anomalous dimension



\ Simplest gauge links for quark TMDs
\‘/ P gaug q
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€ Gauge links come from dimension zero (not suppressed!) collinear A.n gluons,
but leads for TMD correlators to process-dependence:

DY b ;‘% SIDIS

. v
An of ¢
/.tf.’A“ .
S S
[-] B * S [ - [+]
(I) - ® } ] & } - (I)
£ Time reversal £

AV Belitsky, X Ji and F Yuan, NP B 656 (2003) 165
D Boer, PIM and F Pijiman, NP B 667 (2003) 201



o

Simplest gauge links for gluon TMDs
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€ The TMD gluon correlators contain two links, which can have different paths.

Note that standard field displacement involves C = C’
FP(&) —

€ Basic (simplest) gauge links for gluon TMD correlators:
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| Color gauge invariant correlators
o

m Including gauge links we have well-defined matrix elements for TMDs but this
implies multiple possiblities for gauge links depending on the process and the
color flow in the diagram

m Leading quark TMDs
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& Some details on the gauge links (1)
o

m Proper gluon fields (F rather than A, Wilson lines and boundary terms)

u

A“(pl)=n.A(p1):—P+iAﬁ(pl)+m = ﬁ[n-A(pl)pf‘+iGz’3”(p1)+--.]

m Resummation of soft n.A gluons (coupling to outgoing color-line) for one
correlator produces a gauge-line (along n)
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m Boundary terms give transverse pieces



' Some details on the gauge links (2)
o

m Resummation of soft n.A gluons (coupling to outgoing color-line) for one
correlator produces a gauge-line (anng n)

o = /O;g;;ﬁ*

PP PP,

m The lowest order contributions for soft gluons from two different correlators
coupling to outgoing color-line resums into gauge-knots: shuffle product of all
relevant gauge-lines from that (external initial/final state) line.
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Which gauge links?
L o

m With more (initial state) hadrons color gets entangled, e.g. in pp

m QOutgoing color contributes to a future pointing gauge link in ®(p,) and future
pointing part of a gauge loop in the gauge link for ®(p,)

m This causes trouble with factorization

T.C. Rogers, PIM, PR D81 (2010) 094006 10



\‘ / Which gauge links?
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m Can be color-detangled if only p; of one correlator is relevant (using
polarization, ...) but must include Wilson loops in final U

MGA Buffing, PIM, JHEP 07 (2011) 065
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Trouble appears already in DY

m Complications for DY at measured Q; if the
transverse momentum of two initial state hadrons
is involved
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N Basic strategy: operator product expansion
o

m Taylor expansion for functions around zero
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m Mellin transform for functions on [-1,1] interval

z=0

C+I

f(x)_—_fdnx M, = [dxx""f(x)

Cc—i%

m functions in (transverse) plane

f(pT) E z pT pT a..a, fa...a =aal-"aanf(pT)

Pr

13



/ Operator structure in collinear case (reminder)
\ N/

m Collinear functions and x-moments
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m Moments correspond to IocaI matrix elements of operators that all have the
same twist since dim(D") =

@ = (P|p(0)(D")" y(0)|P)

m Moments are particularly useful because their anomalous dimensions can be
rigorously calculated and these can be Mellin transformed into the splitting

functions that govern the QCD evolution.
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. Operator structure in TMD case
o

m For TMD functions one can consider transverse moments
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m Upon integration, these do involve collinear twist-3 multi-parton correlators
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. Operator structure in TMD case
o

m For first transverse moment one needs quark-gluon correlators
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- Operator structure in TMD case
o

m Transverse moments can be expressed in these particular collinear multi-parton
twist-3 correlators (which are not suppressed!)
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m Operators: m Operators:

out state
o p| p)~ (P PO, (&) | P)  AKIK)
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but still T-odd functions!
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Classifying Quark TMDs
\‘ Y ying Q

m Collecting right moments gives expansion into full TMD PDFs of definite rank
Y(x,p,) = O(x,p)+p, D (x,p;) + pTi-CD” (x,p;) + ..
+E c? | Pr®, (6, p0) + Py @l (6 p7) + ]
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\

Classifying Quark TMDs

factor TMD PDF RANK
0 1 2 3
1 O(x,p;) | P@,(x,p;) @, (x,p;) @, (x,p;)
[U] 2 ~ 2 B~ 2
CG,c (I)G,c (x’pT) (I){Ga},c (x’pT) (I){Gaa},c (x’pT)
[U] 2 i~ 2
CGG,c (I)GG,C (x’pT) (I){GGG},C (x’ pT)
[U] 2
CGGG,C (I)GGG,C (x’pT)
m Only a finite number needed: rank up to 2(S,4ron*Sparton)
m Rank m shows up as cos(m¢) and sin(m¢) azimuthal asymmetries
m No gluonic poles for PFFs
factor TMD PFF RANK
0 1 2 3
1 Az | A (kD) A (z7 kD) A, (z7k)

MGA Buffing, A Mukherjee, PJM, PRD2012 , Arxiv: 1207.3221 [hep-ph]
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Classifying Quark TMDs
\w / ying Q

factor QUARK TMD PDF RANK UNPOLARIZED HADRON
0 1 2 3
1 /
e i
o

m Only a finite number needed: rank up to 2(S,4ron*Sparton)
m Rank m shows up as cos(m¢) and sin(m¢) azimuthal asymmetries
m Example: quarks in an unpolarized target are described by just 2 functions

(I)(x,p;) = (f1 (x,p?))% D (x, pT) = (zh (x, PT)Z)};

T-even T-odd [B-M function]



Classifying Quark TMDs
\w / ying Q

factor QUARK TMD PDFs RANK SPIN 12 HADRON
0 1 2 3
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Classifying Quark TMDs
\w / ying Q

factor QUARK TMD PDFs RANK SPIN /2 HADRON
0 1 2 3
1 fl’ &1 hl Eiro hllL hll]’(A)
[U] il 1
CG hl > flT
[U] (Bl) 1.(B2) (B1) (B2)
CGG,c hl > hl hllT > hllT
factor QUARK TMD PFFs RANK SPIN /2 HADRON
0 1 2 3
1 1 1
1 Dl’ Gl’ Hl DIT’GIT’HI ’HIL HllT

Just a single ‘pretzelocity’ PFF



Classifying Gluon TMDs
e "

factor GLUON TMD PDF RANK UNPOLARIZED HADRON
0 1 2 3
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Multiple TMDs in cross sections
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- Correlators in description of hard process (e.g. DY)
./
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Just as for twist-3 squared in collinear DY
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Classifying Quark TMDs

MGA Buffing, PJM, PRL (2014), Arxiv: 1309.4681 [hep-ph]
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Remember classification of Quark TMDs
o

factor QUARK TMD RANK UNPOLARIZED HADRON
0 1 2 3
1 /
e i
o

m Example: quarks in an unpolarized target needs only 2 functions
m Resulting in cross section for unpolarized DY at measured Q-

1 _
O'DY(xlaxzaqT) = F(I)(xlaplT)@(D(xz,pzT) contains fl
R R _ |
"N o 4 Pel ) © R, 1) contains h,Per

D. Boer, PRD 60 (1999) 014012; MGA Buffing, PRL (2014) PIM, Arxiv: 1309.4681 [hep-ph] 28



A TMD picture for diffractive scattering
o

m Momentum flow in case of diffraction
X; 2 M@Z/W?2 > 0andt > p?

m Picture in terms of TMD and inclusion of gauge links
(including gauge links/collinear gluons in M ~ S — 1)

m (Work in progress: Hoyer, Kasemets, Pisano, M)

m (Another way of looking at diffraction, cf Dominguez, Xiao, Yuan 2011 or older
work of Gieseke, Qiao, Bartels 2000) 29



| A TMD picture for diffractive scattering
o

q L
2 ]
\I X
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m Cross section
do = ®(p17; P) Tr, {Ui [p1]U+ [p1, pa2] Ui[pbm]U— [p1] @ (22, P21; Q)}

m involving correlators for proton and photon

O (x, p )= [ d(i‘”f Lo (3 (| O UL Y@ r* @),
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\‘ / Ingredients

m Photon PDF

3a x> +(1-x)°
2 2 1ex M2

27 po+2Q

(I)q/)/[+](x,pT;q) -

m Diffractive correlator

D5,y P) = O ) 10

X
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\ J Conclusion with (potential) rewards

m (Generalized) universality studied via operator product expansion,
extending the well-known collinear distributions (including
polarization 3 for quarks and 2 for gluons) to novel TMD PDF and
PFF functions, ordered into functions of definite rank.

m Knowledge of operator structure is important for lattice calculations.
m ! Multiple operator possibilities for pretzelocity/transversity

m The rank m is linked to specific cos(m¢) and sin(m¢) azimuthal
asymmetries.

m ! The TMD PDFs appear in cross sections with specific calculable
factors that deviate from (or extend on) the naive parton
universality for hadron-hadron scattering.

m ! Applications in polarized high energy processes, but also in
unpolarized situations (linearly polarized gluons) and possibly
diffractive processes.
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Thank you
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