Predictions for transverse-momentum dependence in e⁺e⁻ annihilation

Alessandro Bacchetta in collaboration with Miguel G. Echevarria, Marco Radici, Andrea Signori

Lessons from SIDIS

Lessons from SIDIS

Strong anticorreleation between distribution and fragmentation

З

Difficult to pin down the x and z dependence

Significant evidence that pion-unfavored and kaon fragmentation functions are wider than pion-favored. Little sensitivity to strange.

Aidala, Field, Gamberg, Rogers: arXiv:1401.2654

see also Anselmino, Boglione, Gonzalez, Melis, Prokudin, arXiv:1312.6261

Aidala, Field, Gamberg, Rogers: arXiv:1401.2654

see also Anselmino, Boglione, Gonzalez, Melis, Prokudin, arXiv:1312.6261

Little sensitivity to evolution

The solution is...

The solution is...

e-

e+

electron-positron annihilation

Collinear cross sections

Collinear cross sections

Errors of the order of 2% to 4%

Theoretical framework

Transverse-momentum dependence

$$e^+e^- \to h \text{ jet } X$$

Boer, Jakob, Mulders, NPB504 (97)

Transverse-momentum dependence

$$e^+e^- \to h \text{ jet } X$$

Boer, Jakob, Mulders, NPB504 (97)

Transverse-momentum dependence

$$e^+e^- \to h \text{ jet } X$$

Cross section

$$\frac{d\sigma}{dzdydq_T^2} = \frac{12\pi^2 \alpha^2}{Q^2} A(y) \sum_q e_q^2 \, z^2 D_1^{q \to h}(z, q_T^2)$$

Cross section

$$\frac{d\sigma}{dzdydq_T^2} = \frac{12\pi^2 \alpha^2}{Q^2} A(y) \sum_q e_q^2 \, z^2 D_1^{q \to h}(z, q_T^2)$$

$$\frac{d\sigma}{dzdydq_T^2} = \frac{6\pi\alpha^2}{Q^2}A(y)\sum_q e_q^2 \int_0^\infty db_T b_T J_0(q_T b_T) z^2 \tilde{D}_1^{q \to h}(z, b_T^2)$$

in bT space

Cross section

$$\frac{d\sigma}{dzdydq_T^2} = \frac{12\pi^2 \alpha^2}{Q^2} A(y) \sum_q e_q^2 \, z^2 D_1^{q \to h}(z, q_T^2)$$

$$\frac{d\sigma}{dzdydq_T^2} = \frac{6\pi\alpha^2}{Q^2}A(y)\sum_q e_q^2 \int_0^\infty db_T b_T J_0(q_T b_T) z^2 \tilde{D}_1^{q \to h}(z, b_T^2)$$

in bT space

$$\begin{aligned} \frac{d\sigma}{dzdydq_T^2} &= \frac{6\pi\alpha^2}{Q^2} A(y) \sum_q e_q^2 \mathcal{H}(Q^2;\mu^2) \int_0^\infty db_T b_T J_0(q_T b_T) z^2 \tilde{D}_1^{q \to h}(z,b_T^2;\mu^2) \\ &+ Y(Q^2,q_T^2) \end{aligned}$$
with QCD corrections

$$\widetilde{D}_{1}^{a}(z,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes D_{1}^{i} \right)(z,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{D}_{\mathrm{NP}}^{a}(z,b_{T})$$

 $\widetilde{D}_{1}^{a}(z,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes D_{1}^{i} \right)(z,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{D}_{\mathrm{NP}}^{a}(z,b_{T})$ collinear FF

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$
 $\mu_b = 2e^{-\gamma_E} / b_* \equiv b_0 / b_*$

$$\widetilde{D}_{1}^{a}(z,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes D_{1}^{i} \right)(z,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{D}_{\mathrm{NP}}^{a}(z,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_*$$
 $b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$

$$\widetilde{D}_{1}^{a}(z;\mu_{b})$$

$$\bigwedge_{i}^{A}(z,b_{T};\mu^{2}) = \sum_{i} \underbrace{\left(\widetilde{C}_{a/i} \otimes D_{1}^{i}\right)(z,b_{*};\mu_{b})}_{i} e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{D}_{\mathrm{NP}}^{a}(z,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_* \qquad b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

$$\begin{split} D_1^a(z;\mu_b) \\ \widetilde{D}_1^a(z,b_T;\mu^2) &= \sum_i \underbrace{\left(\tilde{C}_{a/i} \otimes D_1^i\right)(z,b_*;\mu_b)}_{i} e^{\tilde{S}(b_*;\mu_b,\mu)} e^{g_K(b_T)\ln\frac{\mu}{\mu_0}} \hat{D}_{\rm NP}^a(z,b_T) \\ & \exp\left\{-\int_{\mu_b=b_0/b_*}^{\mu} \frac{d\mu'}{\mu'} \Big[\Gamma_{\rm cusp}\ln\left(\frac{\mu^2}{\mu'^2}\right) + \gamma^V\Big]\right\} \end{split}$$

$$\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_*$$
 $b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$

$$\widetilde{D}_{1}^{a}(z;\mu_{b})$$

$$\widetilde{D}_{1}^{a}(z,b_{T};\mu^{2}) = \sum_{i} \underbrace{\left(\widetilde{C}_{a/i} \otimes D_{1}^{i}\right)(z,b_{*};\mu_{b})}_{i} e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{D}_{\mathrm{NP}}^{a}(z,b_{T})$$

$$\exp\left\{-\int_{\mu_{b}=b_{0}/b_{*}}^{\mu} \frac{d\mu'}{\mu'} \left[\Gamma_{\mathrm{cusp}}\ln\left(\frac{\mu^{2}}{\mu'^{2}}\right) + \gamma^{V}\right]\right\} \qquad e^{-\frac{g_{2}}{2}b_{T}^{2}\ln\frac{\mu}{\mu_{0}}}$$

$$\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_* \qquad b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

$$\begin{split} D_{1}^{a}(z;\mu_{b}) & e^{-\frac{\langle P_{\perp,a\to h}^{2}\rangle}{4}b_{T}^{2}} \\ \widetilde{D}_{1}^{a}(z,b_{T};\mu^{2}) &= \sum_{i} \underbrace{\left(\widetilde{C}_{a/i}\otimes D_{1}^{i}\right)(z,b_{*};\mu_{b})}_{i} e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \underbrace{D_{\mathrm{NP}}^{a}(z,b_{T})}_{\sqrt{NP}(z,b_{T})} \\ & \exp\left\{-\int_{\mu_{b}=b_{0}/b_{*}}^{\mu} \frac{d\mu'}{\mu'} \Big[\Gamma_{\mathrm{cusp}}\ln\left(\frac{\mu^{2}}{\mu'^{2}}\right) + \gamma^{V}\Big]\right\} & e^{-\frac{g_{2}}{2}b_{T}^{2}\ln\frac{\mu}{\mu_{0}}} \end{split}$$

$$\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_* \qquad b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

$$\mu_b = 2e^{-\gamma_E}/b_* \equiv b_0/b_* \qquad b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2/b_{\max}^2}}$$

$$\widetilde{D}_{1}^{a}(z, b_{T}; \mu_{0}) = D_{1}^{a}(z; \mu_{b})e^{-\frac{\langle P_{\perp}^{2}, a \rangle}{4}b_{T}^{2}}$$

$$\widetilde{D}_{1}^{a}(z, b_{T}; \mu_{0}) = D_{1}^{a}(z; \mu_{b})e^{-\frac{\langle P_{\perp}^{2}, a \rangle}{4}b_{T}^{2}}$$

$$D_1^a(z;\mu_0)e^{-rac{\langle P_\perp^2,a
angle}{4}b_T^2}$$

$$\widetilde{D}_{1}^{a}(z, b_{T}; \mu_{0}) = D_{1}^{a}(z; \mu_{b})e^{-\frac{\langle P_{\perp}^{2}, a \rangle}{4}b_{T}^{2}}$$

$$D_{1}^{a}(z; \mu_{0})e^{-\frac{\langle P_{\perp}^{2}, a \rangle}{4}b_{T}^{2}}$$

$$\widetilde{D}_{1}^{a}(z, b_{T}; \mu_{0}) = D_{1}^{a}(z; \mu_{b})e^{-\frac{\langle P_{\perp}^{2}, a \rangle}{4}b_{T}^{2}}$$

$$D_{1}^{a}(z; \mu_{0})e^{-\frac{\langle P_{\perp}^{2}, a \rangle}{4}b_{T}^{2}}$$

The two expressions are almost the same at small kT (where the SIDIS data are) if

$$\frac{2e^{-\gamma_E}}{b_{\max}} \sim \mu_0$$

Numerical results

$$\left\langle \boldsymbol{P}_{\perp,a\to h}^{2} \right\rangle(z) = \left\langle \hat{\boldsymbol{P}}_{\perp,a\to h}^{2} \right\rangle \frac{(z^{\beta}+\delta) \ (1-z)^{\gamma}}{(\hat{z}^{\beta}+\delta) \ (1-\hat{z})^{\gamma}}$$

where
$$\langle \hat{P}_{\perp,a \to h}^2 \rangle \equiv \langle P_{\perp,a \to h}^2 \rangle(\hat{z})$$
, and $\hat{z} = 0.5$

z-dependent width

$$\left\langle \boldsymbol{P}_{\perp,a\to h}^{2} \right\rangle(z) = \left\langle \hat{\boldsymbol{P}}_{\perp,a\to h}^{2} \right\rangle \frac{(z^{\beta}+\delta) \ (1-z)^{\gamma}}{(\hat{z}^{\beta}+\delta) \ (1-\hat{z})^{\gamma}}$$

where
$$\left\langle \hat{P}_{\perp,a \to h}^2 \right\rangle \equiv \left\langle P_{\perp,a \to h}^2 \right\rangle (\hat{z})$$
, and $\hat{z} = 0.5$

z-dependent width

$$\begin{split} \left\langle \boldsymbol{P}_{\perp,u\to\pi^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,\bar{d}\to\pi^{+}}^{2} \right\rangle = \left\langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^{-}}^{2} \right\rangle = \left\langle \boldsymbol{P}_{\perp,d\to\pi^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,\mathrm{fav}}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,u\to K^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,\bar{u}\to K^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,uK}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,\bar{s}\to K^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,s\to K^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,sK}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,\mathrm{all others}}^{2} \right\rangle &\equiv \left\langle \boldsymbol{P}_{\perp,\mathrm{unf}}^{2} \right\rangle. \end{split}$$

simplified flavor dependence

$$\left\langle \boldsymbol{P}_{\perp,a\to h}^{2} \right\rangle(z) = \left\langle \hat{\boldsymbol{P}}_{\perp,a\to h}^{2} \right\rangle \frac{(z^{\beta}+\delta) \ (1-z)^{\gamma}}{(\hat{z}^{\beta}+\delta) \ (1-\hat{z})^{\gamma}}$$

where
$$\left\langle \hat{P}_{\perp,a \to h}^2 \right\rangle \equiv \left\langle P_{\perp,a \to h}^2 \right\rangle(\hat{z})$$
, and $\hat{z} = 0.5$

z-dependent width

$$\begin{split} \left\langle \boldsymbol{P}_{\perp,u\to\pi^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,\bar{d}\to\pi^{+}}^{2} \right\rangle = \left\langle \boldsymbol{P}_{\perp,\bar{u}\to\pi^{-}}^{2} \right\rangle = \left\langle \boldsymbol{P}_{\perp,d\to\pi^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,\mathrm{fav}}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,u\to K^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,\bar{u}\to K^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,uK}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,\bar{s}\to K^{+}}^{2} \right\rangle &= \left\langle \boldsymbol{P}_{\perp,s\to K^{-}}^{2} \right\rangle \equiv \left\langle \boldsymbol{P}_{\perp,sK}^{2} \right\rangle, \\ \left\langle \boldsymbol{P}_{\perp,\mathrm{all others}}^{2} \right\rangle &\equiv \left\langle \boldsymbol{P}_{\perp,\mathrm{unf}}^{2} \right\rangle. \end{split}$$

simplified flavor dependence

we have in total 7 free parameters for the TMD FFs

Parameters

$ig\langle \hat{m{P}}_{\perp,\mathrm{fav}}^2ig angle \ [\mathrm{GeV}^2]$	$ig\langle \hat{m{P}}_{\perp,\mathrm{unf}}^2 ig angle \ [\mathrm{GeV}^2]$	$ig\langle \hat{\pmb{P}}_{\perp,sK}^2 ig angle$ $[{ m GeV}^2] \ ({ m random})$	$ig \langle \hat{oldsymbol{P}}_{ot, uK}^2 ig angle \ [ext{GeV}^2]$	eta	δ	γ
0.15 ± 0.04	0.19 ± 0.04	0.19 ± 0.04	0.18 ± 0.05	1.43 ± 0.43	1.29 ± 0.95	0.17 ± 0.09

Parameters

$ig\langle \hat{P}_{\perp,\mathrm{fav}}^2ig angle$	$ig\langle \hat{\pmb{P}}_{\!\perp,\mathrm{unf}}^2ig angle$	$ig\langle \hat{\pmb{P}}_{\perp,sK}^2ig angle$	$ig \langle \hat{\pmb{P}}_{\!\perp,uK}^2 angle$	β	δ	γ
$[\mathrm{GeV}^2]$	$[\mathrm{GeV}^2]$	$[GeV^2]$ (random)	$[\mathrm{GeV}^2]$			
0.15 ± 0.04	0.19 ± 0.04	0.19 ± 0.04	0.18 ± 0.05	1.43 ± 0.43	1.29 ± 0.95	0.17 ± 0.09

we are not using the mean values, but the 200 replicas

Parameters

$ig\langle \hat{\pmb{P}}_{\perp,\mathrm{fav}}^2 ig angle$	$ig \langle \hat{m{P}}_{ot,\mathrm{unf}}^2 angle$	$ig\langle \hat{\pmb{P}}_{\perp,sK}^2 ig angle$	$ig \langle \hat{\pmb{P}}_{\perp,uK}^2 angle$	eta	δ	γ
$[GeV^2]$	$[GeV^2]$	$[GeV^2]$ (random)	$[GeV^2]$			
0.15 ± 0.04	0.19 ± 0.04	0.19 ± 0.04	0.18 ± 0.05	1.43 ± 0.43	1.29 ± 0.95	0.17 ± 0.09

we are not using the mean values, but the 200 replicas

Three different choices for the evolution parameters

$$\begin{array}{c} 80 \\ 60 \end{array} \quad b_{max} = 1.5 \text{ GeV}^{-1}, \ g_2 = 0.18 \\ 60 \end{array} \quad b_{max} = 1.0 \text{ GeV}^{-1}, \ g_2 = 0.41 \\ b_{max} = 0.5 \text{ GeV}^{-1}, \ g_2 = 0.64 \end{array}$$

Effect of theoretical accuracy

unless otherwise specified, plots are shown for y=0.2, z=0.2

Effect of theoretical accuracy

Effect of theoretical accuracy

at least NLL accuracy is required

Data can significantly constrain the evolution parameters

Nonperturbative parameters

Nonperturbative parameters

data should constrain the nonperturbative parameters, especially in the high-z region

Flavor dependence

Flavor dependence

Flavor dependence

Flavor dependence: ratios

Flavor dependence: ratios

The ratio of pions and kaons should be sensitive to flavor differences in the TMD FFs.

Next steps

 $e^+e^- \to h_1 h_2 X$

 $\frac{d\sigma}{dz_1 dz_2 dy dq_T^2} = \frac{6\pi\alpha^2}{Q^2} A(y) \sum_q e_q^2 \int_0^\infty db_T b_T J_0(q_T b_T) z^2 \tilde{D}_1^{q \to h}(z_1, b_T^2) z_2^2 \tilde{D}_1^{\bar{q} \to h}(z_2, b_T^2)$

• Electron-positron data at 100 GeV² can be extremely valuable to **test evolution** and **pin down evolution parameters**

- Electron-positron data at 100 GeV² can be extremely valuable to **test evolution** and **pin down evolution parameters**
- They are needed to determine the nonperturbative parameters of TMD fragmentation functions

- Electron-positron data at 100 GeV² can be extremely valuable to **test evolution** and **pin down evolution parameters**
- They are needed to determine the nonperturbative parameters of TMD fragmentation functions
- They are useful to constrain flavor dependence of the TMD fragmentation functions

- Electron-positron data at 100 GeV² can be extremely valuable to **test evolution** and **pin down evolution parameters**
- They are needed to determine the nonperturbative parameters of TMD fragmentation functions
- They are useful to **constrain flavor dependence** of the TMD fragmentation functions
- Indirectly, the knowledge of TMD fragmentation functions will help constraining TMD distribution functions

e⁺e⁻ annihilation will be essential for TMD "evolution"

e⁺e⁻ annihilation will be essential for TMD "evolution"

