Q.CD Evolution Workshop

Exploring the Flavor dependence of partonic transverse momentum

Marco Radici
INFN - Pavia

SIDIS @leading twist

8 TMD PDF

2 TMD FF

quark pol.

U	L	T
D_{1}		H_{1}^{\perp}

SIDIS @leading twist

evidence from: collinear PDF fits

example :
Owens, Accardi, Melnitchouk (CJ12)
P.R. D87 (13) 094012

similar evidences in
Jimenez-Delgado, Reja (JR09), P. R. D80 (09) 114011
Alekhin et al. (ABKM09), P. R. D81 (10) 014032
Lai et al. (CT10), P. R. D82 (10) 074024
Alekhin, Blümlein, Moch (ABM11), P. R. D86 (12) 054009
Ball et al. (NNPDF13), N. P. B867 (13) 244

evidence from : collinear PDF fits

example :
Owens, Accardi, Melnitchouk (CJ12)
P.R. D87 (13) 094012

similar evidences in
Jimenez-Delgado, Reja (JR09), P. R. D80 (09) 114011
Alekhin et al. (ABKM09), P. R. D81 (10) 014032
Lai et al. (CT10), P. R. D82 (10) 074024
Alekhin, Blümlein, Moch (ABM11), P. R. D86 (12) 054009
Ball et al. (NNPDF13), N. P. B867 (13) 244
why not for
\boldsymbol{k}_{\perp} dependence of TMD ?

evidence from : lattice

valence picture of proton: \#u / \#d = 2

ratio of number densities (moments of $f_{1}{ }^{q}$) depends upon $\left|\boldsymbol{k}_{\perp}\right|$

Musch et al., P.R. D83 (11) 094507

evidence from : lattice

valence picture of proton: \#u / \#d = 2 ratio of
number densities
$\left(\right.$ moments of $\left.f_{1}{ }^{q}\right)$
depends upon $\left|\boldsymbol{k}_{\perp}\right|$

Musch et al., P.R. D83 (11) 094507
"less" up at large $\left|\boldsymbol{k}_{\perp}\right|$

evidence from : models of TMD PDF

example :
chiral quark soliton model

Schweitzer, Strikman, Weiss
JHEP 1301 (13) 163

evidence from : models of TMD PDF

example :
chiral quark soliton model

Schweitzer, Strikman, Weiss
JHEP 1301 (13) 163

similarly in other models like
diquark spectator (Bacchetta, Conti, Radici, P. R. D78 (08) 074010)
statistical approach (Bourrely, Buccella, Soffer, P. R. D83 (11) 074008)

evidence from : "model MC" of TMD FF

example: NJL-jet model

Matevosyan et al.,
P. R. D85 (12) 014021

evidence from : data

Adolph et al., E.P.J. C73 (13) 2531

$$
\left.<\boldsymbol{P}_{h T^{2}}\right\rangle
$$

see also
Asaturyan et al. (E00-108), P. R. C85 (12) 015202

Jefferson Lab

and
Airapetian et al.,
P. R. D87 (13) 074029
nermes

evidence from : data

Adolph et al., E.P.J. C73 (13) 2531

$$
\left.<\boldsymbol{P}_{h T^{2}}\right\rangle
$$

see also

Asaturyan et al. (E00-108), P. R. C85 (12) 015202

Jefferson Lab

and
Airapetian et al.,
P. R. D87 (13) 074029

Gaussian fit with no flavor $\quad \Rightarrow \quad\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle$
Anselmino et al, E.P.J. A31 (07)
TMD PDF
Gaussian widths

our work

explore the flavor dependence of partonic transverse momentum

$1^{\text {st }}$ part: published (this talk)

Investigations into the flavor dependence of partonic transverse momentum

Andrea Signori, ${ }^{a, b}$ Alessandro Bacchetta, ${ }^{c, d}$ Marco Radici ${ }^{c}$ and Gunar Schnelle ${ }^{e, f}$
JHEP1311 (2013) 194
$2^{\text {nd }}$ part: ongoing work (next talk by A. Bacchetta)

unpol. TMD and structure functions

notation as in
"Seattle convention"
arXiv:1108.1713
\perp intrinsic
T lab (measurable)

unpol. TMD and structure functions

notation as in
"Seattle convention"
arXiv:1108.1713
\perp intrinsic
T lab (measurable)

$$
\begin{aligned}
& \text { hard scattering } \\
& \begin{array}{l}
F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=x \sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d \boldsymbol{k}_{\perp} d \boldsymbol{P}_{\perp} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right) D_{1}^{a \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; \mu^{2}\right) \delta\left(z \boldsymbol{k}_{\perp}-\boldsymbol{P}_{h T}+\boldsymbol{P}_{\perp}\right) \\
\boldsymbol{P}_{h T^{2}} \sim \mathrm{Q}^{2}+Y_{U U, T}\left(Q^{2}, \boldsymbol{P}_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right) \\
\text { match pQCD }
\end{array}
\end{aligned}
$$

unpol. TMD and structure functions

notation as in
"Seattle convention"
arXiv:1108.1713
\perp intrinsic
T lab (measurable)

$$
\begin{aligned}
& \text { hard scattering } \\
& F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=x \sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d \boldsymbol{k}_{\perp} d \boldsymbol{P}_{\perp} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right) D_{1}^{a \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; \mu^{2}\right) \delta\left(z \boldsymbol{k}_{\perp}-\boldsymbol{P}_{h T}+\boldsymbol{P}_{\perp}\right) \\
& \underset{\substack{\text { PT } \\
\text { match pQCD }}}{\boldsymbol{P}_{h T^{2}} \sim \mathrm{Q}^{2}} \xrightarrow{+Y_{U U, T}\left(Q^{2}, \boldsymbol{P}_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)} \\
& \text { parton model }\left(M^{2}, \boldsymbol{P}_{h T^{2}} \ll \mathrm{Q}^{2}\right) \\
& F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right)=\sum_{q} e_{q}^{2} x \int d \boldsymbol{k}_{\perp} d \boldsymbol{P}_{\perp} \delta\left(z \boldsymbol{k}_{\perp}+\boldsymbol{P}_{\perp}-\boldsymbol{P}_{h T}\right) f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}, Q^{2}\right) D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right) \\
& =\sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q \rightarrow h}\right]
\end{aligned}
$$

exp. observable: multiplicity

SIDIS process

$$
\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X,
$$

hadron species

target

1. $M^{2}, \boldsymbol{P}_{\mathrm{h} T^{2}} \ll Q^{2}$: leading twist TMD
2. $O\left(\boldsymbol{\alpha}_{s}{ }^{0}\right)$: parton model
3. Φ_{h} integrated : acceptance in systematic error

recent data on SIDIS multiplicities

Airapetian et al., P.R. D87 (13) 074029

- target: proton, deuteron
- final state: $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$

Adolph et al., E.P.J. C73 (13) 2531

about 20000 data points (!), but

- target: deuteron
- final state: $\mathrm{h}^{+}, \mathrm{h}^{-}$unidentified
(at the time of this work) ongoing work on $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$

recent data on SIDIS multiplicities

Airapetian et al., P.R. D87 (13) 074029

ideal for flavor analysis

- target: proton, deuteron
- final state: $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$

about 20000 data points (!), but - target: deuteron
- final state: $\mathrm{h}^{+}, \mathrm{h}^{-}$unidentified
(at the time of this work) ongoing work on $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$

selection of data 有embs

limited $\left(x, Q^{2}\right)$ range:	6 bins	x
$0.1 \leq z \leq 0.9$	8 bins	x
$0.1 \leq\left\|\boldsymbol{P}_{h T}\right\| \leq 1 \mathrm{GeV}$	7 bins	x
p, D	2 targets	x
$\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$	4 final $\mathrm{h}^{\prime} \mathrm{s}$	

selection of data

limited $\left(x, Q^{2}\right)$ range:	6 bins	x
$0.1 \leq z \leq 0.9$	8 bins	x
$0.1 \leq\left\|\boldsymbol{P}_{h T}\right\| \leq 1 \mathrm{GeV}$	7 bins	x
p, D	2 targets	x
$\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$	4 final $\mathrm{h}^{\prime} \mathrm{s}$	

total 2688 points

- $\boldsymbol{P}_{h T^{2}}<Q^{2} \Rightarrow$ cut $Q^{2}>1.4 \mathrm{GeV}^{2}(\leftrightarrow$ lowest $x)$
- cut $z<0.8$ as in DSS (and use VM subtracted set)
- cut $0.15 \mathrm{GeV}^{2}<\boldsymbol{P}_{h T^{2}}<Q^{2 / 3}$

1538 points $\approx 60 \%$

selection of data

limited $\left(x, Q^{2}\right)$ range:	6 bins	x
$0.1 \leq z \leq 0.9$	8 bins	x
$0.1 \leq\left\|\boldsymbol{P}_{h T}\right\| \leq 1 \mathrm{GeV}$	7 bins	x
p, D	2 targets	x
$\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$	4 final $\mathrm{h}^{\prime} \mathrm{s}$	

total 2688 points

- $\boldsymbol{P}_{h T^{2}}{ }^{2}<Q^{2} \Rightarrow$ cut $Q^{2}>1.4 \mathrm{GeV}^{2}(\leftrightarrow$ lowest $x)$
- cut $z<0.8$ as in DSS (and use VM subtracted set)
- cut $0.15 \mathrm{GeV}^{2}<\boldsymbol{P}_{h T^{2}}<Q^{2} / 3$

1538 points $\approx 60 \%$
limited Q^{2} range \Rightarrow safely neglect evolution everywhere

our analysis : flavor dependent Gaussian

TMD PDF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

multiplicity

$$
\begin{aligned}
m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right) & \propto \sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q \rightarrow h}\right] \\
& \propto \sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{h T}^{2} /\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle}
\end{aligned}
$$

our analysis: flavor dependent Gaussian

TMD PDF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle} \quad D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

multiplicity

$$
\begin{aligned}
m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right) & \propto \sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q \rightarrow h}\right] \\
& \propto \sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{h T}^{2}}\left\langle\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle\right.}{\pi\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle}
\end{aligned}
$$

for each Gaussian in flavor q

$$
\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle
$$

our analysis: flavor dependent Gaussian

TMD PDF

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2} ; Q^{2}\right)=f_{1}^{q}\left(x ; Q^{2}\right) \frac{e^{-\boldsymbol{k}_{\perp}^{2} /\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}
$$

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; Q^{2}\right)=D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

multiplicity

$$
\begin{aligned}
m_{N}^{h}\left(x, z, \boldsymbol{P}_{h T}^{2} ; Q^{2}\right) \propto & \sum_{q} e_{q}^{2}\left[f_{1}^{q} \otimes D_{1}^{q \rightarrow h}\right] \\
\propto & \left.\left.\sum_{q} e_{q}^{2} f_{1}^{q}\left(x ; Q^{2}\right) D_{1}^{q \rightarrow h}\left(z ; Q^{2}\right) \frac{e^{-\boldsymbol{P}_{h T}^{2}}}{\pi\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle} \boldsymbol{P}_{h T, q}^{2}\right\rangle\right) \\
& \text { Sum of Gaussians } \neq \text { Gaussian }
\end{aligned}
$$

for each Gaussian in flavor q

$$
\left\langle\boldsymbol{P}_{h T, q}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle
$$

our analysis : TMD PDF parameters

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \operatorname{Gev}^{2}} \frac{e^{\left.-\boldsymbol{k}_{\perp}^{2} / / k_{1, q}^{2}\right)}}{\pi\left\langle k_{\perp, q}^{2}\right\rangle}
$$

MSTW08 LO
Martin et al., E.P.J. C63 (09) 189
x-dependent width

$$
\left.\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(x)=\widehat{\boldsymbol{k}_{\perp, q},}\right\rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\hat{x}=0.1
$$

5 parameters

our analysis: TMD PDF parameters

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \operatorname{GeV}^{2}} \frac{e^{\left.-\boldsymbol{k}_{\perp}^{2} / / \boldsymbol{k}_{1, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}
$$

MSTW08 LO
Martin et al., E.P.J. C63 (09) 189
x-dependent width

$$
\left.\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle(x)=\widehat{\boldsymbol{k}_{\perp, q}}\right\rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}
$$

$$
\hat{x}=0.1
$$

5 parameters

our analysis : TMD PDF parameters

$$
f_{1}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)=\left.f_{1}^{q}(x)\right|_{Q^{2}=2.4 \operatorname{GeV}^{2}} \frac{e^{\left.-\boldsymbol{k}_{\perp}^{2} / / \boldsymbol{k}_{1, q}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{k}_{\perp, q}^{2}\right\rangle}
$$

MSTW08 LO
Martin et al., E.P.J. C63 (09) 189

5 parameters

our analysis: TMD FF parameters

$$
D_{1}^{q \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2}\right)=\left.D_{1}^{q \rightarrow h}(z)\right|_{Q^{2}=2.4 \mathrm{GeV}^{2}} \frac{e^{-\boldsymbol{P}_{\perp}^{2} /\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}}{\pi\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle}
$$

DSS LO
De Florian et al., P.R. D75 (07) 114010

z-dependent width

$$
\left\langle\boldsymbol{P}_{\perp, q \rightarrow h}^{2}\right\rangle(z)=\left\langle\widehat{\boldsymbol{P}_{\perp, q \rightarrow h}}\right\rangle \frac{\left(z^{\beta}+\delta\right)(1-z)^{\gamma}}{\left(\hat{z}^{\beta}+\delta\right)(1-\hat{z})^{\gamma}}
$$

7 parameters
$\left\langle\widehat{\left.P_{\perp, u K}\right\rangle}\right\rangle$ favored $u \rightarrow K$
$\left\langle\widehat{\boldsymbol{P}_{\perp, s K}^{2}}\right\rangle$ favored $s \rightarrow K \quad$ randomly chosen
$\left\langle\widehat{\boldsymbol{P}_{\perp, \text { unf }}^{2}}\right\rangle$ unfavored
[0.125,0.25]

fitting : replica method

sample of original data

fitting : replica method

data are replicated with Gaussian noise (within exp. variance)

fitting : replica method

fit the replicated data

fitting : replica method

procedure repeated 200 times (until reproduce mean and std. deviation of original data)

fitting : replica method

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

fitting : replica method

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

quality of the fit

$$
\begin{gathered}
\text { global } \mathrm{X}^{2} / \text { d.o.f. }= \\
\text { no flavor dep. } \\
\hline 1.63 \pm 0.12 \pm 0.11
\end{gathered}
$$

quality of the fit

$$
\begin{array}{cc}
\text { global } \mathrm{X}^{2} / \text { d.o.f. } & =1.63 \pm 0.12 \\
\text { no flavor dep. } & 1.72 \pm 0.11
\end{array}
$$

proton target

$$
\begin{gathered}
\pi^{+} \\
2.64 \pm 0.21 \\
2.89 \pm 0.23 \\
\\
K^{+} \\
0.46 \pm 0.07 \\
0.43 \pm 0.07
\end{gathered}
$$

for more details, see JHEP1311 (2013) 194

Results : no flavor dep.

Results : no flavor dep.

Results : no flavor dep.

Results : no flavor dep.

strong anticorrelation between distribution and fragmentation

anticorrelation and 68% band

TMD PDF $\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle(x)$

Schweitzer et al. P.R. D81 (10) 094019

Anselmino et al.
P.R. D71 (05) 074006

HERMES gmc_trans

anticorrelation and 68% band

TMD PDF $\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle(x)$

Schweitzer et al. P.R. D81 (10) 094019

Anselmino et al.
P.R. D71 (05) 074006

HERMES gmc_trans

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle
$$

observed

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle(x=0.1, z)
$$

anticorrelation and 68% band

TMD PDF $\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle(x)$

Schweitzer et al. P.R. D81 (10) 094019

Anselmino et al.
P.R. D71 (05) 074006

HERMES gmc_trans

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle=z^{2}\left\langle\boldsymbol{k}_{\perp}^{2}\right\rangle+\left\langle\boldsymbol{P}_{\perp}^{2}\right\rangle
$$

observed

$$
\left\langle\boldsymbol{P}_{h T}^{2}\right\rangle(x=0.1, z)
$$

several $\left\{\boldsymbol{k}_{\perp}, \boldsymbol{P}_{\perp}\right\}$
give same $\boldsymbol{P}_{h T}$

Comparison with other results

TMD FF $\left\langle\widehat{\boldsymbol{P}_{\perp}^{2}}\right\rangle$

\square Anselmino et al., HERMES

JHEP1311 (2013) 194
this work
\square
Schweitzer, Teckentrup, Metz
P.R.D81 (2010) 094019
\square " " " high z
Anselmino et al., COMPASS
" " , high z, y-norm
JHEP1404 (2014) 005
\square Echevarria, Idilbi, Kang, Vitev
P.R.D89 (2014) 074013

TMD PDF with flavor dep.

point of
 no flavor dep.

TMD PDF with flavor dep.

most of the time sea wider than up

point of no flavor dep.

most of the time down narrower than up

TMD PDF with flavor dep.

no flavor dep.
most of the time down narrower than up

TMD PDF with flavor dep.

no Kaon data
point of
 no flavor dep.

TMD PDF with flavor dep.

no Kaon data
point of
 no flavor dep.
s, \bar{s} are important

TMD FF with flavor dep.

$q \rightarrow K$ favored wider than $q \rightarrow \pi$ favored

no flavor dep.

> unfavored
> wider than
> $q \rightarrow \pi$ favored

confirmed in "model MC" of TMD FF

NJL-jet model

Matevosyan et al., P. R. D85 (12) 014021

$\left\langle\boldsymbol{P}_{h T^{2}}\right\rangle$ unfavored / K fragmentation wider than favored π fragmentation

unpol. TMD and Spin Asymmetries

example: the Sivers effect in SIDIS

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)} \propto \frac{\sum_{q} e_{q}^{2}\left[\left(-\frac{\hat{h} \cdot \boldsymbol{k}_{\perp}}{M}\right) f_{1 T}^{\perp, q}\right] \otimes D_{1}^{q}}{\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}}
$$

unpol. TMD and Spin Asymmetries

example: the Sivers effect in SIDIS

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)} \propto \frac{\sum_{q} e_{q}^{2}\left[\left(-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{\perp}}{M}\right) f_{1 T}^{\perp, q}\right] \otimes D_{1}^{q}}{\left(\sum_{q} e_{q}^{2} f_{1}^{q} \otimes D_{1}^{q}\right.}
$$

unpol. TMD can affect the extraction of $f_{1 T}{ }^{\perp}$ and, in general, of polarized TMD

Summary

fit 手ermes
SIDIS multiplicities with TMD described by

1. flavor-dependent Gaussians
2. TMD PDF width $\left\langle\boldsymbol{k}_{\perp}{ }^{2}\right\rangle(x)$ with 5 parameters
3. TMD FF width $\left\langle\boldsymbol{P}_{\perp}{ }^{2}\right\rangle$ (z) with 7 parameters
4. error treatment using replica method
5. no evolution with hard scale

Results

1. TMD FF clear indication of $q \rightarrow K$ fav. wider $q \rightarrow \pi$ fav. unfav. wider

$$
\left\langle\boldsymbol{P}_{\perp}{ }^{2}\right\rangle(z)
$$

2. TMD PDF most of time sea wider u_{v} wider d_{v} hints of $\left\langle\boldsymbol{k}_{\perp}{ }^{2}\right\rangle(x)$
(large uncertainties but lot of room for flavor dep.) importance of K data and s
3. flavor-indep. fit not ruled out, but limited by anticorrelation
4. Hermes is not sensitive to evolution

Compass is, but not enough to fix nonpert. evol. kernel (Torino analysis)

Results

1. TMD FF clear indication of $q \rightarrow K$ fav. wider $q \rightarrow \pi$ fav. unfav. wider $\left\langle\boldsymbol{P}_{\perp}{ }^{2}\right\rangle(z)$
2. TMD PDF most of time sea wider u_{v} wider d_{v} hints of $\left\langle\boldsymbol{k}_{\perp}{ }^{2}\right\rangle(x)$
(large uncertainties but lot of room for flavor dep.) importance of K data and s
3. flavor-indep. fit not ruled out, but limited by anticorrelation
4. Hermes is not sensitive to evolution

Compass is, but not enough to fix nonpert. evol. kernel (Torino analysis)
SIDIS not enough to fix TMD \Rightarrow consider $\mathrm{e}^{+} \mathrm{e}^{-}$

