

Exploring the Flavor dependence of partonic transverse momentum

Marco Radici INFN - Pavia

SIDIS @leading twist

8 TMD PDF

2 TMD FF

quark pol.

U	L	Т
D_1		H_1^{\perp}

SIDIS @leading twist

explore the flavor dependence of partonic transverse momentum in SIDIS

evidence from : collinear PDF fits

nitchouk 12

example :

....

Owens, Accardi, Melnitchouk (CJ12) P.R. D**87** (13) 094012

similar evidences in

Jimenez-Delgado, Reja (JR09), P. R. D**80** (09) 114011 Alekhin *et al.* (ABKM09), P. R. D**81** (10) 014032 Lai *et al.* (CT10), P. R. D**82** (10) 074024 Alekhin, Blümlein, Moch (ABM11), P. R. D**86** (12) 054009 Ball et al. (NNPDF13), N. P. **B867** (13) 244

evidence from : collinear PDF fits

example :

....

Owens, Accardi, Melnitchouk (CJ12) P.R. D**87** (13) 094012

similar evidences in

Jimenez-Delgado, Reja (JR09), P. R. D**80** (09) 114011 Alekhin *et al.* (ABKM09), P. R. D**81** (10) 014032 Lai *et al.* (CT10), P. R. D**82** (10) 074024 Alekhin, Blümlein, Moch (ABM11), P. R. D**86** (12) 054009 Ball et al. (NNPDF13), N. P. **B867** (13) 244 why not for *k*⊥ dependence of TMD ?

evidence from : lattice

valence picture of proton : #u / #d = 2

evidence from : lattice

evidence from : models of TMD PDF

example : chiral quark soliton model

Schweitzer, Strikman, Weiss JHEP **1301** (13) 163

evidence from : models of TMD PDF

example : chiral quark soliton model

Schweitzer, Strikman, Weiss JHEP **1301** (13) 163

similarly in other models like

diquark spectator (Bacchetta, Conti, Radici, P. R. D78 (08) 074010) statistical approach (Bourrely, Buccella, Soffer, P. R. D83 (11) 074008)

evidence from : "model MC" of TMD FF

example : NJL-jet model

Matevosyan *et al.,* P. R. D**85** (12) 014021

evidence from : data

and

 $\langle p_T^2 \rangle = z \, \langle k_\perp^2 \rangle + \langle p_\perp^2 \rangle$

evidence from : data

our work

explore the flavor dependence of partonic transverse momentum

Published for SISSA by Deringer

RECEIVED: October 7, 2013 ACCEPTED: November 11, 2013 PUBLISHED: November 27, 2013

1st part: published (this talk)

Investigations into the flavor dependence of partonic transverse momentum

Andrea Signori,^{a,b} Alessandro Bacchetta,^{c,d} Marco Radici^c and Gunar Schnell^{e,f}

JHEP**1311** (2013) 194

2nd part: ongoing work (next talk by A. Bacchetta)

unpol. TMD and structure functions

- notation as in "Seattle convention" arXiv:1108.1713 ⊥ intrinsic
- T lab (measurable)

unpol. TMD and structure functions

unpol. TMD and structure functions

exp. observable : multiplicity

recent data on SIDIS multiplicities

Airapetian et al., P.R. D87 (13) 074029

- target: proton, deuteron - final state: π^+ , π^- , K⁺, K⁻

Adolph et al., E.P.J. C73 (13) 2531

about 20000 data points (!), but

- target: deuteron
- final state: h^+ , h^- unidentified (at the time of this work) ongoing work on π^+ , π^- , K^+ , K^-

recent data on SIDIS multiplicities

- target: proton, deuteron - final state: π^+ , π^- , K⁺, K⁻

Adolph et al., E.P.J. C73 (13) 2531

about 20000 data points (!), but

- target: deuteron
- final state: h^+ , h^- unidentified (at the time of this work) ongoing work on π^+,π^-,K^+,K^-

selection of data hermes

imited (x , Q^2) range:	6 bins x	
$0.1 \le z \le 0.9$	8 bins x	
$0.1 \leq \mathbf{P}_{hT} \leq 1 \text{ GeV}$	7 bins x	•
p , D	2 targets x	<
π+, π-, Κ+, Κ-	4 final h's	

total 2688 points

selection of data hermes

limited (x , Q^2) range:	6 bins	Х
$0.1 \le z \le 0.9$	8 bins	X
$0.1 \leq \boldsymbol{P}_{hT} \leq 1 \mathrm{GeV}$	7 bins	X
p , D	2 targets	x
π ⁺ , π ⁻ , K ⁺ , K ⁻	4 final h'	S

total 2688 points

- $P_{hT^2} \ll Q^2 \Rightarrow \operatorname{cut} Q^2 > 1.4 \text{ GeV}^2 \iff \operatorname{lowest} x)$

- cut z < 0.8 as in DSS (and use VM subtracted set)

- cut 0.15 GeV² < P_{hT^2} < $Q^2/3$ 1538 points $\approx 60 \%$

selection of data hermes

limited (x , Q^2) range:	6 bins	X
$0.1 \le z \le 0.9$	8 bins	x
$0.1 \leq \boldsymbol{P}_{hT} \leq 1 \mathrm{GeV}$	7 bins	X
p , D	2 targets	x
π ⁺ , π ⁻ , K ⁺ , K ⁻	4 final h's	S
		_

total 2688 points

- $P_{hT}^2 \ll Q^2 \Rightarrow \operatorname{cut} Q^2 > 1.4 \text{ GeV}^2 \iff \operatorname{lowest} x)$

- cut z < 0.8 as in DSS (and use VM subtracted set)

- cut 0.15 GeV² < P_{hT}^2 < $Q^2/3$ 1538 points $\approx 60 \%$

limited Q^2 range \Rightarrow safely neglect evolution <u>everywhere</u>

our analysis : flavor dependent Gaussian

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_\perp^2; Q^2) = f_1^q(x; Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

$$D_1^{q \to h}(z, \boldsymbol{P}_{\perp}^2; Q^2) = D_1^{q \to h}(z; Q^2) \; \frac{e^{-\boldsymbol{P}_{\perp}^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

multiplicity

$$\begin{split} m_N^h(x,z,\boldsymbol{P}_{hT}^2;Q^2) &\propto \sum_q e_q^2 \left[f_1^q \otimes D_1^{q \to h} \right] \\ &\propto \sum_q e_q^2 f_1^q(x;Q^2) D_1^{q \to h}(z;Q^2) \, \frac{e^{-\boldsymbol{P}_{hT}^2/\langle \boldsymbol{P}_{hT,q}^2 \rangle}}{\pi \, \langle \boldsymbol{P}_{hT,q}^2 \rangle} \end{split}$$

our analysis : flavor dependent Gaussian

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_\perp^2; Q^2) = f_1^q(x; Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

$$D_1^{q \to h}(z, \boldsymbol{P}_{\perp}^2; Q^2) = D_1^{q \to h}(z; Q^2) \; \frac{e^{-\boldsymbol{P}_{\perp}^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

multiplicity

$$\begin{split} m_N^h(x,z,\boldsymbol{P}_{hT}^2;Q^2) &\propto \sum_q e_q^2 \left[f_1^q \otimes D_1^{q \to h} \right] \\ &\propto \sum_q e_q^2 f_1^q(x;Q^2) D_1^{q \to h}(z;Q^2) \, \frac{e^{-\boldsymbol{P}_{hT}^2 / \langle \boldsymbol{P}_{hT,q}^2 \rangle}}{\pi \langle \boldsymbol{P}_{hT,q}^2 \rangle} \end{split}$$

for each Gaussian in flavor q

$$\langle \boldsymbol{P}_{hT,q}^2 \rangle = z^2 \langle \boldsymbol{k}_{\perp,q}^2 \rangle + \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle$$

our analysis : flavor dependent Gaussian

TMD PDF

TMD FF

$$f_1^q(x, \boldsymbol{k}_\perp^2; Q^2) = f_1^q(x; Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_{\perp,q}^2 \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2 \rangle}$$

$$D_1^{q \to h}(z, \boldsymbol{P}_{\perp}^2; Q^2) = D_1^{q \to h}(z; Q^2) \; \frac{e^{-\boldsymbol{P}_{\perp}^2/\langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}}{\pi \langle \boldsymbol{P}_{\perp,q \to h}^2 \rangle}$$

multiplicity

our analysis : TMD PDF parameters

$$f_{1}^{q}(x, \boldsymbol{k}_{\perp}^{2}) = f_{1}^{q}(x) \Big|_{Q^{2}=2.4 \text{ GeV}^{2}} \frac{e^{-\boldsymbol{k}_{\perp}^{2}/\langle \boldsymbol{k}_{\perp,q}^{2} \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^{2} \rangle}$$

$$MSTW08 \text{ LO}$$
Martin *et al.*, E.P.J. **C63** (09) 189
$$\boldsymbol{k}_{\perp,q}^{2} \rangle(x) = \langle \widehat{\boldsymbol{k}_{\perp,q}^{2}} \rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

 $\hat{x} = 0.1$

5 parameters

our analysis : TMD PDF parameters

$$f_{1}^{q}(x, \boldsymbol{k}_{\perp}^{2}) = f_{1}^{q}(x) \Big|_{Q^{2}=2.4 \text{ GeV}^{2}} \frac{e^{-\boldsymbol{k}_{\perp}^{2}/\langle \boldsymbol{k}_{\perp,q}^{2} \rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^{2} \rangle}$$

$$MSTW08 \text{ LO}$$

$$Martin et al., E.P.J. C63 (09) 189$$

$$\langle \boldsymbol{k}_{\perp,q}^{2} \rangle(x) = \langle \widehat{\boldsymbol{k}_{\perp,q}^{2}} \rangle \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$\hat{x} = 0.1$$

5 parameters

our analysis : TMD PDF parameters

our analysis : TMD FF parameters

sample of original data

data are replicated with Gaussian noise (within exp. variance)

fit the replicated data

procedure repeated 200 times (until reproduce mean and std. deviation of original data)

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

for each point, a central 68% confidence interval is identified (distribution is not necessarily Gaussian)

quality of the fit

global χ^2 / d.o.f. = 1.63 ± 0.12 no flavor dep. 1.72 ± 0.11

quality of the fit

global χ^2 / d.o.f. = 1.63 ± 0.12 no flavor dep. 1.72 ± 0.11

for more details, see JHEP1311 (2013) 194

strong anticorrelation between **distribution** and **fragmentation**

anticorrelation and 68% band

anticorrelation and 68% band

anticorrelation and 68% band

Comparison with other results

point of **no** flavor dep.

no Kaon data

point of **no** flavor dep.

point of **no** flavor dep.

 s, \overline{s} are important

confirmed in "model MC" of TMD FF

Matevosyan *et al.,* P. R. D**85** (12) 014021

 $< P_{hT}^2 >$ unfavored / *K* fragmentation wider than favored π fragmentation

unpol. TMD and Spin Asymmetries

example: the Sivers effect in SIDIS

$$A_{UT}^{\sin(\phi_h - \phi_S)} \propto \frac{\sum_q e_q^2 \left[\left(-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_\perp}{M} \right) f_{1T}^{\perp,q} \right] \otimes D_1^q}{\sum_q e_q^2 f_1^q \otimes D_1^q}$$

unpol. TMD and Spin Asymmetries

example: the Sivers effect in SIDIS

$$A_{UT}^{\sin(\phi_h - \phi_S)} \propto \frac{\sum_q e_q^2 \left[\left(-\frac{\hat{h} \cdot k_\perp}{M} \right) f_{1T}^{\perp,q} \right] \otimes D_1^q}{\sum_q e_q^2 f_1^q \otimes D_1^q}$$

unpol. TMD can affect the extraction of f_{1T}^{\perp} and, in general, of polarized TMD

Summary

- 1. flavor-dependent Gaussians
- 2. TMD PDF width $\langle \mathbf{k}_{\perp}^2 \rangle \langle x \rangle$ with 5 parameters
- 3. TMD FF width $\langle P_{\perp}^2 \rangle$ (z) with 7 parameters
- 4. error treatment using replica method
- 5. no evolution with hard scale

Results

1. TMD FF clear indication of $q \rightarrow K$ fav. wider $q \rightarrow \pi$ fav. unfav. wider "" $\langle \mathbf{P}_{\perp}^2 \rangle (z)$

2. **TMD PDF** most of time sea wider u_v wider d_v hints of $\langle \mathbf{k}_{\perp}^2 \rangle \langle x \rangle$ (large uncertainties but lot of room for flavor dep.) importance of *K* data and *s*

- 3. flavor-indep. fit not ruled out, but limited by anticorrelation
- 4. Hermes is not sensitive to evolution Compass is, but not enough to fix nonpert. evol. kernel (Torino analysis)

Results herm

1. TMD FF clear indication of $q \rightarrow K$ fav. wider $q \rightarrow \pi$ fav. unfav. wider "" $\langle \mathbf{P}_{\perp}^2 \rangle (z)$

2. **TMD PDF** most of time sea wider u_v wider d_v hints of $\langle \mathbf{k}_{\perp}^2 \rangle \langle x \rangle$ (large uncertainties but lot of room for flavor dep.) importance of *K* data and *s*

- 3. flavor-indep. fit not ruled out, but limited by anticorrelation
- 4. Hermes is not sensitive to evolution Compass is, but not enough to fix nonpert. evol. kernel (Torino analysis)

SIDIS not enough to fix TMD \Rightarrow consider e^+e^- (next talk)