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 evidence from :     collinear PDF fits
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FIG. 3: Uncertainty bands for the u, d, d̄ + ū, d̄ − ū, s and g PDFs for the CJ12mid fit at

Q2 = 100 GeV2, shown on logarithmic (left) and linear (right) scales in x. Note that in the left

panel the gluon is scaled by 1/10.

well constrained by proton DIS data. The χ2 for the W asymmetry data does show a

significant increase as the magnitude of the nuclear corrections increases beyond its middle

value, indicating a preference for mild to medium nuclear corrections.

In this regard it is interesting to compare our results to those of the recent analysis

in Ref. [83], which included nuclear corrections for deuterium targets in DIS using a 4-

parameter, Q2-independent phenomenological function with the parameters varied in the

fit. The resulting correction factor, shown in Fig. 11 of Ref. [83], can be compared to those

in Fig. 2 above. Their fitted form lies between the curves for the CJ12min and CJ12mid

fits, as might be expected since these two fits have nearly identical values for χ2, while the

CJ12max value is higher. As noted above, much of the increase in χ2 for the CJ12max set is

due to the CDF W asymmetry data, which is also included in the fit of Ref. [83]. Although

this comparison is not exact, since our nuclear corrections are Q2 dependent [84] and those

in Ref. [83] are not, it is consistent with our observation that the nuclear model choices

made for the CJ12min and CJ12mid sets are preferred by the data.

The CJ12mid PDFs are shown in Fig. 3 at Q2 = 100 GeV2 with the PDF error bands

calculated as described in Sec. II E, on both logarithmic and linear x scales. The latter more

graphically illustrates the behavior of the PDFs at large values of x, where the uncertainties

from nuclear and finite-Q2 corrections are greatest. The error bands are shown in more

detail in Fig. 4, and compared to the CJ12min and CJ12max sets. It is clear that the

effects of nuclear corrections are strongest on the d PDF, with the others showing little or
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panel the gluon is scaled by 1/10.

well constrained by proton DIS data. The χ2 for the W asymmetry data does show a

significant increase as the magnitude of the nuclear corrections increases beyond its middle

value, indicating a preference for mild to medium nuclear corrections.

In this regard it is interesting to compare our results to those of the recent analysis

in Ref. [83], which included nuclear corrections for deuterium targets in DIS using a 4-

parameter, Q2-independent phenomenological function with the parameters varied in the

fit. The resulting correction factor, shown in Fig. 11 of Ref. [83], can be compared to those

in Fig. 2 above. Their fitted form lies between the curves for the CJ12min and CJ12mid

fits, as might be expected since these two fits have nearly identical values for χ2, while the

CJ12max value is higher. As noted above, much of the increase in χ2 for the CJ12max set is

due to the CDF W asymmetry data, which is also included in the fit of Ref. [83]. Although

this comparison is not exact, since our nuclear corrections are Q2 dependent [84] and those

in Ref. [83] are not, it is consistent with our observation that the nuclear model choices

made for the CJ12min and CJ12mid sets are preferred by the data.

The CJ12mid PDFs are shown in Fig. 3 at Q2 = 100 GeV2 with the PDF error bands

calculated as described in Sec. II E, on both logarithmic and linear x scales. The latter more

graphically illustrates the behavior of the PDFs at large values of x, where the uncertainties

from nuclear and finite-Q2 corrections are greatest. The error bands are shown in more

detail in Fig. 4, and compared to the CJ12min and CJ12max sets. It is clear that the
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FIG. 15: Flavor-ratios at a pion mass m� � 500MeV. The
solid curve and the statistical error band in blue have been
obtained from the Gaussian fits displayed in Fig. 12 and
13. The corresponding errors associated with �[�m] are
shown as a gray band at the bottom. For the dashed curve
and the band in orange we have used alternative Gaussian
parametrizations as discussed in section VE. The respective
uncertainties from �[�m] are shown at the top of each plot.
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where the first and the second index of ⌅ indicates the
nucleon and quark polarization, respectively.
From the x-moments of amplitudes ⌃Ai obtained on the

lattice, we can construct x-integrated densities ⌅[1]q , and
decompose them in analogy to Eq. (40) as

⌅[1]q (k⇥;⇤, s⇥,⇥,S⇥)

⌅
⇧ 1

�1
dx ⌅q(x,k⇥;⇤, s⇥,⇥,S⇥)

=

⇧ 1

0
dx ⌅q(x,k⇥;⇤, s⇥,⇥,S⇥)

�
⇧ 1

0
dx ⌅q̄(x,�k⇥;�⇤, s⇥,⇥,S⇥) . (57)

where the anti-quark density ⌅q̄ is defined as in Eq. (49)
but using the correlator ⇤c

q of Eq. (E1) in the appendix.
Here the appearance of minus signs in front of ⌅q̄ and
⇤ accommodates the sign changes in the Dirac matrix �
after charge conjugation, i.e., �c = � 1

2 (�
+ � ⇤�+�5 �

sji⇧+j�5). We conclude that the x-integrated densities

⌅[1]q are di⌅erences of quark densities ⌅q and anti-quark
densities ⌅q̄ of

• opposite transverse momentum �k⇥,

• opposite light cone helicity �⇤,

• same transverse polarization s⇥.

Strictly speaking, the densities that are integrated over
x from �1 to +1 are thus not densities themselves and
can, at least in principle, become negative.
With the Gaussian x-moments of TMDs from Table

IV as input, we are in a position to draw plots of the
x-integrated transverse momentum dependent densities
of quarks in the nucleon. Two particularly interesting
and statistically well-determined x-integrated densities

are ⌅[1]LT and ⌅[1]TL. They feature significant dipole defor-
mations due to correlations in the transverse spins and
intrinsic transverse momentum, as can be seen from the
terms proportional to g1T and h⇥

1L in Eqns. (54) and (55),
in combination with our non-zero results for the relevant
amplitudes ⌃A7 and ⌃A10, see Eq. (16). For corresponding
density plots and their interpretation, we refer to our pre-
vious publication Ref. [32]. The dipole deformations can
be characterized by average transverse momentum shifts
of the quarks, denoted by ⇧kx⌃TL and ⇧kx⌃LT . These are
defined by ratios of specific moments in x- and k⇥ of the
densities, as we will discuss in the following section.

ratio of  
number densities 
( moments of f1q ) 

depends upon |k⊥|

valence picture of proton :   #u / #d = 2
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FIG. 15: Flavor-ratios at a pion mass m� � 500MeV. The
solid curve and the statistical error band in blue have been
obtained from the Gaussian fits displayed in Fig. 12 and
13. The corresponding errors associated with �[�m] are
shown as a gray band at the bottom. For the dashed curve
and the band in orange we have used alternative Gaussian
parametrizations as discussed in section VE. The respective
uncertainties from �[�m] are shown at the top of each plot.

(a) f [1]
1,u(k

2
⇥)/f

[1]
1,d(k

2
⇥) from �A2 (solid) and �A2±6 (dashed)

(b) g[1]1,u(k
2
⇥)/g

[1]
1,d(k

2
⇥) from �A6 (solid) and �A2±6 (dashed)

(c) h[1]
1,u(k

2
⇥)/h

[1]
1,d(k

2
⇥) from �A9m (solid) and �A2±9m (dashed)

⌅TT,q ⌅ ⌅q(x,k⇥; 0, s⇥, 0,S⇥) =
1

2

�
f1,q

+ s⇥ · S⇥h1,q +
sj(2kjki � k2

⇥⇥ji)Si

2m2
N

h⇥
1T,q

+

⇤
sj�jiki

mN
h⇥
1,q

⌅

odd

⇥
, (56)

where the first and the second index of ⌅ indicates the
nucleon and quark polarization, respectively.
From the x-moments of amplitudes ⌃Ai obtained on the

lattice, we can construct x-integrated densities ⌅[1]q , and
decompose them in analogy to Eq. (40) as

⌅[1]q (k⇥;⇤, s⇥,⇥,S⇥)

⌅
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where the anti-quark density ⌅q̄ is defined as in Eq. (49)
but using the correlator ⇤c

q of Eq. (E1) in the appendix.
Here the appearance of minus signs in front of ⌅q̄ and
⇤ accommodates the sign changes in the Dirac matrix �
after charge conjugation, i.e., �c = � 1

2 (�
+ � ⇤�+�5 �

sji⇧+j�5). We conclude that the x-integrated densities

⌅[1]q are di⌅erences of quark densities ⌅q and anti-quark
densities ⌅q̄ of

• opposite transverse momentum �k⇥,

• opposite light cone helicity �⇤,

• same transverse polarization s⇥.

Strictly speaking, the densities that are integrated over
x from �1 to +1 are thus not densities themselves and
can, at least in principle, become negative.
With the Gaussian x-moments of TMDs from Table

IV as input, we are in a position to draw plots of the
x-integrated transverse momentum dependent densities
of quarks in the nucleon. Two particularly interesting
and statistically well-determined x-integrated densities

are ⌅[1]LT and ⌅[1]TL. They feature significant dipole defor-
mations due to correlations in the transverse spins and
intrinsic transverse momentum, as can be seen from the
terms proportional to g1T and h⇥

1L in Eqns. (54) and (55),
in combination with our non-zero results for the relevant
amplitudes ⌃A7 and ⌃A10, see Eq. (16). For corresponding
density plots and their interpretation, we refer to our pre-
vious publication Ref. [32]. The dipole deformations can
be characterized by average transverse momentum shifts
of the quarks, denoted by ⇧kx⌃TL and ⇧kx⌃LT . These are
defined by ratios of specific moments in x- and k⇥ of the
densities, as we will discuss in the following section.

ratio of  
number densities 
( moments of f1q ) 

depends upon |k⊥|

“less” up at large |k⊥|

valence picture of proton :   #u / #d = 2
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FIG. 14. Transverse momentum distributions of flavor–singlet
unpolarized valence and sea quarks at x = 0.1. Panel (a)

shows fu+d−ū−d̄
1 and f ū+d̄

1 as functions of p2T on a logarithmic

scale; panel (b) shows the radial distribution 2πpT f
u+d−ū−d̄
1

and 2πpT f
ū+d̄
1 on a linear scale, such that the area un-

der the curves corresponds to the integral over pT . Dashed
lines: Valence quark distribution fu+d−ū−d̄

1 (see Fig. 6). Solid

lines: Sea quark distribution f ū+d̄
1 (PV regularization). [Self–

consistent soliton profile Eq. (A4) with M = 0.35GeV,MN =
3.26M .]

I. Sea vs. valence quark distribution

Using the numerical approximation of Sec. VH we now
want to compare our results for the sea quark transverse
momentum distribution with those of the valence quarks
calculated in Sec. IV. Figure 14 summarizes the numer-
ical results for the valence distribution fu+d−ū−d̄

1 (x, pT )

and the sea quark distribution f ū+d̄
1 (x, pT ) at a represen-

tative value of x = 0.1. Panel (a) shows the distributions

themselves on a logarithmic scale; panel (b) the radial
distributions on a linear scale, such that the area un-
der the curves corresponds directly to their integral over
pT . Similar results are obtained at other values of x:
the shape of the individual pT distribution changes little
with x (cf. Fig. 4 for the valence distribution); only their
normalization changes in proportion to the total valence
and sea quark density.

The numerical estimates clearly show very different
shapes of the valence and sea quark transverse momen-
tum distributions, especially at large values of pT , as
first observed in the calculation of Ref. [40]. Based on
our theoretical analysis we can now explain this strik-
ing behavior as the effect of dynamical chiral symmetry
breaking in the QCD vacuum on the intrinsic transverse
momentum distribution of the sea quarks. Even with the
strong modification of the would–be 1/p2T tail by the UV
cutoff, the sea quark transverse momentum distribution
in the chiral quark–soliton model is qualitatively differ-
ent from that of the valence quarks. While the precise
numerical values depend on the model implementation
(see e.g. Fig. 11), the fact as such is rooted in the basic
structure of the effective dynamics chiral and should be
model–independent.

When interpreting the results of Figure 14 one should
keep in mind that the accuracy of the approximation
Eq. (5.66) used in our numerical estimate of f ū+d̄

1 (x, pT )
is not sufficient to predict the values at p2T <∼ 2M2

with meaningful relative accuracy (cf. the discussion in
Sec. VH). In this sense the plot of the radial distribu-
tion, in which the low–pT region is suppressed, conveys a
more realistic picture. This uncertainty, however, in no
way influences our conclusions regarding the qualitatively
different behavior of valence and sea quark distributions
at large pT .

The qualitative difference between the pT distribution
of valence and sea quarks is the most important practical
result of our study. Its numerous implications for deep–
inelastic processes are explored in Sec. VIII.

J. Polarized sea quark distribution

To complete our study of the sea quark transverse
momentum distribution we want to investigate also the
flavor–nonsinglet polarized sea quark distribution. The
gradient expansion of this distribution can be carried out
in complete analogy to the flavor–singlet unpolarized case
starting from Eq. (3.38), cf. Secs. VA and VB; we do not
present the intermediate steps here. The result can again
be represented as a convolution integral over the momen-
tum of the classical chiral field, analogous to Eq. (5.16),

gū−d̄
1,grad(x, pT ) =

∫
dy

y

∫
d2kT gcl(y,kT )

× gqq̄(x, y;pT ,kT ). (5.67)

valence

sea
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1 as functions of p2T on a logarithmic

scale; panel (b) shows the radial distribution 2πpT f
u+d−ū−d̄
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I. Sea vs. valence quark distribution

Using the numerical approximation of Sec. VH we now
want to compare our results for the sea quark transverse
momentum distribution with those of the valence quarks
calculated in Sec. IV. Figure 14 summarizes the numer-
ical results for the valence distribution fu+d−ū−d̄

1 (x, pT )

and the sea quark distribution f ū+d̄
1 (x, pT ) at a represen-

tative value of x = 0.1. Panel (a) shows the distributions

themselves on a logarithmic scale; panel (b) the radial
distributions on a linear scale, such that the area un-
der the curves corresponds directly to their integral over
pT . Similar results are obtained at other values of x:
the shape of the individual pT distribution changes little
with x (cf. Fig. 4 for the valence distribution); only their
normalization changes in proportion to the total valence
and sea quark density.

The numerical estimates clearly show very different
shapes of the valence and sea quark transverse momen-
tum distributions, especially at large values of pT , as
first observed in the calculation of Ref. [40]. Based on
our theoretical analysis we can now explain this strik-
ing behavior as the effect of dynamical chiral symmetry
breaking in the QCD vacuum on the intrinsic transverse
momentum distribution of the sea quarks. Even with the
strong modification of the would–be 1/p2T tail by the UV
cutoff, the sea quark transverse momentum distribution
in the chiral quark–soliton model is qualitatively differ-
ent from that of the valence quarks. While the precise
numerical values depend on the model implementation
(see e.g. Fig. 11), the fact as such is rooted in the basic
structure of the effective dynamics chiral and should be
model–independent.

When interpreting the results of Figure 14 one should
keep in mind that the accuracy of the approximation
Eq. (5.66) used in our numerical estimate of f ū+d̄

1 (x, pT )
is not sufficient to predict the values at p2T <∼ 2M2

with meaningful relative accuracy (cf. the discussion in
Sec. VH). In this sense the plot of the radial distribu-
tion, in which the low–pT region is suppressed, conveys a
more realistic picture. This uncertainty, however, in no
way influences our conclusions regarding the qualitatively
different behavior of valence and sea quark distributions
at large pT .

The qualitative difference between the pT distribution
of valence and sea quarks is the most important practical
result of our study. Its numerous implications for deep–
inelastic processes are explored in Sec. VIII.

J. Polarized sea quark distribution

To complete our study of the sea quark transverse
momentum distribution we want to investigate also the
flavor–nonsinglet polarized sea quark distribution. The
gradient expansion of this distribution can be carried out
in complete analogy to the flavor–singlet unpolarized case
starting from Eq. (3.38), cf. Secs. VA and VB; we do not
present the intermediate steps here. The result can again
be represented as a convolution integral over the momen-
tum of the classical chiral field, analogous to Eq. (5.16),

gū−d̄
1,grad(x, pT ) =

∫
dy

y

∫
d2kT gcl(y,kT )

× gqq̄(x, y;pT ,kT ). (5.67)

valence

sea
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FIG. 13. TMD fragmentation functions for a u quark to K

+

and K

�. The upper figure illustrates the favored case, which
peaks at relatively large z, while the unfavored case, shown
in the lower figure, peaks at much smaller z.

cantly more di�cult when we include the transverse mo-
mentum dependence, because now the number of bins be-
comes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins
in the transverse momentum direction was extended to
6 GeV2, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum.
To overcome the numerical challenge, our software plat-
form was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with di↵erent seeds
for their random number generators. The results were
later combined to produce the high statistics solutions.
The computations were facilitated on the small computer
cluster at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core i7 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4.
A typical calculation of fragmentation for a given quark

u h<
P2 ⊥

>
 (G

eV
2 )

0
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0.3

0.4

z
0 0.2 0.4 0.6 0.8 1.0

π+
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K+
K-

FIG. 14. The averaged transverse momentum of ⇡ and K

mesons emitted by a u quark.

type takes about 12 hours with 44 parallel processors.
Results for the TMD favored and unfavored fragmen-

tation functions for a u quark to ⇡ and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large
z, while the unfavored results are peaked at smaller z. It
is also evident that the kaon fragmentation functions fall
o↵ more slowly in P

2
? than the corresponding pion frag-

mentation functions. The drop in each of the fragmenta-
tion functions for z . 0.02 is a consequence of choosing
N

Links

= 6, which means that in the Monte Carlo simu-
lation there is a vanishingly small probability of emitting
hadrons with z < 0.02.
The Gaussian ansatz is widely used to describe the tra-

verse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD
fragmentation function of a quark q emitting a hadron h

is often modeled by

D

h

q

(z, P 2
?) = D

h

q

(z)
e

�P

2
?/hP 2

?i

⇡hP 2
?i

, (23)

where D

h

q

(z) is the corresponding integrated fragmenta-
tion function and hP 2

?i is the average transverse momen-
tum of the produced hadron h, defined by

hP 2
?i(z) ⌘

R
d

2P? P

2
? D

h

q

(z, P 2
?)R

d

2P? D

h

q

(z, P 2
?)

. (24)

In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that hP 2

?i
does not depend on z, the type of hadron, h, or the quark
flavor, q. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.
The results in Fig. 14 depict the average transverse

momenta of ⇡ and K mesons produced by a u-quark.
These plots show that the average transverse momenta
of the hadrons are relatively flat versus z in the region
0.3 < z < 0.6, however they have a significant depen-
dence on the type of the hadron. We find that the av-
erage transverse momentum of the kaons is significantly
larger than that of the pions.

 evidence from :  “model MC” of TMD FF
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i (full squares) with a simulation using the MC event generator
LEPTO for two bins of Q

2 and x
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, for positive (top) and negative hadrons (bottom). Two cases were
simulated in the MC: Interactions without intrinsic transverse parton momenta hk2
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FIG. 8 (color online). Multiplicities of pions (left panels) and kaons (right panels) for the proton and the deuteron as a function of
Ph?, xB, and Q2 in four z bins. Positive charge is on the left and negative charge is on the right of each panel. Uncertainties are as in
Fig. 4.

MULTIPLICITIES OF CHARGED PIONS AND KAONS . . . PHYSICAL REVIEW D 87, 074029 (2013)

074029-11

PRD87 (2013) 074029

(multi-dimensional analysis sensitive to <k⊥
2> and evolution, 

work in progress, TO-CA group)

about 20000 data points (!), but 
- target: deuteron 
- final state: h+, h− unidentified 
                  (at the time of this work) 
 ongoing work on π+,π−,K+,K− 

- target: proton, deuteron 
- final state: π+, π−, K+, K−
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MULTIPLICITIES OF CHARGED PIONS AND KAONS . . . PHYSICAL REVIEW D 87, 074029 (2013)

074029-11

PRD87 (2013) 074029

(multi-dimensional analysis sensitive to <k⊥
2> and evolution, 

work in progress, TO-CA group)

about 20000 data points (!), but 
- target: deuteron 
- final state: h+, h− unidentified 
                  (at the time of this work) 
 ongoing work on π+,π−,K+,K− 

- target: proton, deuteron 
- final state: π+, π−, K+, K−

ideal for flavor analysis
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 our analysis :  TMD PDF parameters
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 our analysis :  TMD FF parameters

z-dependent width

7 parameters
β    γ    δ
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ẑ = 0.5



 fitting :  replica method
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data are replicated with Gaussian noise 
(within exp. variance)
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fit the replicated data
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procedure repeated 200 times 
(until reproduce mean and std. deviation of original data)
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 fitting :  replica method



for each point, a central 68% confidence interval is identified 
(distribution is not necessarily Gaussian)
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for each point, a central 68% confidence interval is identified 
(distribution is not necessarily Gaussian)

mHx,z,PhT ,Q2L, proton target

Xx\~0.15
XQ2\~2.9 GeV2

0.0 0.4 0.8
PhT

1

2

3
p-

0.27<z<0.30
0.38<z<0.48

× 2 targets  
× 4 final h’s 

!
× 5 x-bins 

!
× 7 z-bins

 fitting :  replica method



 quality  of  the  fit

global  χ2 / d.o.f.  = 1.63 ± 0.12 
 no flavor dep.        1.72 ± 0.11



 quality  of  the  fit
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mHx,z,PhT2 ,Q2L, proton target
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FIG. 3. Data points: Hermes multiplicities m

h
p(x, z, P 2

hT ; Q2) for pions and kaons o↵ a proton target as functions of P 2
hT for

one selected x and Q

2 bin and few selected z bins. Shaded bands: 68% confidence intervals obtained from fitting 200 replicas of
the original data points in the scenario of the default fit. The bands include also the uncertainty on the collinear fragmentation
functions. The lowest P 2

hT bin has not been included in the fit.

mHx,z,PhT2 ,Q2L, deuteron target
Xx\~0.15
XQ2\~2.9 GeV2

10-1

101
p- p+

0.10<z<0.20
0.27<z<0.30
0.38<z<0.48
0.60<z<0.80

0.0 0.4 0.8
PhT
2

10-2

100 K-

0.0 0.4 0.8
PhT
2

K+

FIG. 4. Same content and notation as in the previous figure, but for a deuteron target.

global  χ2 / d.o.f.  = 1.63 ± 0.12 
 no flavor dep.        1.72 ± 0.11

π− 
1.80 ± 0.27 
1.83 ± 0.25

K− 
0.78 ± 0.15 
0.87 ± 0.16

π+ 
2.64 ± 0.21 
2.89 ± 0.23

K+ 
0.46 ± 0.07 
0.43 ± 0.07

for more details, see  JHEP1311 (2013) 194

proton target
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 Results :   no flavor dep.
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 Results :   no flavor dep.

h \P 2
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h \P 2
?, uKi
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h\k2
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i

h\k2
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hdP 2
?i

hck2
?i TMD PDF

TMD FF

central value

68% confidence band

replica 51  χ2/dof = 1.57

replica 33  χ2/dof = 1.90

strong anticorrelation between  
distribution and fragmentation
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anticorrelation  and  68%  band
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 Comparison with other results

hdP 2
?i

hck2
?i

TMD FF

TMD PDF

this work

Schweitzer, Teckentrup,  
Metz

Anselmino et al., HERMES 

     “        “       “  , high z 

Anselmino et al., COMPASS 

  “        “  , high z, y-norm 

Echevarria, Idilbi,   
Kang, Vitev

JHEP1311 (2013) 194

P.R.D81 (2010) 094019 JHEP1404 (2014) 005

P.R.D89 (2014) 074013



 TMD PDF  with flavor dep.

point of  
no flavor dep.



 TMD PDF  with flavor dep.

most of the time  
sea wider than up

most of the time  
down  narrower than up 

point of  
no flavor dep.



 TMD PDF  with flavor dep.

most of the time  
sea wider than up

replica 149   
χ2/dof = 1.87

replica 186   
χ2/dof = 1.38

most of the time  
down  narrower than up 

replica 130   
χ2/dof = 1.77

replica 73   
χ2/dof = 1.70

point of  
no flavor dep.
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point of  
no flavor dep.

 TMD PDF  with flavor dep.

no   Kaon   data
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point of  
no flavor dep.

s, s  are  important−

 TMD PDF  with flavor dep.

no   Kaon   data



unfavored  
wider than   

q→π  favored

q→K  favored   
wider than  

q→π  favored

point of  
no flavor dep.

 TMD FF  with flavor dep.



Matevosyan et al.,  
P. R. D85 (12) 014021

NJL-jet  model
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FIG. 13. TMD fragmentation functions for a u quark to K

+

and K

�. The upper figure illustrates the favored case, which
peaks at relatively large z, while the unfavored case, shown
in the lower figure, peaks at much smaller z.

cantly more di�cult when we include the transverse mo-
mentum dependence, because now the number of bins be-
comes quadratic in the size of the discrete bin size (taken
to be 1/500 both for z and transverse momentum, in the
corresponding units). Furthermore, the extent of the bins
in the transverse momentum direction was extended to
6 GeV2, in order to avoid any notable numerical artifacts
arising from the limited range of transverse momentum.
To overcome the numerical challenge, our software plat-
form was developed to allow for parallel generation of the
Monte Carlo quark decay cascades, with di↵erent seeds
for their random number generators. The results were
later combined to produce the high statistics solutions.
The computations were facilitated on the small computer
cluster at the Special Research Centre for the Subatomic
Structure of Matter (CSSM) that consists of 11 machines
with Intel Core i7 920 quad core CPUs running on the
Linux Fedora Core 11 operating system and GCC 4.4.
A typical calculation of fragmentation for a given quark

u h<
P2 ⊥

>
 (G

eV
2 )

0

0.1

0.2

0.3

0.4

z
0 0.2 0.4 0.6 0.8 1.0

π+
π-
K+
K-

FIG. 14. The averaged transverse momentum of ⇡ and K

mesons emitted by a u quark.

type takes about 12 hours with 44 parallel processors.
Results for the TMD favored and unfavored fragmen-

tation functions for a u quark to ⇡ and K mesons are
illustrated in Figs. 12 and 13. In each case, the favored
TMD fragmentation functions have more support at large
z, while the unfavored results are peaked at smaller z. It
is also evident that the kaon fragmentation functions fall
o↵ more slowly in P

2
? than the corresponding pion frag-

mentation functions. The drop in each of the fragmenta-
tion functions for z . 0.02 is a consequence of choosing
N

Links

= 6, which means that in the Monte Carlo simu-
lation there is a vanishingly small probability of emitting
hadrons with z < 0.02.
The Gaussian ansatz is widely used to describe the tra-

verse momentum dependence of both quark distribution
and fragmentation functions. In particular, the TMD
fragmentation function of a quark q emitting a hadron h

is often modeled by

D

h

q

(z, P 2
?) = D

h

q

(z)
e

�P

2
?/hP 2

?i

⇡hP 2
?i

, (23)

where D

h

q

(z) is the corresponding integrated fragmenta-
tion function and hP 2

?i is the average transverse momen-
tum of the produced hadron h, defined by

hP 2
?i(z) ⌘

R
d

2P? P

2
? D

h

q

(z, P 2
?)R

d

2P? D

h

q

(z, P 2
?)

. (24)

In analyses that assume a Gaussian ansatz for the TMD
fragmentation functions, it is usual to assume that hP 2

?i
does not depend on z, the type of hadron, h, or the quark
flavor, q. These assumptions will be tested against the
NJL-jet TMD fragmentation functions.
The results in Fig. 14 depict the average transverse

momenta of ⇡ and K mesons produced by a u-quark.
These plots show that the average transverse momenta
of the hadrons are relatively flat versus z in the region
0.3 < z < 0.6, however they have a significant depen-
dence on the type of the hadron. We find that the av-
erage transverse momentum of the kaons is significantly
larger than that of the pions.

   <PhT2>   unfavored / K  fragmentation 
 wider than    favored  π  fragmentation

 confirmed in “model MC” of TMD FF
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  unpol. TMD and Spin Asymmetries

  unpol. TMD can affect the extraction of  f1T
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and, in general, of polarized TMD 
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  Summary

1. flavor-dependent Gaussians 
!
2. TMD PDF width  <k⊥

2> (x)   with 5 parameters 
!
3. TMD FF  width  <P⊥

2> (z)  with 7 parameters 
!
4. error treatment using replica method 
!
5. no evolution with hard scale

  fit                 SIDIS multiplicities with TMD described by hermes



  Results

1. TMD FF  clear indication of    q→K  fav.     wider     q→π  fav. 
                                                       unfav.       wider        “    “ 
                                                    <P⊥

2> (z) 
!
2. TMD PDF      most of time        sea      wider      uv      wider      dv 
                          hints of  <k⊥

2> (x)                           
                             (large uncertainties but lot of room for flavor dep.) 
                          importance of K data and s 
                          
3. flavor-indep. fit not ruled out, but limited by anticorrelation 
!
4. Hermes is not sensitive to evolution  
    Compass is, but not enough to fix nonpert. evol. kernel (Torino analysis)

hermes
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  SIDIS not enough to fix  TMD  ⇒  consider   e+e−

  ( next talk )


