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e*e  annihilation into hadrons

v The lepton pair annihilates into a virtual
photon (Z-boson) that in turn decays into
quark and gluons that undergo a
hadronization process into mesons and

& baryons

v The total (inclusive) cross section

o1ot(g) = Y _(2m)*6" (g — kx)IMye (o x |
X

requires a calculation of parton-level

R = o(hadrons) /o(u*u™) amplitudes (and understanding of
e E b e . . fragmentation?)
T/ $(28) (18,28, 35)
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L v Completeness condition for hadronic
i 2N
states saves the day
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15 e u s c b ] v Whightman function (non time-ordered)
oL - ' : ' ] can be related to Green function via

S G G 20 30 40 ; |
B (Ge) optical theorem (use OPE to analyze!)




Weighted cross sections

- v If the cross section is not totally inclusive
. w.rt. final state, i.e., it measures the N
properties of the latter, then its value
computed in QCD perturbation theory will
deviate from the experimental one. This
difference is due to hadronization.

v However, we do not measure the fate of
. individual particles but rather only the
energy flow into final states.

v The final states can be described by a
:  class of infrared safe observables known

as event shapes. N
do
o > (2m)*6 % (g — kx)|Moye () x |26 (e — e(kx))

X

Here ¢(X) is a function of the momenta of
the particles populating the final state

v Infrared safety implies linear suppression
of contributions from soft-gluon radiation
in the weight factor!

v Independent of the jet definition/algorithm




Event shapes

iy
: T
‘v Event shape variables are given by the =

following weight functions: DG

X Thrust: e right hemisphere

I = e ST A VS

X Heavy-jet mass
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X Broadening
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./ Allow to measure different properties of the event.

left hemisphere

./ Event shape variables vary depending on the geometry eventshape |1 -7 | PH B
. of the underlying event.

: penci-ike | O | O | 0
v Extract precise information about QCD strong coupling.

spherical

W| =
0| 3

./ Hadronization corrections show up power suppressed
: by the c-of-m energy!




Energy flow observables

v All event shape observables are related to
energy flow into the final state, as can be seen
from their moments

/eNda == Z(27T)45(4)(q — k:X)eN(kX)|M7*(q>_>X|2
o
N

v Direct access to energy distribution and

:  correlation of final state particles is achieved
through energy correlations as measured by
detectors located at “spatial infinity” in the
direction of the vectors 77.

X Single detector weight:

”LUg(ﬁ) = ZE)(5(2) (QEX s Qﬁ)
X

X Double detector weight (energy-energy correlations):

werc(Xx) = /dQﬁldQﬁ25(ﬁ1 -+ Tig — cos x)we (1 )we (7i2)

= Z ExEx/d(cosfOxx — cosx)
X, X/

X etc.




Energy-energy correlations

Function of the angle 0 < x < 7 between detected particles

[Basham,Brown,Ellis,Love]

Il E.Ey
EEC(x) = <A—XZ Q2 0(Ax — |cos€ab—cosx|)>
a,b

events

Total energy >, Fu = Q

Conventional (‘amplitude’) approach

Energy-energy correlation, EEC
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Weak coupling expansion in QCD 5, s S
EEC(x) = ag A(x) + ag B(x) + O(ag) ; Bt - REUERE ;
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Amplitudes vs. correlators

v ‘Amplitude approach’ has the following disadvantages:

X presence of intrinsic infrared divergences inside transition amplitudes M.« ), x

X integration over the phase space of the final states and subsequent intricate IR cancellations

X necessity for summation over all final states

ow(a) = ) _(2m)*6™ (g — kx)w(X)|(X]0(0)[0)

-

LO real - NLO real

v New approach: event shapes (energy correlations) from Wightman correlation functions
7u(@) = [ d's €12 (0/0(@)E[IOWO) )

X no IR divergences are present in the correlation functions
X no summation over all final states is needed

X no integration over the phase space is required




Energy-flow operator

To be able to recover an “optical theorem” for weighted cross sections, we have to find find
the operator that produces the weight when acting on the final state

7)) =Y Ex6®(Qp —Qg)
X

The energy-flow operator obeys

E(1)| X) = we (X)]X)

It is expressed in terms of stress-tensor

T—> 00

E(mn) :/ dt lim r2@'Ty;(t, rid)
0 ﬁiTOi(t,’l"ﬁ)

Since the operator acts at spatial infinity, the fields are
noninteracting and one can represent the energy-flow
operator in terms of free on-shell states

T / (;lﬁl)ﬂ o6, (k2) k25(Q Za




inergy correlations

: v Single correlator

> _(010(2)| X)we (X)(X]0(0)|0) = > _(0]O(x)E(7)|X)(X|O(0)|0) = (0|O(z)E(7)O(0)|0)
X X

Wightman correlation function (no time ordering!) due to real-time evolution

The weighted cross section:
ru(@) = [ d'ae T 00()E()O(0)0)

Single-energy correlation:
(€(1)) = ow(q)/otot(q)

:v Multi-energy correlations:

® g(ﬁl) 5(ﬁ2)
(@) .. £(7)) ®
=01 | d*z e9%(0|0(x) E(71) . .. £(7y) O(0)]0)
tot
Energy flow in the direction of 711, ..., 7y
Depends on the relative angles cos 0;; = (7; - ;) Q)€ (e)

v Everything is boils down to the calculation of Wightman correlation functions.

v Alot of recent progress in calculation of Euclidean correlation functions in N=4 SYM. Can we use it?




Initial and final states in ‘N=4 SYM

v Use the protected half-BPS operator Oz as an analogue of the QCD electromagnetic current

@ — a0 — VYO (D]

The null vector Y’ defines the orientation of the projected operator in the isotopic SO(6) space

v To lowest order in the coupling, O(x) produces a pair of scalars out of the vacuum

v For arbitrary coupling, the state O(x)|0) can be decomposed into an infinite sum over

on-shell states with an arbitrary number of scalars (s), gauginos (\) and gauge fields (g)

/d4zr; e'9% O(z)|0) = |ss) + |ssg) + |sAN) +
v The amplitude of creation of a particular final state | X') out of the vacuum
(x| [ dtweit7 0()j0) = (2169 (g — px) Mo, 2

px is the total momentum of the state | X)

v The amplitude M _, x has the meaning of a (IR divergent) form-factor

Mo, —x = (X]0(0)[0) S




N=4 total “cross section”

: v The analogue of ete- annihilation into everything

oot (q) = D _(2m)*6™W (g — px) Moy, x|
X

v To lowest order in the coupling, the production of a pair of scalars

d*k

oyt (2234 ()34 ((a = ) + -

1
starle) = s(N? - 1) |
v To higher order in the coupling, each term in the sum }_ - has IR / collinear divergences
. v How to avoid divergences? Use the completeness condition D | Xl

tot () =/d4w e'4® Y (0]0(0)|X) e™**PX (X|0(0)|0)

X

— / d*z "% (0|0(x)O(0)]0) The operators are not time ordered!

. Wightman correlation function (protected for half-BPS operators)
. v All-loop result in A = 4 SYM

1

16—7T(N2 —1)0(¢")0(¢%)

otot(q) =

Perturbative corrections cancel order by order




N=4 correlations from amplitudes

‘v Transition amplitude at one loop

My e SRy +

‘v’ Energy correlations

oe(q) :/dF’Sz we(1,2) |./\/l020,_>88|2 L /dP83 weg (1,2, 3)(|M020/_>859|2 AT |M020/—>s)\)\|2) e
X Single detector correlation (protected from loop corrections)

(E@) = =

4

X Two detectors oriented along n; (unprotected quantity)

qa In(1 — 2)

o e

(E(ri1)E(N2)) = —

The scaling variable in the rest frame of the source z = (1 — cos 012)/2

X Two-loop corrections to (£(7i1)E(72)) are hard to compute (in components, not easier than in QCD)




~ N=4 correlations from correlators

. v Energy flow operator
(EG) ~ [ dtsei (0]0() £(ir) O(0)]0)

:/d4xeiq"”’/ dt lim r? (0|0(z) Toz, (w1) O(0)]0)
O 53 o0

\ o \\ J \\ S

Fourier Detector limit Wightman corr. function

Thr— (t, ’I“ﬁl)

v Generalization for ¢ detectors

(E(ri1) ...E(1y)) = Fourier x Limit {<O|O(a:) Tor iz o Eom, (e O OHe)

v How to compute energy flow correlators:
X Start with corr.function (O(x)T'(z1) ... T (x,)O(0)) in Euclid
X Continue to Minkowski with Wightman prescription
X Take detector limit + perform Fourier
v Correlation functions in N’ = 4 SYM have a lot of symmetry :
X (O(x)T(x1)0(0)) is fixed by conformal symmetry — exact result for (£(7i1))

X (O(x)T(x1)T(x2)O(0)) is not fixed by conformal symmetry




Step 1: Correlator in Euclid

V Perturbative expansion can be cast in terms of conformal integrals:

®(u,v;a) = a®Y (u,v)

+a2{%(1 + u + v) [Cb(l)(u,v)r

=D [CI)(2)(u,v) + i@@)(v/u, 1/u) + %@(2)(1/U,u/v)] } Qa2

v Available AdS/CFT prediction for the function at strong coupling




Step 2: From Euclid to Minkowski

./ Brute force method: compute anew using Schwinger-Keldysh technique (too hard)
t/ Better method: analytically continue correlation functions from Euclid to Minkowski+Wightman

" Warm-up example: free scalar propagator Dgyciia () = (¢(z)¢(0)) ~ 1/z?

(0lp(x)$(0)]0) = Y (0| (x)|n)(n|¢(0)|0)

n

1
— i0)2 — 72

= 3 e B0 016(0) n) (n]$(0)]0) ~

0
E,>0 (x

v How to get Wightman correlation functions (‘magic’ recipe):

X Go to Mellin space:

—8+ico gi di N

J)14j)2 B

cI)Euclid:/ M gesa) uvls
e ) (27”)

X Nontrivial Wick rotation

2 2 2 . 0
(I)Wightman = Pgyclid (xz'j e SR B 20 - xij)

t/ M (j1, j2; a) is known both at weak and strong coupling in planar N' = 4 SYM




Step 3: Detector limit

v The detector limit yields the scalar correlations, related to energy flow by susy (as shown later):

o) - — Aa

B q*(ny1 - na)

v The event shape function F(z;a) at any coupling:

—d+ioo div di
71 a2 R oo
(Z,Cl) \/_5_@' (27_‘_1)2 @ (]1,]2,&2 =, (]1)327Z2

NVair R

corr. function detector

X The detector function is coupling independent:

. F(l _]'1 _j2) & ey i)
(g a0s2) B = _jQ)]Q (1 — z)

X The Mellin transform of Euclidean correlator is known

M (j1,j2;0) = aM ) (41, §2) + a>MP (41, 52) + . ..

~”

: are known
: v Weak and strong coupling:

3
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EC@2-loops

Four-point correlator at weak coupling [Eden,Schubert,Sokatchev],[Bianchi et al]
1 2
®(u,v;a) = a®V (u,v) + a2{§(1 +u+v) [CID(l)(u, v)}
(2) L L
+2 |9 (u,v) + =0\ (v/u,1/u) + =2 (1 /v, u/v)
U v

: Euclidean ‘scalar box’ integrals ®(1) and ®(2) [Usyukina,Davydychev]

: Mellin amplitude to two loops:

M (j1,j2) = aM P (j1, j2) + o [%M(Q)(jl,ﬁ) + M@ (1,42 — 1)

+2M P (j1, j2) + 4MP (j1, =1 = j1 — ja)|

MO (1, j2) =~ D=0 (=52)T (A + 1 + 32)]°

1
VD) = o SN NN R

dj1 dj’ s L1 — 3005 — 32)T (1 4+ j1 + g2 — 31 — 35)
X / G103 (1) (51, )= - - e
(271) Bl = L e e

M\ (41,52) = | =—=M"" (1 — j1,J2 — J2) M (41, 72)
(274)2




Warm-up

v Master formula at one loop

d+ic0 i dja
EEC(1-loop) — / j1djz 1) e (
422(1 = il e (Qm)z (41,525 @)K (41, 52)

Mellin amplitude

e Z>j1+j2

MO (1, 32) = — [D(=40D(~32)0( + 1 + 32
2 )
B0 o) [0 = I ol R

v Change integration variable j1 + j2 — j1

o a0 @ m (1—z>j1
Az2 (= Zh ) (2a) 5 2(0h = Jo )2 o2 Sinlig i)

g / die i (1 = z)jl
- 422(1—2) J 2mijisin(mji) \ =z

:422 TR Z = (1;2)

k—l

a l 1
= n
422(1—2) 1—=z2

Gl i —

EEC(l—loop) ARG

z
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EC@2-loops (II)

. Final result for EEC

EECpn—4 = 4z2(11— = {a,F1 0 (1 —2)Fa(z) + %Fg(z)] }, 2= %(1 — cosx)

Fw (z) are linear combinations of functions of homogenous weight w = 1,2, 3

Fi(z) = —In(1 — 2)

Pa(2) = 4v2 [Lia (+v3) ~ Liz (v3) + snzin (12 2)]

iy
+ (14 2) [2Liz(2) + In2(1 — 2)] + 2In(1 — 2) In (1;) —|—z%2,
02 {m? Gfé) o (1;) i (\F\/E 1) o (\/ﬁlﬂ

e (63 3y 42 s ( z

S > — 22(1F dz)ca F 208 d)=lng
+2(22% -z = 2) In(1 - 2)]Lia(2) + % In® (1 — 2) [4(32% — 22 — 1) In(1 — 2)

2
+ 3(3 —42)zlnz]| + % [22°Inz — (222 + 2 — 2) In(1 — 2)]
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C@2-1oops (III)

v Sum of basis functions with nontrivial arguments and rational prefactors Rs and R3

o))

EEC(21°°P%) = N ™ Ry (2, v/2) Wa(z,v2) + ) _ Ra(z,v/z) Wa(z, V%)
Weight two W5 = {Lis, InIn, 72}
Weight three W3 = {Lis, Liz In,InlnIn, 72 In, (3}

v W> and W3 depend on /z = | sin(x/2)|, but EEC is manifestly invariant under v/z — —/z

v Scattering amplitudes have homogenous weight in planar N = 4 SYM at weak coupling

Aa—l—b+X ~ exp <—D|V(1/€) S Z a£W2£ ar O(E))
¢
This property is ‘minimally’ violated for EEC after the phase space integration

y e E'
EEC(x) = Z [ LIPS Ao x? 22

— cosOup)
Otot

But it is restored in the back-to-back kinematics x — «, or z — 1 (see below)

v EEC(2l°ops) jnyolves some of the transcendental functions that also appear in the two-loop
result for the quarks (= n ¢ dependent) contribution to EEC in QCD [Dixon, Schreiber]




osudakov scaling

EEC in the back-to-back kinematics x — 7w (ory =1 —z ~ (m — x)? — 0)

1 : : < : 02
BREC @{aln(l/y) o % {lnS(l/y) + % ln(l/y)] } :\\9/@\\’/

v Large (Sudakov) corrections a”* In" y come from the emission of soft and collinear particles

v All order resummation [Collins, Soper
1 (0. @)
EEC ~ 8—H(a) / dbb Jo(b)S (b2 /y; a)
Yy 0

Jo(b) Bessel function; S(b? /y; a) the Sudakov form factor (with by = 2e~7E)

S = exp {—%Fcusp(a) In? (;%) e (%)}

0 0

Dependence on the coupling constant is encoded in three functions
i sla) —a— %§2a2 , Bl = —%C3a2 : H(a) =1—- (a0
v’ Perturbative corrections to EEC(z — 1) have homogeneous transcedentality

[EECqep(z — 1)] = EECnr—4(z — 1)

maximal transcedentality




~ Collinear colarimeters

Small angle correlations x — 0 (or z ~ x? — 0): calorimeters measure nearly collinear particles

X
EEC Go i [1—|—a(lnz—%C3—|—C2—3)] :\:/\/rx
4 — \_/\ ®

z

. v Corrections are enhanced by In z, no homogenous transcedentality
v EEC(2°°ps) involves /z ~ |x| but expansion runs in integer positive powers of z ~ x?2

. v Resummation of leading log’s a(a In 2)* using the “jet calculus” [Konishi,Ukawa, Veneziano]

z—0 L 2 2
e A8 s S C)S )
0

4z
e e e

4z 4
D(x,Q?/S,) probability to fragment into a pair of partons with S,;, = 2E, Ey(1 — cos x) ~ Q22
yr(S)=a Zf:_f 1/k + O(a?) the twist-two time-like anomalous dimension of spin S

v Resummation weakens singularity of EEC for x — 0, jets at weak coupling

X0
/ dcosxy EEC ~ 1, (xo € 1)
0 ;




From weak to strong coupling

EEC(a = 0.05)

toosf
0.4:—
03}
P o02f

+ 0.1

v At weak coupling EEC y—4 has a shape which is remarkably similar to the one in QCD

v Going from one to two loops, EEC flattens

v This agrees with strong coupling prediction for EEC in planar N’ = 4 SYM

oy
1 o0s
1 05
i
1 03
1 02
] 0.1

100

EEC(a = 0.1)

Ccos X

-1.0

-0.5

00

FIRE ey % [1 G L g s O(a—3/2)]

No jets at strong coupling

0.5

[Hofman,Maldacena]
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Conclusions and questions

Observables of scattering experiments calculated bypassing amplitudes
Symmetries of the theory preserved at every step of the calculation

Event shapes can be used to constrain correlation functions

Does the N=4 result provides the most complicated part of QCD expressions?

Can one devise an interpolation between weak and strong coupling?

What is the manifestation of integrability in event shapes?




~ Correlators with stress tensor

v Single stress-tensor component ((6161)? term minus two-level descendants)

Y33Y34Yd0 212774
(T 55 DOO0) = LB (3,16 (51, ) [ Mapys B(uy) LA
e I, 1571
X Conserved due to the totally symmetric matrix
Mapgys = [X134, X124](0p[X134, X124]45) 5 X aEae s

X No dependence on y; (7" is an SU(4) singlet)

v/ Two stress-tensors:
<T0¢151,d131 (I)Tagﬁg,agﬁ'g (2)00)
M (0171)5(8272) ®(z1, x2)

= (0r1) a6, (Ozy )6171 (05 ) 365 (O )3272 (e181);(a2B2) ks

X The expression becomes extremely complicated if we distribute the 4 space-time derivatives.

X Miracle happens when we plug it into the energy-energy correlation (£(n1)E(n2)), the result
is very simple!
4 2N
(Em)EMs)) = L) (0(m)O(n2))0s

(n1 : n2)2




