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e+e- annihilation into hadrons
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)
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✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy
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The lepton pair annihilates into a virtual 
photon (Z-boson) that in turn decays into 
quark and gluons that undergo a 
hadronization process into mesons and 
baryons

The total (inclusive) cross section

requires a calculation of parton-level 
amplitudes (and understanding of 
fragmentation?) 

Completeness condition for hadronic 
states saves the day

Whightman function (non time-ordered) 
can be related to Green function via 
optical theorem (use OPE to analyze!)
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Weighted cross sections
If the cross section is not totally inclusive 
w.r.t. final state, i.e., it measures the 
properties of the latter, then its value 
computed in QCD perturbation theory will 
deviate from the experimental one. This 
difference is due to hadronization.

However, we do not measure the fate of 
individual particles but rather only the 
energy flow into final states.

The final states can be described by a 
class of infrared safe observables known 
as event shapes.

Here e(X) is a function of the momenta of 
the particles populating the final state

Infrared safety implies linear suppression 
of contributions from soft-gluon radiation 
in the weight factor!

Independent of the jet definition/algorithm

DALI                                                                                                      
                                                                                                          

Run=15995   Evt=126     ALEPH

DALI                                                                                                      
                                                                                                          

Run=16881   Evt=7866    ALEPH

FISH−EYE VIEW
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Event shapes
�kX

�n
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Event shape variables are given by the 
following weight functions:

Thrust:

Heavy-jet mass

Broadening

Allow to measure different properties of the event..

Event shape variables vary depending on the geometry 
of the underlying event.

Extract precise information about QCD strong coupling. 

Hadronization corrections show up power suppressed 
by the c-of-m energy! 
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Energy correlations from amplitudes

✔ Transition amplitude at one loop

MO
20′→X = 01 0+ +

λ

λ

ss

s

s

s
g

+ . . .

✔ Energy correlations

σE(q) =

∫

dPS2 wE (1, 2) |MO
20′→ss|

2 +

∫

dPS3 wE(1, 2, 3)
(

|MO
20′→ssg |

2 + |MO
20′→sλλ|

2
)

+ . . .

✗ Single detector correlation (protected from loop corrections)

〈E(#n)〉 =
q0
4π

✗ Two detectors oriented along #ni (unprotected quantity) [Zhiboedov],[Engelund,Roiban]

〈E(#n1)E(#n2)〉 = −
q20

(4π)4

[

− a
ln(1− z)

2z2(1− z)
+O(a2)

]

, (#n1#n2) = cos θ12

The scaling variable in the rest frame of the source z = (1− cos θ12)/2

✗ Two-loop corrections to 〈E(#n1)E(#n2)〉 are hard to compute (∼ 102 diagrams)
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• This example has 3 jets e+e− → qqg

• Curved tracks in B field (ALEPH and DELPHI have
superconducting solenoids - B field about 1.5 T compared to
about 0.5 T in OPAL and L3)

• Many tracks and clusters in calorimeters

Pippa Wells July 2003

Energy flow observables
All event shape observables are related to 
energy flow into the final state, as can be seen 
from their moments

Z
eNd⇤ =

X

X

(2⇥)4�(4)(q � kX)eN (kX)|M�⇤(q)!X |2

Direct access to energy distribution and 
correlation of final state particles is achieved 
through energy correlations as measured by 
detectors located at “spatial infinity” in the 
direction of the vectors    .

Single detector weight:

Double detector weight (energy-energy correlations):
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Energy-energy correlations
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Energy-energy correlation

✔ Function of the angle 0 ≤ χ ≤ π between detected particles
[Basham,Brown,Ellis,Love]
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EaEb

Q2
θ
(
∆χ− | cos θab − cosχ|

)
〉

events

Total energy
∑

a Ea = Q

✔ Conventional (‘amplitude’) approach

EEC(χ) =
1

σtot

∑

a,b

∫
dσa+b+X

EaEb

Q2
δ(cos θab − cosχ)

σtot total cross section e+e− → hadrons

✔ Weak coupling expansion in QCD

EEC(χ) = a
S
A(χ) + a2

S
B(χ) +O(a3

S
)

✔ Current status (1978 – today):

✗ Very precise experimental data
✗ Poor analytical control, B(χ) is known numerically

✔ Final goal: develop more efficient method to computing EEC
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Amplitudes vs. correlators

D.G. Richards et al. / Energy-energy correlations 
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Fig. 1.1. Lowest-order graphs for the energy-energy correlation function. 

Second-order phenomenology is discussed and illustrated in sect. 5, although a more 
complete analysis will be presented elsewhere. The paper concludes with a brief 
summary. 

2. Calculation of the second-order correction 

The second order function g(2)(X) receives contributions from graphs with qqgg 
and qqqq final states, and also from graphs with one real and one virtual gluon. A 
sampling of such graphs is illustrated in fig. 2.1. The two sets of graphs are separately 
infinite at all angles X, but for X # 0 °, 180 ° these singularities cancel in the sum. 

The final state parton momenta are denoted by p~ and invariant masses are 
defined by 

sij = (Pl + pj)2  = W2yij ,  

Sij k = (pi + pj W pk) 2= WEyljk , (2.1) 
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Conventional approach

✔ Event shapes are given by (an infinite) sum over the final hadronic states

σw(q) =
∑

X

(2π)4δ(4)(q − kX)w(X)
∣
∣Mγ∗(q)→X

∣
∣2

Various event shapes correspond to different choices of the weight factor w(X)

✔ ‘Amplitude approach’ has the following disadvantages:

✗ presence of intrinsic infrared divergences inside transition amplitudesMγ∗(q)→X

✗ integration over the phase space of the final states and subsequent intricate IR cancellations

✗ necessity for summation over all final states

✗ no analytical results beyond one loop

✔ New approach: event shapes (energy correlations) from Wightman correlation functions

σw(q) =

∫

d4x eiqx〈0|O(x)E[w]O(0)|0〉

✗ no IR divergences are present in the correlation functions

✗ no summation over all final states is needed

✗ no integration over the phase space is required

✗ strong coupling predictions (through AdS/CFT in N = 4 SYM)
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X
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Energy-flow operator
To be able to recover an “optical theorem” for weighted cross sections, we have to find find 
the operator that produces the weight when acting on the final state

wE(⇥n) =
X

X

EX�(2)(��kX
� ��n)
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Energy flow

✔ The total energy in the final state |X〉 = |k1, . . . , k!〉 that flows into the detector located at

spatial infinity in the direction of the vector !n.

wE(k1, . . . , k!) =
!∑

i=1

k0i δ(2)(Ω"ki
− Ω"n) ,

✔ Energy flow operator

E(!n)|X〉 = wE (X)|X〉 .

✔ Is expressed in terms of the energy-momentum tensor in N = 4 SYM
[Sveshnikov,Tkachov],[GK,Oderda,Sterman] "niT0i(t,r"n)

E(!n) =
∫ ∞

0
dt lim

r→∞
r2 !niT0i(t, r!n)

✔ Representation for E(!n) in terms of creation and annihilation

operators of on-shell states

E(!n) =
∫

d4k

(2π)4
2πδ+(k2) k0 δ(2)(Ω"n − Ω"k

)
∑

i=s,λ,λ̄,g

a†i (k)ai(k) ,

The energy-flow operator obeys
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It is expressed in terms of stress-tensor
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Since the operator acts at spatial infinity, the fields are 
noninteracting and one can represent the energy-flow 
operator in terms of free on-shell states

E(⇤n) =
Z

d4k

(2⇥)4
2⇥�+(k

2) k0�(��k � ��n)
X

f

a†f (k)af (k)
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Energy correlations
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Energy correlations

✔ Single correlator
∑

X

〈0|O(x)|X〉wE (X)〈X|O(0)|0〉 =
∑

X

〈0|O(x)E(!n)|X〉〈X|O(0)|0〉 = 〈0|O(x)E(!n)O(0)|0〉

Wightman correlation function (no time ordering!) due to real-time evolution

✔ Single energy flow

〈E(!n1)〉 = σ−1
tot

∫

d4x eiqx〈0|O(x) E(!n1)O(0)|0〉

✔ Multi-energy correlations [GK,Sterman],[Belitsky,GK,Sterman],[Hofman,Maldacena]

E(!n1) E(!n2)

E(!n!)

〈E(!n1) . . . E(!n")〉

= σ−1
tot

∫

d4x eiqx〈0|O(x) E(!n1) . . . E(!n")O(0)|0〉

Energy flow in the direction of !n1, . . . , !n"

Depends on the relative angles cos θij = (!ni · !nj)

✔ The goal is to find 〈E(!n1) . . . E(!n")〉 for arbitrary coupling in N = 4 SYM

The weighted cross section:

�
w

(q) =

Z
d4x eiq·x�0|O(x)E(⇥n)O(0)|0⇥

Single-energy correlation:

Multi-energy correlations:
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tot

∫

d4x eiqx〈0|O(x) E(!n1) . . . E(!n")O(0)|0〉

Energy flow in the direction of !n1, . . . , !n"

Depends on the relative angles cos θij = (!ni · !nj)

✔ The goal is to find 〈E(!n1) . . . E(!n")〉 for arbitrary coupling in N = 4 SYM
Everything is boils down to the calculation of Wightman correlation functions.
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

�E(⇥n)⇥ = �w(q)/�tot

(q)

A lot of recent progress in calculation of Euclidean correlation functions in N=4 SYM. Can we use it?
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Initial and final states in N=4 SYM
Use the protected half-BPS operator O20 as an analogue of the QCD electromagnetic current

The null vector YI defines the orientation of the projected operator in the isotopic SO(6) space
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Final states in N = 4 SYM

✔ To lowest order in the coupling, O(x) produces a pair of scalars out of the vacuum

✔ For arbitrary coupling, the state O(x)|0〉 can be decomposed into an infinite sum over

on-shell states with an arbitrary number of scalars (s), gauginos (λ) and gauge fields (g)

∫

d4x eiqx O(x)|0〉 = |ss〉+ |ssg〉+ |sλλ〉+ . . .

✔ The amplitude of creation of a particular final state |X〉 out of the vacuum

〈X|
∫

d4x eiqx O(x)|0〉 = (2π)4δ(4)(q − pX)MO
20′→X

pX is the total momentum of the state |X〉

✔ The amplitudeMO→X has the meaning of a (IR divergent) form-factor

qµ

s

s
g

λ

λ̄

MO
20′→X = 〈X|O(0)|0〉
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qµ

s

s
g

λ
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MO
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O(x) = Y IY JOIJ
200 = Y IY Jtr[�I(x)�J(x)]



N=4 total “cross section”
The analogue of e+e- annihilation into everything 
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Total cross-section of O20′ → everything

✔ Analog of the QCD process e+ e− → everything

σtot(q) =
∑

X

(2π)4δ(4)(q − pX)|MO
20′→X |2

✔ To lowest order in the coupling, the production of a pair of scalars

σtot(q) =
1

2
(N2 − 1)

∫
d4k

(2π)4
(2π)2δ+(k2)δ+((q − k)2) + . . .

✔ To higher order in the coupling, each term in the sum
∑

X has IR / collinear divergences
✔ How to avoid divergences? Use the completeness condition

∑

X |X〉〈X| = 1

σtot(q) =

∫

d4x eiqx
∑

X

〈0|O(0)|X〉 e−ixpX 〈X|O(0)|0〉

=

∫

d4x eiqx 〈0|O(x)O(0)|0〉 The operators are not time ordered!

Wightman correlation function (protected for half-BPS operators)
✔ All-loop result in N = 4 SYM [van Neerven]

σtot(q) =
1

16π
(N2 − 1)θ(q0)θ(q2)

Perturbative corrections cancel order by order
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)
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✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
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✔ Final states can be described using the class of infrared finite observables (event shapes):
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EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy



N=4 correlations from amplitudes
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Energy correlations from amplitudes

✔ Transition amplitude at one loop

MO
20′→X = 01 0+ +

λ

λ

ss

s

s

s
g

+ . . .

✔ Energy correlations

σE(q) =

∫

dPS2 wE (1, 2) |MO
20′→ss|

2 +

∫

dPS3 wE(1, 2, 3)
(

|MO
20′→ssg |

2 + |MO
20′→sλλ|

2
)

+ . . .

✗ Single detector correlation (protected from loop corrections)

〈E(#n)〉 =
q0
4π

✗ Two detectors oriented along #ni (unprotected quantity) [Zhiboedov],[Engelund,Roiban]

〈E(#n1)E(#n2)〉 = −
q20

(4π)4

[

− a
ln(1− z)

2z2(1− z)
+O(a2)

]

, (#n1#n2) = cos θ12

The scaling variable in the rest frame of the source z = (1− cos θ12)/2

✗ Two-loop corrections to 〈E(#n1)E(#n2)〉 are hard to compute (∼ 102 diagrams)
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✗ Two-loop corrections to 〈E(#n1)E(#n2)〉 are hard to compute (∼ 102 diagrams)(in components, not easier than in QCD)



N=4 correlations from correlators
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Energy correlations from correlation functions I

✔ Energy flow operator

〈E(!n1)〉 ∼
∫

d4x eiqx〈0|O(x) E(!n1)O(0)|0〉

=

∫

d4x eiqx

︸ ︷︷ ︸

Fourier

∫ ∞

0
dt lim

r→∞
r2

︸ ︷︷ ︸

Detector limit

〈0|O(x)T0!n1
(x1)O(0)|0〉

︸ ︷︷ ︸

Wightman corr. function

∣
∣
∣
∣
x1 = (t, r!n1)

✔ Generalization for " detectors

〈E(!n1) . . . E(!n")〉 = Fourier× Limit
[

〈0|O(x)T0!n1
(x1) . . . T0!n!

(x")O(0)|0〉

∣
∣
∣
∣
xi=(ti,ri!ni)

]

✔ How to compute energy flow correlators:

✗ Start with corr.function 〈O(x)T (x1) . . . T (x")O(0)〉 in Euclid

✗ Continue to Minkowski with Wightman prescription

✗ Take detector limit + perform Fourier

✔ Correlation functions in N = 4 SYM have a lot of symmetry :

✗ 〈O(x)T (x1)O(0)〉 is fixed by conformal symmetry→ exact result for 〈E(!n1)〉 [Hofman,Maldacena]

✗ 〈O(x)T (x1)T (x2)O(0)〉 is not fixed by conformal symmetry
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Step 1: Correlator in Euclid

�(u, v; a) = a�(1)(u, v)

+ a2
⇢
1

2
(1 + u+ v)

h
�(1)(u, v)

i2

+ 2


�(2)(u, v) +

1

u
�(2)(v/u, 1/u) +

1

v
�(2)(1/v, u/v)

��
+O(a3)
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Perturbative expansion can be cast in terms of conformal integrals:

For the three-loop correlation function, we deduce from (2.23) that the integrand of
F (3) is given by

[F (3)]integrand =
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34

3! (−4π2)3
× f (3)(x1, . . . , x7) , (3.11)

with f (3) given by a linear combination of graphs shown in Fig. 3. In the light-like limit,
x2
i,i+1 → 0, the prefactor on the right-hand side of (3.11) vanishes but (some of the terms

in) the function f (3) develops poles in 1/x2
i,i+1, so that their product stays finite. The

surviving terms will appear on the right-hand side in Eq. (3.10).
Let us find out which integrals we expect to see in (3.10). The one- and two-loop

four-gluon amplitudes, M (1) and M (2), involve one- and two-loop ladder diagrams shown
in Fig. 4 (a) and (b), respectively. The three-loop four-gluon amplitude M (3) involves only
two integral topologies, the three-loop ladder and the so-called “tennis court” [38]. They
are depicted in Fig. 4 (c) and (d), respectively, both as conventional momentum p−space
diagrams and as dual x−space diagrams.

(a) (b) (c) (d)

Figure 4: Dual conformal x−integrals (solid lines) and momentum p−integrals (doted lines) in the
three-loop planar four-gluon amplitude: (a) one-loop ladder, (b) two-loop ladder, (c) three-loop
ladder and (d) tennis court.

The one- and two-loop graphs are redrawn again in Fig. 5 with the external and internal
points labelled and, in the case of the two-loop ladder, with an extra numerator factor
(dashed line) added. This factor balances the conformal weights at points 2 and 4, so that
the integral has uniform conformal weight (+1) at each external point. Similarly, the tennis
court T and three-loop ladder L have been redrawn in Fig. 6 with the necessary dashed
lines added. Fig. 6 contains another diagram of three-loop topology, the product g × h of
the one- and two-loop ladders that we expect to find in the non-linear term M (1)M (2) on
the right-hand side of (3.10).

We may interpret the graphs in Fig. 6, with conformal weight (+1) at each external
point, as those terms in the function F (3), Eq. (3.11), which survive in the light-like limit.
Now, we are interested in the manifestly S7 symmetric function f (3). In order to up-
grade the F−terms shown in Fig. 6 to f−terms, we need to divide them by the prefactor

15
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Available AdS/CFT prediction for the function at strong coupling



Step 2: From Euclid to Minkowski
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From Euclid to Minkowski

✔ Brute force method: compute anew using Schwinger-Keldysh technique (too hard)

✔ Better method: analytically continue correlation functions from Euclid to Minkowski+Wightman

✔ Warm-up example: free scalar propagatorDEuclid(x) = 〈φ(x)φ(0)〉 ∼ 1/x2

〈0|φ(x)φ(0)|0〉 =
∑

n

〈0|φ(x)|n〉〈n|φ(0)|0〉

=
∑

En>0

e−iEn(x0−i0)+i!p!x〈0|φ(0)|n〉〈n|φ(0)|0〉 ∼
1

(x0 − i0)2 − "x2

✔ How to get Wightman correlation functions (‘magic’ recipe): [Mack]

✗ Go to Mellin space:

ΦEuclid =

∫ −δ+i∞

−δ−i∞

dj1dj2
(2πi)2

M(j1, j2; a) u
j1vj2 , u =

x2
12x

2
34

x2
13x

2
24

, v =
x2
23x

2
41

x2
13x

2
24

✗ Nontrivial Wick rotation

ΦWightman = ΦEuclid
(

x2
ij → x2

ij,+ = x2
ij − i0 · x0

ij

)

✔ M(j1, j2; a) is known both at weak and strong coupling in planarN = 4 SYM
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

The detector limit yields the scalar correlations, related to energy flow by susy (as shown later):

Step 3: Detector limit

�O(n1)O(n2)⇥ =
1

4�2

F(z; a)

q2(n1 · n2)
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

The event shape function F(z;a) at any coupling:

F(z; a) =

Z ��+i1

���i1

dj1 dj2
(2�i)2

M(j1, j2; a)| {z }
corr. function

K(j1, j2; z)| {z }
detector
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Energy correlations from amplitudes

✔ Transition amplitude at one loop

MO
20′→X = 01 0+ +

λ

λ

ss

s

s

s
g

+ . . .

✔ Energy correlations

σE(q) =

∫

dPS2 wE (1, 2) |MO
20′→ss|

2 +

∫

dPS3 wE(1, 2, 3)
(

|MO
20′→ssg |

2 + |MO
20′→sλλ|

2
)

+ . . .

✗ Single detector correlation (protected from loop corrections)

〈E(#n)〉 =
q0
4π

✗ Two detectors oriented along #ni (unprotected quantity) [Zhiboedov],[Engelund,Roiban]

〈E(#n1)E(#n2)〉 = −
q20

(4π)4

[

− a
ln(1− z)

2z2(1− z)
+O(a2)

]

, (#n1#n2) = cos θ12

The scaling variable in the rest frame of the source z = (1− cos θ12)/2

✗ Two-loop corrections to 〈E(#n1)E(#n2)〉 are hard to compute (∼ 102 diagrams)
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The detector function is coupling independent:

Taking the Fourier transform in (2.24) we finally obtain for 0 < z < 1

F(z) =
1

2

∫ −δ+i∞

−δ−i∞

dj1dj2
(2πi)2

M(j1, j2)K(j1, j2, z) , (2.27)

where the z−dependence resides in the kernel

K(j1, j2, z) =
Γ(1− j1 − j2)

Γ(j1 + j2) [Γ(1− j1)Γ(1− j2)]
2

(
z

1− z

)1−j1−j2

, (2.28)

and M(j1, j2) is the Mellin amplitude defining the Euclidean correlation function (2.17).
The following comments are in order. In the course of the derivation of Eq. (2.27) we defined

several integrals by analytic continuation from their region of validity. In addition, we exchanged
the order of different operations, e.g., the Fourier integral in (2.20) with the Mellin integral. This
could possibly lead to some subtleties and, indeed, as we show below, relation (2.27) does not
reproduce correctly the contribution to F(z) localized at z = 1. We explain in Section 4.1.1 how
this contribution can be recovered and demonstrate it by an explicit example in Appendix B.

One may wonder whether the integral in (2.27) is convergent. We recall that, compared to
the correlation functions, here we have no a priori reason for (2.20) to be finite. To address this

issue it is convenient to rewrite (2.27) in terms of the amputated Mellin amplitude M̃ defined in
(2.18),

F(z) =
1

2

∫ −δ+i∞

−δ−i∞

dj2
2πi

π

sin(πj2)

(
z

1− z

)1−j2 ∫ −δ+i∞

−δ−i∞

dj1
2πi

M̃(j1, j2 − j1) , (2.29)

where we shifted the integration variable as j2 → j2 − j1. The usual assumption about the
convergence of the Mellin amplitude M̃(j1, j2) is that it does not grow exponentially fast for large
j1,2. Then, due to the damping multiplier 1/ sin(πj2), the integral over j2 in (2.29) is convergent.
This does not guarantee, however, the convergence of the j1−integral. The condition for the event
shape function F(z) to be finite translates into the requirement for M̃(j1, j2 − j1) to decrease
sufficiently fast at large j1,

lim
j1→∞

M̃(j1, j2 − j1) = o(1/j1) . (2.30)

We are not aware of any necessary and sufficient conditions for such a behavior in generic CFT.
In practice, energy correlations are believed to be finite non-perturbatively. It will be interesting
to understand what property of the correlators involving stress tensors guarantees the IR finite-
ness in terms of the dynamical CFT data (three-point functions and anomalous dimensions of
operators).

2.4 Double discontinuity

Relation (2.27) establishes a correspondence between the two-detector correlation 〈O(n)O(n′)〉q
and the four-point correlator of scalar operators in the CFT. Namely, the event shape func-
tion F(z) is given by the convolution of the Mellin amplitude M(j1, j2) defining the four-point
correlator and the universal detector kernel K(j1, j2, z) independent of the details of the CFT.

Let us turn the logic around and ask the following question: what properties of the correlation
functions are probed by the event shape function F(z)? For this purpose, in this subsection we

14

The Mellin transform of Euclidean correlator is known
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All-loop prediction for energy correlations

✔ Energy correlations for arbitrary coupling

〈E(!n1)E(!n2)〉 =
1

(4π2)2
q2

(n1n2)3
FE(z; a) , z = (1− cos θ12)/2

✔ All-loop prediction

FE (z; a) =

∫ −δ+i∞

−δ−i∞

dj1dj2
(2πi)2

M(j1, j2; a)
︸ ︷︷ ︸

corr.function

KE(j1, j2)
︸ ︷︷ ︸

detector

(
1− z

z

)j1+j2

Detector function is independent on the coupling

KE (j1, j2) ∼
Γ(1− j1 − j2)

Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2

M(j1, j2; a) = aM (1)(j1, j2) + a2M (2)(j1, j2)
︸ ︷︷ ︸

are known

+ . . .

✗ Weak coupling: FE (z; a < 1) =
a

4

z ln (1/(1− z))

(1− z)
+ a2[Long expression]+O(a3)

✗ Strong coupling: FE (z; a → ∞) = 8 z3 +O(1/a) [Hofman,Maldacena]

✔ FE (z; a) is a regular, positive function of 0 ≤ z ≤ 1 for any coupling, away from the planar limit !

F(z; a ⇥ 1) = �a

8

z ln(1� z)

1� z
+O(a2)
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Weak and strong coupling:

F(z; a ⇥ ⇤) = �z3

2
+O(1/a)



EEC@2-loops
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EEC at two loops

Four-point correlator at weak coupling [Eden,Schubert,Sokatchev],[Bianchi et al]

Φ(u, v; a) = aΦ(1)(u, v) + a2
{
1

2
(1 + u+ v)

[
Φ(1)(u, v)

]2

+ 2

[
Φ(2)(u, v) +

1

u
Φ(2)(v/u, 1/u) +

1

v
Φ(2)(1/v, u/v)

]}

Euclidean ‘scalar box’ integrals Φ(1) and Φ(2) [Usyukina,Davydychev]

Mellin amplitude to two loops:

M(j1, j2) = aM (1)(j1, j2) + a2
[
1
2M̃

(2)(j1, j2) + M̃ (2)(j1, j2 − 1)

+2M (2)(j1, j2) + 4M (2)(j1,−1− j1 − j2)
]

M (1)(j1, j2) = −
1

4
[Γ(−j1)Γ(−j2)Γ(1 + j1 + j2)]

2

M (2)(j1, j2) = −
1

4
Γ(−j1)Γ(−j2)Γ(1 + j1 + j2)

×
∫

dj′1dj
′
2

(2πi)2
M (1)(j′1, j

′
2)

Γ(j′1 − j1)Γ(j′2 − j2)Γ(1 + j1 + j2 − j′1 − j′2)

Γ(1− j′1)Γ(1− j′2)Γ(1 + j′1 + j′2)

M̃ (2)(j1, j2) =

∫
dj′1dj

′
2

(2πi)2
M (1)(j1 − j′1, j2 − j′2)M

(1)(j′1, j
′
2)



Warm-up
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Warm up exercise

✔ Master formula at one loop

EEC(1−loop) =
a

4z2(1− z)

∫ −δ+i∞

−δ−i∞

dj1dj2
(2πi)2

M (1)(j1, j2; a)K(j1, j2)

(
1− z

z

)j1+j2

Mellin amplitude

M (1)(j1, j2) = −
1

4
[Γ(−j1)Γ(−j2)Γ(1 + j1 + j2)]

2

K(j1, j2) =
2Γ(1− j1 − j2)

Γ(j1 + j2)[Γ(1− j1)Γ(1− j2)]2

✔ Change integration variable j1 + j2 → j1

EEC(1−loop) = −
a

4z2(1− z)

∫
dj1dj2
(2πi)2

j21
2(j1 − j2)2j22

π

sin(πj1)

(
1− z

z

)j1

=
a

4z2(1− z)

∫
dj1
2πi

π

j1 sin(πj1)

(
1− z

z

)j1

=
a

4z2(1− z)

−∞∑

k=−1

(−1)k

k

(
1− z

z

)k

=
a

4z2(1− z)
ln

1

1− z



EEC@2-loops (II)
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EEC at two loops II

Final result for EEC

EECN=4 =
1

4z2(1− z)

{
aF1(z) + a2

[
(1− z)F2(z) +

1
4F3(z)

]}
, z = 1

2 (1− cosχ)

Fw(z) are linear combinations of functions of homogenous weight w = 1, 2, 3

F1(z) = − ln(1− z)

F2(z) = 4
√
z

[
Li2
(
−
√
z
)
− Li2

(√
z
)
+

1

2
ln z ln

(
1 +

√
z

1−
√
z

)]

+ (1 + z)
[
2Li2(z) + ln2(1− z)

]
+ 2 ln(1− z) ln

(
z

1− z

)
+ z

π2

3
,

F3(z) = (1− z)(1 + 2z)

[
ln2
(
1 +

√
z

1−
√
z

)
ln

(
1− z

z

)
− 8Li3

( √
z

√
z − 1

)
− 8Li3

( √
z

√
z + 1

)]

− 4(z − 4)Li3(z) + 6(3 + 3z − 4z2)Li3

(
z

z − 1

)
− 2z(1 + 4z)ζ3 + 2

[
(3− 4z)z ln z

+ 2(2z2 − z − 2) ln(1− z)
]
Li2(z) +

1

3
ln2 (1− z)

[
4(3z2 − 2z − 1) ln(1− z)

+ 3(3− 4z)z ln z
]
+

π2

3

[
2z2 ln z − (2z2 + z − 2) ln(1− z)

]



EEC@2-loops (III)
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EEC at two loops II

✔ Sum of basis functions with nontrivial arguments and rational prefactors R2 and R3

EEC(2loops) =
∑

R2(z,
√
z)W2(z,

√
z) +

∑
R3(z,

√
z)W3(z,

√
z)

Weight twoW2 = {Li2, ln ln,π2}

Weight threeW3 = {Li3,Li2 ln, ln ln ln,π2 ln, ζ3}

✔ W2 andW3 depend on
√
z =

∣∣ sin(χ/2)
∣∣, but EEC is manifestly invariant under

√
z → −

√
z

✔ Scattering amplitudes have homogenous weight in planar N = 4 SYM at weak coupling

Aa+b+X ∼ exp

(

−Div(1/ε) +
∑

!

a!W2! +O(ε)

)

This property is ‘minimally’ violated for EEC after the phase space integration

EEC(χ) =
1

σtot

∑

a,b

∫
dLIPS |Aa+b+X |2

EaEb

Q2
δ(cosχ− cos θab)

But it is restored in the back-to-back kinematics χ → π, or z → 1 (see below)

✔ EEC(2loops) involves some of the transcendental functions that also appear in the two-loop
result for the quarks (= nf dependent) contribution to EEC in QCD [Dixon,Schreiber]



Sudakov scaling
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End-point asymptotics I

EEC in the back-to-back kinematics χ → π (or y ≡ 1− z ∼ (π − χ)2 → 0)

EEC
z→1∼

1

4y

{
a ln(1/y)−

a2

2

[
ln3(1/y) +

π2

2
ln(1/y)

]} χ

✔ Large (Sudakov) corrections ak lnn y come from the emission of soft and collinear particles

✔ All order resummation [Collins, Soper]

EEC ∼
1

8y
H(a)

∫ ∞

0
db b J0(b)S(b

2/y; a)

J0(b) Bessel function; S(b2/y; a) the Sudakov form factor (with b0 = 2 e−γE )

S = exp

[
−
1

2
Γcusp(a) ln

2
(

b2

yb20

)
− Γ(a) ln

(
b2

yb20

)]

Dependence on the coupling constant is encoded in three functions

Γcusp(a) = a− 1
2 ζ2a

2 , Γ(a) = − 3
2 ζ3a

2 , H(a) = 1− ζ2a

✔ Perturbative corrections to EEC(z → 1) have homogeneous transcedentality
[
EECQCD(z → 1)

]
maximal transcedentality = EECN=4(z → 1)
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End-point asymptotics II

Small angle correlations χ → 0 (or z ∼ χ2 → 0): calorimeters measure nearly collinear particles

EEC
z→0∼

a

4z

[
1 + a

(
ln z − 1

2 ζ3 + ζ2 − 3
)]

χ

✔ Corrections are enhanced by ln z, no homogenous transcedentality

✔ EEC(2loops) involves
√
z ∼ |χ| but expansion runs in integer positive powers of z ∼ χ2

✔ Resummation of leading log’s a(a ln z)k using the “jet calculus” [Konishi,Ukawa,Veneziano]

EEC
z→0∼

a

4z

∫ 1

0
dx x2D(x,Q2/Sab)

=
a

4z
(Q2/Sab)

−γT (3) =
a

4
z−1+a+O(a2)

D(x,Q2/Sab) probability to fragment into a pair of partons with Sab = 2EaEb(1− cosχ) ∼ Q2z

γT (S) = a
∑S−2

k=1 1/k +O(a2) the twist-two time-like anomalous dimension of spin S

✔ Resummation weakens singularity of EEC for χ → 0, jets at weak coupling
∫ χ0

0
d cosχEEC ∼ 1 , (χ0 % 1)

Collinear colarimeters
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From weak to strong coupling

NLO

LO

!1.0 !0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

EEC(a = 0.05)

NLO

LO

!1.0 !0.5 0.0 0.5 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EEC(a = 0.1)

cosχ cosχ

✔ At weak coupling EECN=4 has a shape which is remarkably similar to the one in QCD

✔ Going from one to two loops, EEC flattens

✔ This agrees with strong coupling prediction for EEC in planar N = 4 SYM [Hofman,Maldacena]

EECN=4

a→∞∼
1

2

[
1 + a−1 (1− 6z(1− z)) +O(a−3/2)

]

No jets at strong coupling

From weak to strong coupling



Conclusions and questions
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Observables of scattering experiments calculated bypassing amplitudes 
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e+

e−
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✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Symmetries of the theory preserved at every step of the calculation
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+
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✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Event shapes can be used to constrain correlation functions
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)
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γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Does the N=4 result provides the most complicated part of QCD expressions?
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Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

Can one devise an interpolation between weak and strong coupling?

DESY Theory Workshop, September 27, 2013 - p. 2/15

Energy flow at colliders

✔ e+e− annihilation at PETRA (1978-1986) and LEP (1989-2010)

e+

e−

γ∗(q)

✔ A virtual photon decays into an arbitrary number of quarks and gluons which go through
hadronization process to become hadrons

✔ Final states can be described using the class of infrared finite observables (event shapes):
energy-energy correlations (EEC), thrust, heavy mass, . . .

EEC = EECpert(αs(q
2)) + EECnonpert(Λ

2
QCD/q2)

Can be computed in perturbative QCD, hadronisation corrections are ‘small’ at high energy

What is the manifestation of integrability in event shapes?



Correlators with stress tensor
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Correlation functions with stress-energy tensors

! Single stress-tensor component ((θ1θ̄1)2 term minus two-level descendants)

〈Tαβ,α̇β̇(1)OOO〉 =
y223y

2
34y

2
42

x2
23x

2
34x

2
42

(∂x1 )
ρ
α̇(∂x1 )

γ

β̇

[

Mαβγδ Φ(u, v)
x2
12x

2
14

x2
24

]

" Conserved due to the totally symmetric matrix

Mαβγδ = [X134, X124](αβ [X134, X124]γδ) , Xabc = x−1
ab − x−1

ac

" No dependence on y1 (T is an SU(4) singlet)

! Two stress-tensors:

〈Tα1β1,α̇1β̇1
(1)Tα2β2,α̇2β̇2

(2)OO〉

= (∂x1 )α̇1δ1 (∂x1 )β̇1γ1
(∂x2 )α̇2δ2 (∂x2 )β̇2γ2

[

M(δ1γ1);(δ2γ2)
(α1β1);(α2β2)

Φ(x1, x2)

x4
1x

2
12x

2
2

]

" The expression becomes extremely complicated if we distribute the 4 space-time derivatives.

" Miracle happens when we plug it into the energy-energy correlation 〈E(n1)E(n2)〉, the result
is very simple!

�E(n1)E(n2)⇥ =
4(q2)2

(n1 · n2)2
�O(n1)O(n2)⇥105


