Perturbative QCD for the LHC

Lance Dixon QCD Evolution Workshop – Santa Fe May 15, 2014

Outline

- Motivation
- NLO
- NNLO
- Conclusions

LHC Data Dominated by Jets

- Need precise (NLO) predictions for a wide variety of processes, often with high jet multiplicity, in order to cover the broad scope of LHC Standard Model measurements and search strategies.
- In some cases, NLO accuracy is not sufficient, need NNLO.
- In one case σ_{Higgs} N³LO would be very nice

LO uncertainty increases with number of jets

Uncertainty brought under much better control with NLO corrections: $\sim 50\%$ or more $\rightarrow \sim 15-20\%$

NLO required for quantitative control of multi-jet final states

Why care about high multiplicity final states? For searches for SUSY, etc.

Classic SUSY signature:

Heavy colored particles decay rapidly to stable Weakly Interacting Massive Particle (WIMP = LSP) plus multiple jets

CMS search in MET+jets

pQCD for the LHC

L. Dixon

CMS Experiment at LHC, CERN Data recorded: Tue Oct 26 07:13:54 2010 CEST Run/Event: 148953 / 70626194 Lumi section: 49 Orbit/Crossing: 12688625 / 466

Irreducible background: MET + jets from $pp \rightarrow Z + jets,$ $Z \rightarrow v\overline{v}$

NLO theme: pushing to high multiplicity

Until recently, state of art for Z + 3, 4 jets, as well as many other highmultiplicity processes, was based on Leading Order QCD → normalization uncertain

Now available at **Next to Leading Order**, greatly reducing theoretical uncertainties

NLO Anatomy

- Two basic ingredients to any NLO QCD calculation:
- 1. Virtual corrections from one-loop scattering amplitudes
- 2. Real-emission corrections from tree-level processes with one additional parton
- Each has infrared divergences, which cancel in the sum (for IR safe observables). Usually treated separately.
- Flexible methods required to handle experimental cuts, jet definitions, many requested kinematical distributions.

See however Belitsky talk

Subtraction methods for NLO real-emission

$$\sigma_n^{\mathsf{NLO}} = \int d\sigma_n^{\mathsf{NLO}} = \int_n d\sigma^V + \int_{n+1;\epsilon} d\sigma^R$$

=
$$\int_n d\sigma^V + \int_{n+1;\epsilon} d\sigma^A + \int_{n+1;\epsilon=0} [d\sigma^R - d\sigma^A]$$

=
$$\int_n [d\sigma^V + \int_1 d\sigma^A]_{\epsilon=0} + \int_{n+1;\epsilon=0} [d\sigma^R - d\sigma^A]$$

- Subtraction term $d\sigma^A$ should match $d\sigma^R$ pointwise on (*n*+1) phase space
- Factorization of $d\sigma^A$ needed to allow integral to be split, combined with $d\sigma^V$

Dipole subtraction

Catani, Seymour, hep-ph/9602227, hep-ph/9605323

$$d\sigma^{A} = \sum_{\text{dipoles}} d\sigma^{B} \otimes dV_{\text{dipole}}$$

$$sum \text{ over colors, convolution over momentum fractions}$$

$$\int_{n+1} d\sigma^{A} = \sum_{\substack{\text{dipoles} \\ \text{dipoles}}} \int_{n} d\sigma^{B} \otimes \int_{1} dV^{\text{dipole}}$$

$$= \int_{n} d\sigma^{B} \otimes I$$
For hadrons in initial state, also convolute over initial-state splitting}

Poles in ${\color{black}\varepsilon}$ cancel universal IR poles in $d\sigma^V=d\sigma^B\otimes I^{(1)}$

Also FKS method: Frixione, Kunszt, Signer (1995)

 Efficient implementations of Catani-Seymour and FKS methods for highmultiplicity tree processes [AMEGIC, COMIX, MadFKS, MadDipole,...]

 one-loop amplitudes as main NLO bottleneck (until recently)

L. Dixon pQCD for the LHC

Santa Fe May 15, 2014

Feynman diagrams vs. On-shell methods: Granularity vs. Fluidity

Helicity Formalism Exposes Tree-Level Simplicity in QCD

Many tree-level helicity amplitudes either vanish or are very short

Analyticity makes it possible to recycle this simplicity into loop amplitudes

L. Dixon pQCD for the LHC

Recycling "Plastic" Amplitudes

Amplitudes fall apart into simpler ones in special limits – pole information

Picture leads directly to BCFW (on-shell) recursion relations Britto, Cachazo, Feng, Witten, hep-th/0501052

Trees recycled into trees

Branch cut information → Generalized Unitarity (One-loop Plasticity)

Ordinary unitarity: put 2 particles on shell

Generalized unitarity: put 3 or 4 particles on shell

One-Loop Amplitude Decomposition

Bern, LD, Dunbar, Kosower (1994)

Missing from the old, nonperturbative analytic S-matrix

L. Dixon pQCD for the LHC

Full amplitude determined hierarchically

Each box coefficient comes uniquely from 1 "quadruple cut" Britto, Cachazo, Feng, hep-th/0412103

Ossola, Papadopolous, Pittau, hep-ph/0609007; Mastrolia, hep-th/0611091; Forde, 0704.1835; Ellis, Giele, Kunszt, 0708.2398; Berger et al., 0803.4180;... Each triangle coefficient from 1 triple cut, but "contaminated" by boxes

Each bubble coefficient from 1 double cut, removing contamination by boxes and triangles Rational part depends on all of above

Many Automated On-Shell One Loop Programs

Blackhat: Berger, Bern, LD, Diana, Febres Cordero, Forde, Gleisberg, Höche, Ita, Kosower, Maître, Ozeren, 0803.4180, 0808.0941, 0907.1984, 1004.1659, 1009.2338... + **Sherpa** \rightarrow NLO *W*,*Z* + 3,4,5 jets pure QCD 4 jets

CutTools: Ossola, Papadopolous, Pittau, 0711.3596 NLO *WWW, WWZ*, ... Binoth+OPP, 0804.0350 NLO *ttbb*, *tt*+2 jets,... Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723; 1002.4009 MadLoop: Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau 1103.0621 **HELAC-NLO:** Bevilacqua et al, 1110.1499 **Rocket**: Giele, Zanderighi, 0805.2152 Ellis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762 NLO W + 3 jets Ellis, Melnikov, Zanderighi, 0901.4101, 0906.1445 W^+W^{\pm} + 2 jets Melia, Melnikov, Rontsch, Zanderighi, 1007.5313, 1104.2327 SAMURAI (\rightarrow GoSAM): Mastrolia, Ossola, Reiter, Tramontano, 1006.0710 NGluon: Badger, Biedermann, Uwer, Yundin, 1011.2900, 1209.0098, 1309.6585 **OpenLoops:** Cascioli, Maierhofer, Pozzorinit, 1111.5206, 1312.0546

As a result...

Dramatic increase recently in rate of NLO QCD predictions for new processes!

One indicator of NLO progress

$pp \rightarrow W + 0 jet$	1978	Altarelli, Ellis, Martinelli
$pp \rightarrow W + 1 jet$	1989	Arnold, Ellis, Reno
$pp \rightarrow W + 2 jets$	2002	Campbell, Ellis

$pp \rightarrow W + 3 jets$	2009	BH+Sherpa
		Ellis, Melnikov, Zanderighi
$pp \rightarrow W + 4 jets$	2010	BH+Sherpa
$pp \rightarrow W + 5 jets$	2013	BH+Sherpa

L. Dixon pQCD for the LHC

Top Quark Pairs + Jets

- Like (W,Z) + jets, very important bkgd
- Cross sections large
- no electroweak couplings
- Jets boost $t \overline{t}$ system, increase MET, provide jets to pass various signal cuts.
- State of art:
- NLO *tt* + 1 jet: Dittmaier, Uwer, Weinzierl, hep-ph/0703120,...
- + top decays: Melnikov, Schulze, 1004.3284
- + NLO parton shower: Kardos, Papadopoulos, Trócsányi, 1101.2672
- NLO *tt* + *bb*: Bredenstein, Denner, Dittmaier, Pozzorini, 0905.0110, 1001.4006; Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723
- + NLO parton shower: Cascioli, Maierhofer, ..., 1309.5912
- NLO tt + 2 jets: Bevilacqua, Czakon, Papadopoulos, Worek, 1002.4009

L. Dixon pQCD for the LHC

Santa Fe May 15, 2014

NLO $pp \rightarrow t\overline{t} \, b\overline{b}$ at LHC

Background to $tt + Higgs, H \rightarrow bb$ at LHC (for λ_t) First done using Feynman diagrams Bredenstein et al., 0807.1248, 0905.0110 Recomputed using unitarity/OPP (CutTools Bevil acqua et al., 0907.4723 and OpenLoops) and interfaced to parton shower Cascioli et al., 1309.5912

NLO $pp \rightarrow Z+1,2,3,4$ jets vs. ATLAS 2011 data

Pure QCD: $pp \rightarrow 4$ jets vs. ATLAS data

4 jet events might hide pair production of 2 colored particles, each decaying to a pair of jets

Detailed study of multi-jet QCD dynamics may help understand other channels

NNLO

- Needed for high precision in benchmark processes
- Until recently, limited by "real-emission bottleneck" to 2 → 1 processes:
 W, Z, Higgs

NNLO Anatomy

Example of **Z** production at hadron colliders

NNLO $p\overline{p} \rightarrow t\overline{t}$

Bärnreuther, Czakon, Fielder, Mitov, 1204.5201, 1210.6832, 1303.6254, ...

- 2-loop virtual computed numerically
- Total cross section only; looking forward to distributions, such as forward-backward asymmetry at Tevatron

NNLO di-jet production

Currie, Gehrmann, Gehrmann-de Ridder, Glover, Heinrich, Pires, Wells, 1112.3613, 1301.4693, 1301.7310, 1310.3993, ...

 2-loop amplitudes (and 1-loop amplitudes) known analytically (2000-2003)

Anastasiou, Glover, Tejeda-Yeomans; Bern, LD, DeFreitas

Antenna subtraction formalism for intricate double-real contributions

 ³⁰ E^{10³}
 ^{10³}
 ^{10³}

✓ Completed:

✓ $gg \to gg$ leading colour
 ✓ $gg \to gg$ sub-leading colour
 ✓ $q\bar{q} \to gg$ leading colour

✓ Other processes in progress

dơ/dp_T (pb) 80F anti-k_T R=0.7 NLO (NLO PDE+ α) μ_= μ_= μ 70 · 80 GeV < p_ < 97 GeV NNLO (NNLO PDF-60 50 F 40 30 F 20 10 0 10⁻¹ 2×10⁻¹ 1 2 3 8 9 1 0 5 6 μ/p₁₁ Santa Fe 28 May 15, 2014

NNLO Higgs + 1 jet

Boughezal, Caola, Melnikov, Petriello, Schulze, 1302.6216

- Amplitudes also known analytically Gehrmann, Jaquier, Glover, Koukoutsakis, 1112.3554
- Generic subtraction method,

related to that used

for $pp \rightarrow tt$ Czakon, 1005.0274; Boughezal et al., 1111.7041

• $gg \rightarrow H + jet$ completed so far \rightarrow

NNLO $pp \rightarrow VV$ ($V = W, Z, \gamma$)

- Uses q_T subtraction method for processes: $pp \rightarrow X[color-singlet objects]$
- Divide computation into:
- \checkmark $q_{\rm T}(X) > 0$: use NLO results for $X + {\rm jet}$
- ✓ $q_T(X) = 0$: use universal $q_T \rightarrow 0$ limit, related to soft gluon resummation of q_T distribution Catani, Grazzini, hep-ph/0703012 [Higgs]; Catani, Cieri, Ferrera, De Florian, Grazzini, 0903.2120 [W,Z]; 1311.1654

NNLO $pp \rightarrow \gamma\gamma$

Catani, Cieri, Ferrera, De Florian, Grazzini, 1110.1375

2-loop amplitudes: Anastasiou, Glover, Tejeda-Yeomans, hep-ph/0201274

NNLO $pp \rightarrow Z\gamma$ (also $W\gamma$)

Grazzini, Kallweit, Rathlev, Torre, 1309.7000

2-loop amplitudes: Gehrmann, Tancredi, 1112.1531

L. Dixon pQCD for the LHC

NNLO $pp \rightarrow ZZ$

Cascioli, Gehrmann, Grazzini, Kallweit, Maierhöfer, von Manteuffel, Pozzorini, Tancredi, Weihs, Rathlev, 1405.2219

Conclusions

- In past 5 years, frontier for computing LHC processes at NLO in α_s has moved from 2→3 to 2→4,5, and even 6, thanks to great improvements in computing 1-loop amplitudes.
- Good agreement with many ATLAS+CMS measurements.
- Work ongoing to interface these results to Monte Carlos.
- NNLO frontier now moving from 2→1 to 2→2 processes, thanks to better subtraction methods and some new 2→2 2-loop amplitudes.
- NNLO VV results improve agreement with LHC data.
- Next NNLO bottleneck may be 2→3 2-loop amplitudes. Much progress being made along the 1-loop lines, but still a ways to go.

L. Dixon pQCD for the LHC

Good news:

Trees can also be recycled into multi-loops!

L. Dixon pQCD for the LHC

Extra Slides

Fixed order vs. Monte Carlo

- Previous plots NLO but fixed-order, few partons: no model of long-distance effects included; cannot pass through a detector simulation
- Methods available for matching NLO parton-level results to parton showers, with NLO accuracy:
 - MC@NLO Frixione, Webber (2002); ...; SHERPA implementation
 - **POWHEG** Nason (2004); Frixione, Nason, Oleari (2007)
- Now implemented for increasingly complex final states, e.g.

W + 1,2,3 jets Höche et al, 1201.5882

