

Studies of inclusive hadron production at **BABAR**

Ray F. Cowan Representing the *BABAR* Collaboration

QCD Evolution Workshop QCD2014 Santa Fe, NM 12–16 May 2014

Topics

- Contributions to fragmentation studies from e^+e^- data
- Inclusive *π*, *K*, *p* cross sections
 - Charged hadron identification
 - Final results from BABAR: cross sections and scaling properties
- Collins asymmetries
 - As functions of momenta fractions z_1, z_2
 - As functions of transverse momenta p_{t1} , p_{t2}
 - First measurement
 - As functions of four-dimensional fit (z_1, z_2, p_{t1}, p_{t2})
 - \circ As functions of thrust polar angle ϑ_{th}
- Anti-deuteron production
- Summary

Contributions F.F. from e^+e^- studies

- Most data is from higher energies than the *B*-factories
- More information needed at low energies and high z
- Many attempts to extract FF from e⁺e⁻ data
 - KKP, AKK, HKNS, Kretzer ...
 - NPB 725,181 (2006), NPB 803, 42 (2008), PRD 75, 094009 (2007), PRD 62, 054001 (2000), NPB 582, 514 (2000)
 - O Global analyses of e⁺e[−], SIDIS, and pp data
 - PRD 75, 114010 (2007), PRD 76, 074033 (2007), arXiv:1209.3240

Inclusive hadron production: π^{\pm} , K^{\pm} , p/\bar{p}

- A precision measurement using 0.91 fb⁻¹ of $e^+e^- \rightarrow q\bar{q}$ (q = udsc) data at 10.54 GeV
 - Also 3.61 fb⁻¹ for checks and calibrations
 - Results are systematics dominated
- Depends on DIRC, *dE/dx*
 - \circ Good ID at low, medium p_{lab}
 - Falls off at higher p_{lab} as Cherenkov angles converge
 - Calibrated using data control samples
 - High efficiency over much of the momentum range
 - o Few % mis-identification

Efficiency matrix Dashed lines: simulated; Green regions: corrected

12 May 2014

π^{\pm} , K^{\pm} , p/\bar{p} selection, corrections, and systematics

- Require ≥ 3 charged tracks
- Event thrust axis well within DIRC acceptance
- Require tracks originate from interaction point (IP)
- Correct spectra for
 - Physics background of few % (esp. $\tau^+\tau^-$)
 - o Interaction in materials
 - Efficiency and resolution
- Thorough systematics and crosschecks
 - Compare data to MC; angular dependencies; positive vs. negative charges, ...
 - Largest effects from particle id, backgrounds, and tracking efficiencies

Results

- Results in terms of scaled momentum x_p = 2p_{cm}/E_{cm}
 O Coverage from 0.2 GeV/c to 5.27 GeV/c
- Compare with hadronization models
 - Using default parameters
- Generally significant discrepancies
 - Qualitatively ok, but no model describes things in detail
 - Peak positions are consistent
 - Except HERWIG K[±]

Scaling properties

- Consider π, K, and p from BABAR, TASSO and SLD
- Strong scaling violation at high x_p (running of α_s) and low x_p (pion mass)
- *K*[±]: the different flavor composition of the three samples modifies the expected scaling violation
 - Models predict about 10%-15% more scaling violation than is observed
- p/\bar{p} : scaling prediction for 10.54 GeV is consistent with data for $x_p < 0.07$
 - But exceeds it by as much as a factor 3 at $x_p = 0.8$

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

Test of MLLA+LPHD QCD

- Modified Leading Logarithm Approximation (MLLA) with Local Parton-Hadron Duality (LPHD) ($\xi^* = -\ln x_p$)
 - A Gaussian function should provide a good description of these spectra
 - $\circ~$ The peak position ξ^* should decrease exponentially with increasing hadron mass at a given $E_{\rm cm}$
 - $\circ~$ Should increase logarithmically with $E_{\rm cm}$ for a given hadron type
- Fit the spectra with a (distorted) Gaussian function
 - o Gives a reasonable description of the data
 - ξ^*_{π} is higher than ξ^*_{κ} in agreement with the predicted drop, b
 - But ξ^*_p is not lower than ξ^*_{κ}
- • Similar behavior observed at higher energies

Collins asymmetries using charged pion pairs

- Parton fragmentation functions D_h^q(z) parameterize the probability for parton q → hadron h (q = g, u, ū, d, d̄, ...)
 Where hadron h carries fraction z of the parton's momentum
- $D_h^i(z)$ include non-perturbative, long-distance effects
 - So cannot be calculated in pQCD
 - Can be derived from a starting distribution at a given energy scale
- Studies using e⁺e⁻ annihilation provide very clean environment
 No hadrons in the initial state
- Unpolarized fragmentation functions are now well known
 O Using data from LEP, SLC, KEKB, PEP-II
- Collins proposed use of single-particle distributions as a probe of the tranverse polarization of a quark
 - Look for a spin asymmetry in the azimuthal distribution of the hadron about the jet axis

○ Uses the Collins fragmentation function H^{\perp}

J.C. Collins, *Nucl.Phys.* B **396**, 161 (1993), J.C. Collins, Phys.Lett. B **536**, 43 (2002).

Polarized fragmentation

• The fragmentation function $D_h^{q}(z)$ for a given transverse momentum of the outgoing hadron of mass M_h can be written

$$D_h^{q^{\uparrow}}(z, \mathbf{P}_h^{\perp}) = D_1^q(z, {P_h^{\perp}}^2) + H_1^{\perp q}(z, {P_h^{\perp}}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_h^{\perp}) \cdot \mathbf{S}_q}{zM_h}.$$

- In terms of the leading-twist unpolarized $D_1^{q}(z)$
- The Collins $H_1^{\perp,q}$ function
- \circ The spin of the decaying quark **S**_q
- The transverse momentum of the hadron \mathbf{P}_h^{\perp}
- This allows for an azimuthal asymmetry in φ of the hadrons around the quark momentum direction $\mathbf{\check{k}}$
 - φ is the angle between the plane perpendicular to the \mathbf{S}_q and the plane formed by $\mathbf{P}_h^{\perp,q}$ and $\mathbf{\check{k}}$
- The amplitude of this asymmetry is called the Collins effect

Illustration of the azimuthal angle φ in the case of a quark of momentum **k** and spin **S**_q fragmenting into a spin-0 hadron of momentum **P**_h with component **P**_h[⊥] transverse to **k**

First evidence

- First seen in semi-inclusive, deep-inelastic scattering (SIDIS)
- In lepton scattering on polarized hydrogen
 - HERMES: PRL 94, 012002 (2005); COMPASS: NP B765, 31 (2007)
- Extraction of Collins asymmetry requires knowledge of the twist-two, chiral-odd transversity function
- Can also be studied in $e^+e^- \rightarrow q\bar{q}$
 - Quark spin not known, but can be done using $e^+e^- \rightarrow h_1h_2X$ where h_i is a spin-0 hadron (π or K) from the fragmenting quark
 - Look at correlation of azimuthal angles of the hadrons in opposite hemispheres w.r.t. the jet axis
- Asymmetry \propto to product of two Collins functions
 - First attempted by DELPHI (NP Proc. 74, 49 (1999))
 - First seen by BELLE (PRL 96, 232002(2006), PRD 78, 03201 (2008))
- Combine these in a *global analysis*
 - Extract H_1^{\perp} and the parton transversity distribution h_1

Anselmino et al., PRD 75, 054032(2007), NP Proc.Suppl. 191, 98(2009)

Reference frames

- Use two ref. frames, thrust (RF12) and second-pion (RF0)
- Collins asymmetries show up as azimuthal dependence of final-state pions π_1 , π_2 about a chosen axis
 - RF12: Approximate the $q\bar{q}$ ref. axis by the event thrust
 - RF0: Use direction of π_2 as the reference axis
- Rate is dependent on angle φ_{α}
 - $\circ \varphi_{\alpha} = \varphi_1 + \varphi_2$ (RF12) or $2\varphi_0$ (RF0)
- Cross section consists of a uniform part and a cosine-modulated part
- Depends on transverse moments of the fragmentation functions
 - $\circ d\sigma \propto A + B \cos(\varphi_{\alpha})$
 - $\circ B \propto convolution of two Collins functions$
- Divide the φ_{α} range into bins and extract

$$R(\phi_{\alpha}) = \frac{N(\phi_{\alpha})}{N_{\rm avg}}$$

12 May 2014

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

Like- and unlike-charge pion pairs

- We can use pion pairs of equal or opposite charges
 - Opposite charge case occurs via two favored or two disfavored processes

 $e^+e^- \to u\overline{u} \to \pi^\pm \pi^\mp X$

• Define favored and disfavored fragmentation functions:

$$D^{\text{fav}}(z) = D_u^{\pi^+}(z) = D_d^{\pi^-}(z)$$

 $\overline{D}^{\text{fav}}(z) = D_{\bar{u}}^{\pi^{-}}(z) = D_{\bar{d}}^{\pi^{+}}(z)$ $D^{\text{dis}}(z) = D_{u}^{\pi^{-}}(z) = D_{d}^{\pi^{+}}(z) = D_{s}^{\pi^{\pm}}(z)$ $D^{\text{dis}}(z) = D_{u}^{\pi^{-}}(z) = D_{d}^{\pi^{+}}(z) = D_{s}^{\pi^{\pm}}(z)$

 Cross sections can be written as (U = unlike, L = like, C = charged)

$$\frac{fav + dis}{u} = \frac{e^{\pm}}{u} = \pi^{\pm}$$

$$\frac{fav + dis}{charged (C)} = \pi^{\pm}$$

$$N^{U}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi^{\pm}\pi^{\mp}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{7}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) \qquad \phi \equiv \phi_{1} + \phi_{2}(\mathrm{RF12}) \text{ or } \phi_{0}(\mathrm{RF0})$$

$$N^{L}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi^{\pm}\pi^{\pm}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) + \frac{5}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{2}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

$$N^{C}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi\pi X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} = N^{U}(\phi) + N^{L}(\phi) \propto \frac{5}{9}[D^{\mathrm{fav}}(z_{1}) + D^{\mathrm{dis}}(z_{1})][\overline{D}^{\mathrm{fav}}(z_{2}) + \overline{D}^{\mathrm{dis}}(z_{2})] + \frac{4}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

12 May 2014

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

13

- Choose events with light quark fragmention
 - Helicity is conserved only in the massless quark case
- Select multi-hadron events
 - $\circ \geq 3$ charged particles
 - Fox-Wolfram $R_2' < 0.98$
- Accept only charged tracks with
 - At least 0.1 GeV/c momentum transverse to $e^+e^$ axis
 - Track must originate near the I.P. 0
 - Lie within detector solid-angle acceptance region Ο
- Suppress events with energetic gluon emission (disrupts correlation between quark spins)
 - \circ Require event thrust T > 0.8
- Suppress $e^+e^- \rightarrow \mu^+ \mu^- \gamma$ and $e^+e^- \rightarrow e^+ e^- \gamma$ by the 3-hadron requirement above
 - Suppress further by requiring in low-multiplicity events neither two most energetic tracks are identified as muons and that no electrons are present
- Plus additional requirements (see extra slides at end)
- Results in 10⁸ pion pairs for the Collins analysis

Event selection

The Collins asymmetry analysis uses 468 fb⁻¹

- 424 fb⁻¹ at the Y(4*S*) peak
- 44 fb⁻¹ at 40 MeV below the peak

Azimuthal distributions

- Simulation (MC) shows cosine dependence even though no asymmetry generated
 - o Due to detector acceptance effects
 - o Affects U and L samples similarly
- Data shows difference in U and L samples
 - This is due to the Collins asymmetry
- Detector effects are function of thrust direction
 - If thrust axis close to beam axis, more particles can be missed and thrust is reconstructed less well
- Two possible solutions:
 - Use detailed simulation studies to correct for detector asymmetries; or,
 - Eliminate most effects of detector asymmetries by using ratios of distributions (double ratios)

 $\Box 0.5 < \cos(\vartheta_{th}) < 0.7 \bullet 0.8 < \cos(\vartheta_{th}) < 0.9$

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

Backgrounds: contributions and corrections

- Potential, primary backgrounds are $e^+e^- \rightarrow \tau^+\tau^-$, $c\bar{c}$, and $B\bar{B}$
 - o P.V. in τ weak decays can produce asymmetries
 - o Charm asymmetries of interest
 - Suppressed by *c* quark mass
 - Would need more data
 - No significant Collins asymmetries expected in B decay
- Estimate background effects using

$$A_{\alpha}^{\text{meas}} = \left(1 - \sum_{i} F_{i}\right) \cdot A_{\alpha} + \sum_{i} F_{i} \cdot A_{\alpha}^{i}$$

- For $\tau^+\tau^-$ use a control sample
 - Asymmetry ≈ few tenths %
 - Estimate F_{τ} using a MC sample for each z and p_t bin
 - F_{τ} is appreciable only at high *z*, where *uds* Collins effect is large
 - Set $A_{\alpha}^{\tau} = 0$
- *BB* events suppressed by event selection
 - $F_B < 2\%$, z < 0.5
 - Consequently little effect on the asymmetries
- *cc* events: larger fractions
 - Study charm-enhanced sample, with $f_c \approx 0.9$
 - Measure A^{D^*} a vs. z_1 , z_2 , p_t and apply correction

$$A_{\alpha}^{\text{meas}} = (1 - F_c - F_B - F_{\tau}) \cdot A_{\alpha} + F_c \cdot A_{\alpha}^c$$
$$A_{\alpha}^{D^*} = (1 - f_c - f_B) \cdot A_{\alpha} + f_c \cdot A_{\alpha}^c.$$

12 May 2014

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

17

Asymmetry dilution correction

- Asymmetry dilution
 - From use of thrust axis to approximate $q\bar{q} \ \bar{B} \ \bar{B}$ axis
 - Average divergence from qq̄ axis about 100 mrad
 - o Results in asymmetry dilution
 - Mainly affects RF12 reference frame
 - Much smaller effect in RF0
- Estimate this and other effects using simulation
 - Re-weight MC events to produce a Collins-like effect in nonasymmetric generated events
 - Determine average dilution values for each *z*, p_t , and ϑ_{th} bin
 - Apply these as corrections

Checks and systematics

- Double-ratio methodology
 - Shows small asymmetry (≈ 0.2%) in uds MC generated without asymmetry
 - Check 3 MC samples
 - Use pion event-generated ("truth") momenta
 Use pion event-generated momenta only for pions associated with reconstructed tracks
 - Use standard, fully-reconstructed MC sample
 - Use qq̄ axis instead of thrust axis
 - Vary track selection requirements
 - RF0: main effect is non-cancellation of detector effects in double ratio
 - RF12: main effect from use of thrust axis
 - Subtract biases from corrected asymmetries
 - Take quadrature combination of largest variation of tests with statistical uncertainty of the fit as systematic uncertainty
- Pion transverse momentum resolution
- Particle identification
- Fit procedure
- Test with same-sign pairs
- Check double-ratio method using subtraction
- Beam polarization
- Consistency across datasets

Results: z_1 , z_2 bins

- Measured asymmetries reported as function of
 - $\circ z_1, z_2 \text{ and } p_{t1}, p_{t2}$
 - For reference frames RF12 and RF0
- UC asymmetries smaller than UL by about factor of 2
 - Reflects different amount of favored and disfavored fragmentation functions to the ratios
- Asymmetries increase with increasing fractional energy

Statistical errors shown as bars Systematic errors shown as bands

Results: p_{t1} , p_{t2} bins • First measurement of Collins asymmetries as function of transverse pion momenta

production at BABAR — QCD 2014

Results: vs. polar angle

- Transverse polarization of $q\bar{q}$ pair
 - $\circ~$ Proportional to $sin^2\,\theta$
- Collins asymmetries should show similar behavior
- Study angular dependence after integration over fractional energies and transverse momenta
 - \circ A₁₂ values are consistent with zero intercept
 - \circ A₀ values are not—a linear fit gives non-zero constant term
 - \circ RFO frame known to give less accurate estimate of the $q\bar{q}$ direction

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

22

Four-dimensional $(z_1, z_2, p_{t1}, p_{t2})$ RF12

- Study RF12 in fourdimensional space \circ (*z*₁, *z*₂, *p*_{t1}, *p*_{t2})
- Probes factorization of the Collins fragmentation function
- Use four z_i and three p_t intervals

12 May 2014

Anti-deuteron production

- e⁺e⁻ → qq̄ annihilations provide a clean probe of hadronization of quarks and gluons into anti-nuclei
 - o Of interest in dark matter searches
 - Provide sensitive probe of dark matter annihilation
- \bar{d} production observed by ARGUS and CLEO
 - In Y(1S) and Y(2S) decays
 - Rate \approx 3 x 10⁻⁵
- Update these values and observe d production in Y(3S) decays and in $e^+e^- \rightarrow q\bar{q}$ near 10.6 GeV

Datasets used

Resonance	Onpeak	# of Υ Decays	Offpeak
$\Upsilon(4S)$	$429{\rm fb}^{-1}$	$463 imes 10^6$	$44.8{\rm fb}^{-1}$
$\Upsilon(3S)$	$28.5{\rm fb}^{-1}$	$116 imes 10^6$	$2.63{\rm fb}^{-1}$
$\Upsilon(2S)$	$14.4{\rm fb}^{-1}$	$98.3 imes 10^6$	$1.50{\rm fb}^{-1}$

Obtain Y(1S) sample from Y(2S) \rightarrow Y(2S) $\pi^+\pi^-$

H. Albrecht *et al.*, *Phys.Lett.* B236, 102 (1990);
D. M. Asner *et al.*, *Phys. Rev.* D75, 012009 (2007).

- Event selection
 - Require \geq 3 charged tracks
 - Fox-Wolfram $R_2' < 0.98$
 - Lie in drift chamber (DCH) acceptance: $-0.8 \le \cos \vartheta_{lab} \le 0.92$
 - Momentum $0.5 \le p_{lab} \le 1.5 \text{ GeV/}c$ (*dE*/*dx* for *d*, *d* well away from other species)
 - Transverse doca to I.P. be < 400 μ m
 - Additional background and quality cuts
- Extract yields from combined DCH + SVT *dE/dx* distributions

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

Anti-deuteron production

- Systematics
 - Fit biases, background model, reconstruction efficiency, kinematic acceptance, material interaction, fake antideuterons, DOCA selection, event selection, normalization
- Results
 - Correct number of \bar{d} 's from fits for efficiencies
 - Compute total rates from differential spectra

Process	Rate
$\int \mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})f_B$
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

J.P. Lees et al., 1403.4409 [hep-ex], Submitted to *Phys.Rev. D* (RC)

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

25

Summary

- BABAR has measured inclusive production cross sections for π^{\pm} , K^{\pm} , p/\bar{p} spectra at C.M. energy of 10.54 GeV
 - o Using a small subsample of very high quality data
 - Published in *Phys. Rev. D*88, 032011 (2013)
- BABAR has measured Collins asymmetries
 - In $e^+e^- \rightarrow q\bar{q}$ events (submitted to *Phys. Rev. D*: arXiv:1309.5278 [hep-ex])
 - $\circ~$ In multi-hadron events with two pions in opposite jets
 - Analysis using kaons underway
 - Asymmetries extracted from ratios of normalized distributions of like-sign, unlike-sign, and charged pion pairs
 - Report results as function of
 - Fractional energies, transverse pion momenta (first measurement), thrust axis polar angle, and four-dimensional space (RF12 only): $(z_1, z_2, p_{t1}, p_{t2})$
 - \circ z and p_t dependence as expected, but polar angle dependence shows difference from expectations
- Anti-deuteron result submitted to PRD-RC in March 2014
 - Most precise measurement in Y(2S) decays
 - First measurement in Y(3S) decays and in $e^+e^- \rightarrow q\bar{q}$ near 10.58 GeV
 - o arXiv:1403.4409 [hep-ex]

Extra slides

The BABAR detector at PEP-II

BABAR Datasets

As of 2008/04/11 00:00

- PEP-II at SLAC is not only a B factory but also a charm and τ factory
 - 470 x 10⁶ *BB* pairs
 - \circ 690 x 10⁶ cc pairs
 - 500 x $10^{6} \tau^{+} \tau^{-}$ pairs
- Initial-state radiation (ISR) <u>events:</u> access to lowenergy e⁺e⁻ hadronic cross sections

Sample	Integrated \mathcal{L}
$\Upsilon(4S)$	$433 {\rm fb}^{-1}$
$\Upsilon(3S)$	$30.2 {\rm fb}^{-1}$
$\Upsilon(2S)$	$14.5 \ {\rm fb}^{-1}$
Off-peak	$54 {\rm fb}^{-1}$
Scan	$3.9 {\rm fb}^{-1}$

The Collins asymmetry analysis uses 468 fb⁻¹

- 424 fb⁻¹ at the Y(4*S*) peak
- 44 fb⁻¹ at 40 MeV below the peak

BABAR, Belle comparison using RFO

BABAR, Belle comparison using RF12

production at BABAR — QCD 2014

Analysis strategy

- Select hadronic events with two charged pions
 - o One in each hemisphere
 - Defined as along and opposite to the thrust axis
- Perform the analysis in two reference frames
 - o Thrust reference frame, RF12
 - o Second-hadron ref. frame, RF0
- Allows direct comparison to Belle measurements
- Study light-quark pairs since helicity is conserved only in the massless-quark approximation
 - Also correlation between quark and anti-quark fragmentation may be lost for heavy quarks
- Study like-charge (L), unlike-charge (U), and charged (C) pion pairs
 - Gives sensitivity to favored and disfavored fragmentation functions
 - Favored: quark $q \rightarrow$ hadron with valence quark q of the same flavor. - $u \rightarrow \pi^+$, $d \rightarrow \pi^-$
 - Disfavored:

$$- \quad u \not \rightarrow \pi^{\scriptscriptstyle -} \,, \, d \not \rightarrow \pi^{\scriptscriptstyle +}$$

Boer et al., Nucl. Phys. B 504, 345 (1997).

Boer et al., Nucl. Phys. B 806, 23 (2009).

Thrust reference frame RF12

- Collins asymmetry show up as an azimuthal dependence of two final-state pions π_1 , π_2 about the quark-antiquark axis
 - Approximate the $q\bar{q}$ axis by the event thrust axis
- Azimuthal angles φ_1 , φ_2 of π_1 , π_2 are defined relative to a plane
 - Perpendicular to the e⁺e⁻ axis and containing the thrust axis
- Rate is dependent on the sum $\varphi_1 + \varphi_2$ as well as z_1, z_2
 - Cross section consists of a uniform part and a cosine-modulated part in $\varphi_1 + \varphi_2$
 - Depends on transverse moments of the fragmentation functions
- Cross section d $\sigma \propto A + B \cos(\varphi_1 + \varphi_2)$
- Divide the $\varphi_1 + \varphi_2$ range into bins and extract

$$R_{12}(\phi_1 + \phi_2) = \frac{N(\phi_1 + \phi_2)}{N_{\text{avg}}}$$

Cross section in RF12

• The cross section for $e^+e^- \rightarrow \pi_1\pi_2 X$ in terms of the pion fractional energies z_1, z_2 and $\varphi_1 + \varphi_2$ is

$$\frac{\mathrm{d}\sigma(e^+e^- \to \pi_1\pi_2 X)}{\mathrm{d}z_1\mathrm{d}z_2\mathrm{d}\phi_1\mathrm{d}\phi_2\mathrm{d}\cos\theta_{th}} = \sum_{q,\overline{q}} \frac{3\alpha^2}{Q^2} \frac{e_q^2}{4} z_1^2 z_2^2 \times \left\{ (1 + \cos^2\theta_{th}) D_1^{q,[0]}(z_1)\overline{D}_1^{q,[0]}(z_2) + \sin^2\theta_{th} \cos(\phi_1 + \phi_2) H_1^{\perp q,[1]}(z_1)\overline{H}_1^{\perp q,[1]}(z_2) \right\}$$

• Where

○ Q = √s is the c.m. energy
 ○ e_q the charge of quark q
 ○ Bar denotes antiquark fragmentation function

Second-pion reference frame RF0

- The Collins asymmetry can also be observed in a different reference frame
 - $\circ~$ Use direction of π_2 as the reference axis
 - o Instead of the thrust axis
- Scattering plane is defined by the e⁺e⁻ axis and P₂
 - \circ **P**₂ = the momentum of π_2
- Cross section consists of a uniform part and a $\cos(\varphi_0)$ modulated part
 - Also depends on a convolution integral F over π_1 , π_2 transverse momenta
- do $\propto A' + B' \cos(\varphi_0)$
- Divide the φ_0 range into bins and extract $N(2\phi_0)$

$$\phi_0 = \operatorname{sign}[\mathbf{P}_2 \cdot \{ (\hat{\mathbf{u}} \times \mathbf{P}_2) \times (\mathbf{P}_2 \times \mathbf{P}_1) \}] \\ \times \operatorname{arccos} \left(\frac{\hat{\mathbf{u}} \times \mathbf{P}_2}{|\hat{\mathbf{u}} \times \mathbf{P}_2|} \cdot \frac{\mathbf{P}_2 \times \mathbf{P}_1}{|\mathbf{P}_2 \times \mathbf{P}_1|} \right)$$

Boer et al., Nucl. Phys. **B 504**, 345 (1997).

Convolution integral *F* over transverse momenta $\mathbf{P}_i^{\perp} = z_i \mathbf{k}_T$ is

$$\mathcal{F}(X\overline{X}) = \sum_{a,\bar{a}} e_a^2 \int d^2 \mathbf{k}_T d^2 \mathbf{p}_T \delta^2(\mathbf{p}_T + \mathbf{k}_T - \mathbf{q}_T)$$
$$X(z_1, z_1^2 \mathbf{k}_T^2) \overline{X}(z_2, z_2^2 \mathbf{p}_T^2)$$

where \boldsymbol{k}_{τ} and \boldsymbol{p}_{τ} are the quark tranverse momenta

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

Cross section in RFO

• The cross section for $e^+e^- \rightarrow \pi_1\pi_2 X$ in terms of the pion fractional energies z_1, z_2 and φ_0 is

$$\frac{\mathrm{d}\sigma(e^+e^- \to \pi_1\pi_2 X)}{\mathrm{d}z_1\mathrm{d}z_2\mathrm{d}^2\mathbf{q}_T\mathrm{d}\cos(\theta_2)d\phi_0} = \frac{3\alpha^2}{Q^2} \frac{z_1^2 z_2^2}{4} \times \left\{ (1 + \cos^2\theta_2) \mathcal{F}(D_1(z_1)\overline{D}_1(z_2)) + \sin^2\theta_2 \, \cos(2\phi_0) \right. \\ \left. \times \mathcal{F}\left[(2\hat{\mathbf{h}} \cdot \mathbf{k}_T \, \hat{\mathbf{h}} \cdot \mathbf{p}_T - \mathbf{k}_T \cdot \mathbf{p}_T) \frac{H_1^{\perp}(z_1)\overline{H}_1^{\perp}(z_2)}{M^2} \right] \right\}$$
(1)

O Where |**q**_T| = Q_t = transverse momentum of the e⁺e⁻ virtual photon in the two pion c.m. system
 O Good to leading order in α_s and 1/Q

Like- and unlike-charge pion pairs

- We can use pion pairs of equal or opposite charges
 - Opposite charge case occurs via two favored or two disfavored processes

 $e^+e^- \to u\overline{u} \to \pi^\pm \pi^\mp X$

• Define favored and disfavored fragmentation functions:

$$D^{\text{fav}}(z) = D_u^{\pi^+}(z) = D_d^{\pi^-}(z)$$

 $\overline{D}^{\text{fav}}(z) = D_{\bar{u}}^{\pi^{-}}(z) = D_{\bar{d}}^{\pi^{+}}(z)$ $D^{\text{dis}}(z) = D_{u}^{\pi^{-}}(z) = D_{d}^{\pi^{+}}(z) = D_{s}^{\pi^{\pm}}(z)$ $D^{\text{dis}}(z) = D_{u}^{\pi^{-}}(z) = D_{d}^{\pi^{+}}(z) = D_{s}^{\pi^{\pm}}(z)$

 Cross sections can be written as (U = unlike, L = like, C = charged)

$$\frac{fav + dis}{u} = \frac{e^{\pm}}{u} = \pi^{\pm}$$

$$\frac{fav + dis}{charged (C)} = \pi^{\pm}$$

$$N^{U}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi^{\pm}\pi^{\mp}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{7}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) \qquad \phi \equiv \phi_{1} + \phi_{2}(\mathrm{RF12}) \text{ or } \phi_{0}(\mathrm{RF0})$$

$$N^{L}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi^{\pm}\pi^{\pm}X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} \propto \frac{5}{9}D^{\mathrm{fav}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2}) + \frac{5}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{fav}}(z_{2}) + \frac{2}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

$$N^{C}(\phi) = \frac{\mathrm{d}\sigma(e^{+}e^{-} \to \pi\pi X)}{\mathrm{d}\Omega\mathrm{d}z_{1}\mathrm{d}z_{2}} = N^{U}(\phi) + N^{L}(\phi) \propto \frac{5}{9}[D^{\mathrm{fav}}(z_{1}) + D^{\mathrm{dis}}(z_{1})][\overline{D}^{\mathrm{fav}}(z_{2}) + \overline{D}^{\mathrm{dis}}(z_{2})] + \frac{4}{9}D^{\mathrm{dis}}(z_{1})\overline{D}^{\mathrm{dis}}(z_{2})$$

12 May 2014

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

37

Event selection (1)

- Choose events with light quark fragmention
 - o Helicity is conserved only in the massless quark case
 - \circ Heavy quarks may lose correlation between q and $ar{q}$
- Select multi-hadron events
 - $\circ \ge 3$ charged particles
 - Fox-Wolfram $R_2' < 0.98$
 - Using charged tracks only
 - \circ $E_{\text{visible}} > 7 \text{ GeV}$
 - Suppresses $\tau^+\tau^-$, energetic ISR, and $\gamma\gamma$ events
- Accept only charged tracks with
 - At least 0.1 GeV/c momentum transverse to e^+e^- axis
 - o Track must originate near the I.P.
 - o Lie within detector solid-angle acceptance region
- Suppress events with energetic gluon emission (disrupts correlation between quark spins)
 - Require event thrust *T* > 0.8
 - *uds* events peak near *T* = 0.85
 - Removes most *BB* events
- Suppress $e^+e^- \rightarrow \mu^+ \mu^- \gamma$ and $e^+e^- \rightarrow e^+ e^- \gamma$ by the 3-hadron requirement above
 - \circ But in $\mu^+\,\mu^-\,\gamma\,$ case, if the photon converts, it may pass this cut
 - Suppress further by requiring in low-multiplicity events neither two most energetic tracks are identified as muons and that no electrons are present

Cowan — Studies of inclusive hadron production at BABAR — QCD 2014

Event selection (2)

- Accept a track as candidate for Collins analysis if it
 - o Is identified as a pion
 - o Fails muon and electron selectors
- Require track to have *z* < 0.9
 - Reduces events from $b\bar{b}$ bound states
 - Which produce significant number of unlike-sign pairs
- Require *z* > 0.15
 - To avoid problems associating low-energy hadrons with the correct jet
- Require pions to be within 45° of thrust axis
 - Reduces wrong-jet associations
- Require transverse momentum of the virtual photon Q_t to be > 3.5 GeV
 - Further reduces low-energy gluon radiative events
- Residual contributions from all remaining backgrounds are estimated and corrections made
 - Charm, $B\overline{B}$, $\tau^+\tau^-$
- Results in 10⁸ pion pairs for the Collins analysis

Corrections, checks and systematics (1)

- Asymmetry dilution
 - From use of thrust axis to approximate $q\bar{q} \ \bar{B} \ \bar{B}$ axis
 - Average divergence from qq̄ axis about 100 mrad
 - o Results in asymmetry dilution
 - Mainly affects RF12 reference frame
 - Much smaller effect in RF0
- Estimate this and other effects using simulation
 - Re-weight MC events to produce a Collins-like effect in nonasymmetric generated events
 - Determine average dilution values for each *z*, p_t , and ϑ_{th} bin
 - Apply these as corrections

12 May 2014

Corrections, checks and systematics (2)

- Double-ratio methodology
 - Shows small asymmetry (≈ 0.2%) in uds MC generated without asymmetry
 - Check 3 MC samples
 - Use pion event-generated ("truth") momenta

-Use pion event-generated momenta only for pions associated with reconstructed tracks

- Use standard, fully-reconstructed MC sample
- Use $q\bar{q}$ axis instead of thrust axis
- Vary track selection requirements
- RFO: main effect is non-cancellation of detector effects in double ratio
- RF12: main effect from use of thrust axis
- Subtract biases from corrected asymmetries
 - Take quadrature combination of largest variation of tests with statistical uncertainty of the fit as systematic uncertainty
- Other systematics
 - Pion transverse momentum resolution
 - 10% effect on asymmetries for all $(p_t 1, p_t 1)$ bins except lowest (30% effect)
 - Assign as systematic

- o Particle identification
 - Pion pairs have about 96% purity; remaining 4% a true pion and a mid-identified kaon
 - Vary PID selection cuts (more and less stringent)
 - Results in at most few percent change in asymmetries
 - Assign as systematic
- Fit procedure
 - Vary angular bin sizes, larger and smaller than standard
 - Deviations < 1%
 - Assign as systematic
 - Study re-use of pions in different pairs in same events
 - Pseudo-experiments show no bias in pull distributions
- o Test using same-sign pion pairs
 - Collins effect not a function of charge, but of favored- and disfavored transitions
 - Gives information on detector charge asymmetries
 - Results consistent with unity
- Check D-R using subtraction method
 - Take difference instead of ratio of pion pair rates
 - Consistent with D-R method
- Others: beam polarization, consistency across data sets

Systematics summary

- Dominant systematics
 - At larger *z*
 - Bias observed in MC sample
 - Dilution correction factors
 - \circ At all values of p_t
 - *p*_t resolution
 - Bias observed in MC sample

Squared errors for A_{12}^{UL}

Antideuteron production systematics

Source	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(1S)$	Continuum
Fit Biases	0.5% - 2.0%	0.1% - 6.6%	0.1% - 2.0%	0.0% - 0.2%
Background Model	0.2% - 7.8%	3.1% - 12.0%	0.9% - 7.6%	0.0% - 8.9%
Reconstruction Efficiency	2.5% - 10.5%	5.2% - 17.0%	1.3% - 7.1%	3.0% - 7.3%
Kinematic Acceptance	0.5% - 10.3%	3.6% - 16.0%	0.6%-2.9%	1.4% - 8.4%
Material Interaction	2.8% - 10.5%	4.3% - 17.0%	2.0% - 7.3%	2.9% - 7.4%
Fake antideuterons	$^{+0.0\%}_{-0.5\%}$ $^{-0.0\%}_{-9.8\%}$	$^{+0.0\%}_{-1.1\%}$ $^{+0.0\%}_{-3.0\%}$	$^{+0.0\%}_{-1.9\%}$ $^{+0.0\%}_{-32.0\%}$	$^{+0.0\%}_{-0.6\%}$ $^{+0.0\%}_{-5.4\%}$
DOCA Selection	+5.8% -0.0%	+5.8% -0.0%	+5.8% -0.0%	+5.8% -0.0%
Event Selection	2.3%	2.3%	1.1%	4.6%
Normalization	1.2%	1.2%	0.2%	0.6%