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IntroducVon	
  



MoVvaVon	
  to	
  study	
  heavy	
  ion	
  collisions	
  

•  QCD	
  predicts	
  the	
  existence	
  of	
  Quark	
  Gluon	
  Plasma	
  (QGP)	
  
•  Recreate	
  in	
  laboratory	
  condiVons	
  the	
  maaer	
  that	
  was	
  
present	
  in	
  the	
  Early	
  Universe,	
  microseconds	
  acer	
  the	
  Big	
  
Bang	
  

• To study the properties of Quark Gluon 
Plasma, predicted by QCD

• Connection to Early Universe (a few 
microseconds after the Big Bang)

Motivation to study heavy-ion collisions

Tuesday, March 8, 2011



Experimental	
  faciliVes	
  
RHIC:	
  Au-­‐Au,	
  ENN=20-­‐200	
  GeV	
   LHC:	
  Pb-­‐Pb,	
  ENN=2.76	
  TeV	
  

•  LHC	
  has	
  confirmed	
  at	
  much	
  higher	
  energies	
  
the	
  qualitaVve	
  features	
  found	
  in	
  RHIC	
  data	
  

•  Jet	
  Quenching	
  clearly	
  observed	
  in	
  both	
  
experiments	
  



Jet	
  Quenching	
  

RAA(pT ) =
�AA(pT )

hN
coll

i�pp(pT )

Measuring	
  a	
  suppressed	
  nuclear	
  modificaVon	
  factor	
  is	
  
observaVonal	
  evidence	
  for	
  jet	
  quenching	
  in	
  heavy	
  ion	
  collisions	
  

Inclusive	
  producVon	
  of	
  jets	
  
LHC,	
  7	
  TeV	
  



Jet	
  Quenching	
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Figure 3: RAA in central (0–5%) and peripheral (70–80%) Pb–Pb collisions at
√
s
NN

= 2.76 TeV. Error bars

indicate the statistical uncertainties. The boxes contain the systematic errors in the data and the pT dependent

systematic errors on the pp reference, added in quadrature. The histograms indicate, for central collisions only,

the result for RAA at pT > 6.5 GeV/c using alternative pp references obtained by the use of the pp̄ measurement

at
√
s
NN

= 1.96 TeV [26] in the interpolation procedure (solid) and by applying NLO scaling to the pp data at 0.9

TeV (dashed) (see text). The vertical bars around RAA = 1 show the pT independent uncertainty on ⟨Ncoll⟩.
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Figure 4: Comparison of RAA in central Pb–Pb collisions at LHC to measurements at
√
s
NN

= 200 GeV by the

PHENIX [30] and STAR [31] experiments at RHIC. The error representation of the ALICE data is as in Fig. 3.

The statistical and systematic errors of the PHENIX data are shown as error bars and boxes, respectively. The

statistical and systematic errors of the STAR data are combined and shown as boxes. The vertical bars around

RAA = 1 indicate the pT independent scaling errors on RAA.
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High energy heavy-ion collisions enable the study of strongly interacting matter under extreme condi-

tions. At sufficiently high collision energies Quantum-Chromodynamics (QCD) predicts that hot and

dense deconfined matter, commonly referred to as the Quark-Gluon Plasma (QGP), is formed. With the

advent of a new generation of experiments at the CERN Large Hadron Collider (LHC) [1] a new energy

domain is accessible to study the properties of this state.

Previous experiments at the Relativistic Heavy Ion Collider (RHIC) reported that hadron production

at high transverse momentum (pT ) in central (head-on) Au–Au collisions at a centre-of-mass energy

per nucleon pair
√
s
NN
of 200 GeV is suppressed by a factor 4–5 compared to expectations from an

independent superposition of nucleon-nucleon (NN) collisions [2, 3, 4, 5]. The dominant production

mechanism for high-pT hadrons is the fragmentation of high-pT partons that originate in hard scatterings

in the early stage of the nuclear collision. The observed suppression at RHIC is generally attributed to

energy loss of the partons as they propagate through the hot and dense QCD medium [6, 7, 8, 9, 10].

To quantify nuclear medium effects at high pT , the so called nuclear modification factor RAA is used.

RAA is defined as the ratio of the charged particle yield in Pb–Pb to that in pp, scaled by the number of

binary nucleon–nucleon collisions ⟨Ncoll⟩

RAA(pT ) =
(1/NAA

evt )d
2NAA

ch /d!dpT
⟨Ncoll⟩(1/Npp

evt )d2N
pp

ch /d!dpT
,

where ! = − ln(tan"/2) is the pseudo-rapidity and " is the polar angle between the charged particle
direction and the beam axis. The number of binary nucleon–nucleon collisions ⟨Ncoll⟩ is given by the
product of the nuclear overlap function ⟨TAA⟩ [11] and the inelastic NN cross section #NN

inel . If no nuclear

modification is present, RAA is unity at high pT .

At the larger LHC energy the density of the medium is expected to be higher than at RHIC, leading to a

larger energy loss of high pT partons. On the other hand, the less steeply falling spectrum at the higher

energy will lead to a smaller suppression in the pT spectrum of charged particles, for a given magnitude

of partonic energy loss [9, 10]. Both the value of RAA in central collisions as well as its pT dependence

may also in part be influenced by gluon shadowing and saturation effects, which in general decrease with

increasing x and Q2.

This Letter reports the measurement of the inclusive primary charged particle transverse momentum

distributions at mid-rapidity in central and peripheral Pb–Pb collisions at
√
s
NN

= 2.76 TeV by the ALICE
experiment [12]. Primary particles are defined as prompt particles produced in the collision, including

decay products, except those from weak decays of strange particles. The data were collected in the first

heavy-ion collision period at the LHC. A detailed description of the experiment can be found in [12].

For the present analysis, charged particle tracking utilizes the Inner Tracking System (ITS) and the Time

Projection Chamber (TPC) [13], both of which cover the central region in the pseudo-rapidity range

|! | < 0.9. The ITS and TPC detectors are located in the ALICE central barrel and operate in the 0.5 T
magnetic field of a large solenoidal magnet. The TPC is a cylindrical drift detector with two readout

planes on the endcaps. The active volume covers 85< r < 247 cm and −250< z< 250 cm in the radial
and longitudinal directions, respectively. A high voltage membrane at z = 0 divides the active volume

into two halves and provides the electric drift field of 400 V/cm, resulting in a maximum drift time of

94 µs.

The ITS is used for charged particle tracking and trigger purposes. It is composed of six cylindrical layers

of high resolution silicon tracking detectors with radial distances to the beam line from 3.9 to 43 cm. The

two innermost layers are the Silicon Pixel Detectors (SPD) with a total of 9.8 million pixels, read out by

1200 chips. Each chip provides a fast signal if at least one of its pixels is hit. The signals from the 1200

chips are combined in a programmable logic unit which supplies a trigger signal. The SPD contributes

to the minimum-bias trigger, if hits are detected on at least two chips on the outer layer. The SPD is

New LHC heavy ion data!

ALICE collaboration, 11-12/2010

the number of binary nucleon-nucleon collisions
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Data	
  from	
  RHIC	
  and	
  LHC	
  on	
  RAA	
  both	
  	
  
show	
  suppression	
  compared	
  to	
  1,	
  as	
  
a	
  strong	
  indicaVon	
  of	
  final	
  state	
  
effects	
  in	
  the	
  medium	
  created	
  in	
  
heavy	
  ion	
  collisions	
  



Jets	
  at	
  RHIC	
  vs	
  LHC	
  

Events	
  at	
  LHC	
  look	
  much	
  more	
  “jeay”	
  than	
  at	
  RHIC	
  even	
  by	
  eye	
  



• The medium is modeled with a finite number of 
scattering centers with static Debye-screened 
potential

H =
NX

n=1

H(q;x
n

) = 2⇡�(q0) v(q)
NX

n=1

eiqxn T a(R)⌦ T a(n)

v(q) =
4⇡↵s

q2z + q2 + µ2

Gyulassy, Wang, 94

• The momentum scaling of the 
exchange gluon is that of the 
Glauber gluon:  q(�2,�2,�)

Gyulassy-Wang model

⌦ ⌦ ⌦

⌦

⌦

⌦
⌦

⌦

Tuesday, March 8, 2011



Energy	
  loss	
  approach,	
  valid	
  in	
  the	
  limit	
  x	
  <<	
  1	
  

Energy	
  loss	
  approach	
  
GLV	
  approach	
   x=Q+/p+	
  

for dNg/dy ∼ 800 − 1200. We emphasize that none
of the nuclear effects alone would lead to such a flat
RAA(pT ). At LHC shadowing and Cronin effect in the
6 ≤ pT ≤ 100 GeV range were found to be essentially
negligible, leading to ≤ 15% correction, while the jet
quenching was predicted to be large and with a strong
pT dependence. We emphasize the importance of future
d + Au data at RHIC to isolate and test the initial state
Cronin and shadowing effects predicted in Fig. 2. While
it is still too early to draw conclusions from the prelim-
inary data [20,21] shown in Fig. 3, the combined future
analysis of d + Au and Au + Au high-pT measurements
will improve the tomographic determination of the initial
gluon densities produced at RHIC.
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FIG. 3. The suppression/enhancement ratio RAA(pT )
(A = B = Au) for neutral pions at

√

s
NN

= 17, 200,
5500 GeV. Solid (dashed) lines correspond to the smaller
(larger) effective initial gluon rapidity densities at given

√

s
that drive parton energy loss. Data on π0 production in cen-
tral Pb + Pb at

√

s
NN

= 17.4 GeV from WA98 [8] and in
central Au + Au at

√

s
NN

= 130 GeV [19], as well as pre-
liminary data at 200 GeV [20] from PHENIX and h± cen-
tral/peripheral data from STAR [21] are shown. The sum of
estimated statistical and systematic errors are indicated.
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to rewrite the ↵,�1,2,�1,2 in terms of standard definitions in the literature16 [51, 40]:

H1 =
k?

k2
?

, C1 =
k? � q?

(k? � q?)2
, B1 = H1 � C1 . (9.30)

The corresponding x ! 0 limit is particularly simple:

↵0 = 2H1 , (9.31)

�1 = 2B1 ei!0�z + 2C1 ei(!0�!1)�z
, �2 = 2H1 � 2B1 ei!0�z � 2C1 ei(!0�!1)�z

, (9.32)

�1 = �3H1 + 2B1 ei!0�z + 2C1 ei(!0�!1)�z
, �2 = 2H1 � 2B1 ei!0�z � 2C1 ei(!0�!1)�z

. (9.33)

Useful relations between these vectors, that help in deriving the expression for the form-factors F

i

are the

following ones:

�1 + �2 = 2H1 , �1 + �2 = �H1 . (9.34)

From the definitions in Eq. (9.15)-Eq. (9.18) we get:

F

SB
1 = |�1|2 + |2H1 � �1|2 = 2|�1|2 + 4H2

1 � 4 ReH1 ·�1

= 8B2
1 + 8C2

1 + 4H2
1 + 16B1 ·C1 cos(!1�z) � 8H1 ·B1 cos(!0�z) � 8H1 ·C1 cos((!0 � !1)�z) , (9.35)

F

SB
2 = �1 (2H1 � �1)

⇤ + (2H1 � �2)
⇤�2 = �F

SB
1 + 4H2

1 , (9.36)

F

DB
1 = 2H1 · 2 Re�1 = �12H2

1 + 8H1 · B1 cos(!0�z) + 8H1 · C1 cos((!0 � !1)�z) , (9.37)

F

DB
2 = 2H1 · 2 Re�2 = �F

DB
1 � 4H2

1 . (9.38)

Finally, using these equations we combine the single and double Born form-factors into the sum:

F

SB
1 + F

DB
1 = 8B2

1 + 8C2
1 � 8H2

1 + 16B1 ·C1 cos(!1�z) = �16B1 ·C1 (1 � cos(!1�z)) , (9.39)

F

SB
2 + F

DB
2 = �F

SB
1 � F

DB
1 . (9.40)

Thus, in the soft gluon approximation we get:
�
⇢

SB + ⇢

DB
�
x⌧1

⇡ (c1 � c2) (�16B1 ·C1) (1 � cos(!1�z)) . (9.41)

Taking into account the phase space factors, the color factors and the final-state coherent medium-induced

emission contribution above, we find:

x

dN

g

dxd

2k? |x⌧1
= C

F

↵

s

⇡

2

Z
d�z

�

g

(z)

Z
d

2q?
1

�

el

d�

g medium
el

d

2q?
(�2B1 ·C1) (1 � cos(!1�z)) . (9.42)

in agreement with Eq. (70) of [51].

Beyond the soft gluon approximation, the full result for the coherent medium-induced bremsstrahlung

reads:

x

dN

g

dxd

2k?
= C

F

↵

s

⇡

2

✓
1 � x +

x

2

2

◆Z
d�z

�

g

(z)

Z
d

2q?
1

�

el

d�

g medium
el

d

2q?

"
�
✓
A?

A2
?

◆2

+ 2

✓
C?

C2
?

◆2

� A?

A2
?

·C?

C2
?

�B?

B2
?

·C?

C2
?

�
1 � cos[(⌦1 � ⌦2)�z] + cos[(⌦2 � ⌦3)�z]

�

+
C?

C2
?

·
✓
A?

A2
?

+
B?

B2
?

� 2
C?

C2
?

◆
cos[(⌦1 � ⌦3)�z] +

A?

A2
?

·
✓
A?

A2
?

� D?

D2
?

◆
cos[⌦4�z]

+
A?

A2
?

·D?

D2
?

cos[⌦5�z] +

 
N

2
c

� 1

N

2
c

✓
B?

B2
?

◆2

+
1

N

2
c

A?

A2
?

·B?

B2
?

!
�
1 � cos[(⌦1 � ⌦2)�z]

�
#

. (9.43)

16Note that B1 is distinct from B? and C1 is distinct from C?.
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Soc	
  Collinear	
  EffecVve	
  Theory	
  with	
  
Glauber	
  Gluons	
  

•  Glauber	
  gluons	
  are	
  needed	
  
to	
  describe	
  t-­‐channel	
  
exchanges	
  between	
  jets	
  and	
  
medium	
  quasi-­‐parVcles	
  

•  Emission	
  of	
  collinear	
  
parVcles	
  is	
  described	
  by	
  
SCET	
  Lagrangian	
  

•  Allows	
  for	
  calculaVons	
  
beyond	
  the	
  small	
  x	
  limit	
  

GO,	
  Vitev,	
  2011	
  
Idilbi,	
  Majumder,	
  2008	
  



Results	
  
Rξ	
   A+	
   Hyb.	
  

W+	
   ✔	
   ✖	
   ✖	
  

Tn	
   ✖	
   ✔	
   ✖	
  

Gauge	
  invariance	
  
explicitly	
  demonstrated	
  

GO,	
  Vitev,	
  2011	
  

FactorizaVon	
  of	
  the	
  
medium-­‐induced	
  
spli_ng	
  from	
  the	
  
producVon	
  proved	
  

All	
  four	
  medium-­‐
induced	
  spli_ngs	
  
calculated	
  beyond	
  
small	
  x	
  approximaVon	
  



Small	
  x	
  approximaVon	
  

CF	
  
CA	
  ( )0	
  
0	
  

↵s

⇡

2

Z
d�z

1

�g(z)

Z
d

2k?d
2q?

1

�el

d�

med
el

d

2q?

2k? · q?
k2
?(k? � q?)2

✓
1� cos

(k? � q?)
2

xp

+
0

�z

◆( )
x

dNq!qg

dx

x

dNg!gg

dx

x

dNg!qq̄

dx

x

dNq!gq

dx

GO,	
  Vitev,	
  2011	
  

In	
  small	
  x	
  approximaVon	
  the	
  SCETG	
  spli_ng	
  kernels	
  reproduce	
  the	
  GLV	
  
spli_ng	
  funcVons	
  calculated	
  in	
  pQCD	
  
	
  
The	
  next	
  logical	
  step	
  is	
  to	
  understand	
  the	
  phenomenological	
  
applicaVons	
  of	
  full	
  x	
  correcVons	
  

Gyulassy,	
  Levai,	
  Vitev	
  2002	
  

⇡

x ! 0

SCETG	
  



What	
  to	
  do	
  with	
  these	
  spli_ng	
  
funcVons	
  ?	
  

•  Turns	
  out	
  that	
  these	
  spli_ng	
  funcVons	
  cannot	
  
be	
  inserted	
  into	
  the	
  tradiVonal	
  energy	
  loss	
  
calculaVons	
  because	
  of	
  flavor	
  changing	
  
spli_ngs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ;	
  

•  Thus,	
  need	
  a	
  new	
  framework	
  beyond	
  energy	
  
loss	
  approach	
  to	
  incorporate	
  the	
  finite	
  x	
  
correcVons	
  

g ! qq̄ q ! gq
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  QCD	
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Jet	
  quenching	
  from	
  evoluVon	
  

•  With	
  this	
  scale	
  choice	
  the	
  Hard	
  funcVon	
  need	
  not	
  be	
  evolved.	
  The	
  PDF’s	
  
and	
  the	
  FragmentaVon	
  funcVon	
  need	
  to	
  be	
  evolved	
  from	
  low	
  to	
  high	
  scale	
  

•  Because	
  medium-­‐induced	
  spli_ng	
  is	
  a	
  final	
  state	
  effect,	
  PDF’s	
  need	
  to	
  be	
  
evolved	
  with	
  vacuum	
  (Altarelli-­‐Parisi)	
  spli_ng	
  funcVons	
  

•  The	
  FragmentaVon	
  funcVon	
  needs	
  to	
  be	
  evolved	
  with	
  medium-­‐induced	
  
spli_ng	
  funcVon	
  

•  Can	
  we	
  predict	
  RAA	
  suppression	
  from	
  QCD	
  evoluVon?	
  
•  This	
  method	
  will	
  allow	
  to	
  include	
  consistently	
  inclusion	
  of	
  finite	
  x	
  

correcVons	
  

⇤QCD

pT H	
  

f,	
  D	
  

The	
  simplest	
  choice	
  is:	
  
	
  

µ = pT

RAA(pT ) =
H(µ, pT )⌦ f(µ)⌦ f(µ)⌦Dmed(µ)

H(µ, pT )⌦ f(µ)⌦ f(µ)⌦D(µ)



Collinear	
  spli_ng	
  funcVons	
  

•  The	
  collinear	
  spli_ng	
  funcVons	
  are	
  process	
  independent	
  
•  The	
  virtual	
  contribuVon	
  is	
  extracted	
  from	
  momentum	
  and	
  

flavor	
  conservaVon	
  sum	
  rules	
  
	
  
	
  

	
  

collinear	
  gluon	
  

d�n d�n+1

DGLAP	
  
Gribov,	
  Lipatov,	
  1972	
  
Altarelli,	
  Parisi,	
  1977	
  
Dokshitzer,	
  1977	
  
	
  	
  

(k2
⊥ < 0) (k⊥ · p = k⊥ · n = 0) or, equivalently, how the collinear direction is approached.

In the small-k⊥ limit (i.e. neglecting terms that are less singular than 1/k2
⊥), the square of

the matrix element in Eq. (1) fulfils the following factorization formula [1]

|Ma1,a2,...(p1, p2, . . .)|
2 ≃

2

s12
4πµ2ϵαS T ss′

a,...(p, . . .) P̂ ss′

a1a2
(z, k⊥; ϵ) , (7)

where µ is the dimensional-regularization scale. The spin-polarization tensor T ss′

a,...(p, . . .) is
obtained by replacing the partons a1 and a2 on the right-hand side of Eq. (2) with a single
parton denoted by a. This parton carries the quantum numbers of the pair a1 + a2 in the
collinear limit. In other words, its momentum is pµ and its other quantum numbers (flavour,
colour) are obtained according to the following rule: anything + gluon gives anything and
quark + antiquark gives gluon.

The kernel P̂a1a2
in Eq. (7) is the d-dimensional Altarelli–Parisi splitting function [21]. It

depends not only on the momentum fraction z involved in the collinear splitting a → a1+a2,
but also on the transverse momentum k⊥ and on the helicity of the parton a in the matrix
element Mc,...;s,...

a,... (p, . . .). More precisely, P̂a1a2
is in general a matrix acting on the spin

indices s, s′ of the parton a in the spin-polarization tensor T ss′

a,...(p, . . .). Because of these
spin correlations, the spin-average square of the matrix element Mc,...;s,...

a,... (p, . . .) cannot be
simply factorized on the right-hand side of Eq. (7).

The explicit expressions of P̂a1a2
, for the splitting processes

a(p) → a1(zp + k⊥ + O(k2
⊥)) + a2((1 − z)p − k⊥ + O(k2

⊥)) , (8)

depend on the flavour of the partons a1, a2 and are given by

P̂ ss′

qg (z, k⊥; ϵ) = P̂ ss′

q̄g (z, k⊥; ϵ) = δss′ CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (9)

P̂ ss′

gq (z, k⊥; ϵ) = P̂ ss′

gq̄ (z, k⊥; ϵ) = δss′ CF

[
1 + (1 − z)2

z
− ϵz

]

, (10)

P̂ µν
qq̄ (z, k⊥; ϵ) = P̂ µν

q̄q (z, k⊥; ϵ) = TR

[

−gµν + 4z(1 − z)
kµ
⊥kν

⊥

k2
⊥

]

, (11)

P̂ µν
gg (z, k⊥; ϵ) = 2CA

[

−gµν
(

z

1 − z
+

1 − z

z

)
− 2(1 − ϵ)z(1 − z)

kµ
⊥kν

⊥

k2
⊥

]

, (12)

where the SU(Nc) QCD colour factors are

CF =
N2

c − 1

2Nc

, CA = Nc , TR =
1

2
, (13)

and the spin indices of the parent parton a have been denoted by s, s′ if a is a fermion and
µ, ν if a is a gluon.

Note that when the parent parton is a fermion (cf. Eqs. (9) and (10)) the splitting
function is proportional to the unity matrix in the spin indices. Thus, in the factorization

3

formula (7), spin correlations are effective only in the case of the collinear splitting of a
gluon. Owing to the k⊥-dependence of the gluon splitting functions in Eqs. (11) and (12),
these spin correlations produce a non-trivial azimuthal dependence with respect to the
directions of the other momenta in the factorized matrix element.

Equations (9)–(12) lead to the more familiar form of the d-dimensional splitting func-
tions only after average over the polarizations of the parton a. The d-dimensional average
is obtained by means of the factors in Eqs. (3) and (4). Denoting by ⟨P̂a1a2

⟩ the average of
P̂a1a2

over the polarizations of the parent parton a, we have:

⟨P̂qg(z; ϵ)⟩ = ⟨P̂q̄g(z; ϵ)⟩ = CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (14)

⟨P̂gq(z; ϵ)⟩ = ⟨P̂gq̄(z; ϵ)⟩ = CF

[
1 + (1 − z)2

z
− ϵz

]

, (15)

⟨P̂qq̄(z; ϵ)⟩ = ⟨P̂q̄q(z; ϵ)⟩ = TR

[

1 −
2z(1 − z)

1 − ϵ

]

, (16)

⟨P̂gg(z; ϵ)⟩ = 2CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
. (17)

In the rest of the paper we are interested in the collinear limit at O(α2
S). In this case

three parton momenta can simultaneously become parallel. Denoting these momenta by
p1, p2 and p3, their most general parametrization is

pµ
i = xip

µ + kµ
⊥i −

k2
⊥i

xi

nµ

2p · n
, i = 1, 2, 3 , (18)

where, as in Eq. (6), the light-like vector pµ denotes the collinear direction and the auxiliary
light-like vector nµ specifies how the collinear direction is approached (k⊥i ·p = k⊥i ·n = 0).
Note that no other constraint (e.g.

∑
i xi = 1 or

∑
i k⊥i = 0) is imposed on the longitudinal

and transverse variables xi and k⊥i. Thus, we can easily consider any (asymmetric) collinear
limit at once.

In the triple-collinear limit, the matrix element squared |Ma1,a2,a3,...(p1, p2, p3, . . .)|2 has
the singular behaviour |Ma1,a2,a3,...(p1, p2, p3, . . .)|2 ∼ 1/(ss′), where s and s′ can be either
two-particle (sij = (pi + pj)2) or three-particle (s123 = (p1 + p2 + p3)2) sub-energies. More
precisely, it can be shown [19, 20] that the matrix element squared still fulfils a factorization
formula analogous to Eq. (7), namely

|Ma1,a2,a3,...(p1, p2, p3, . . .)|
2 ≃

4

s2
123

(4πµ2ϵαS)
2 T ss′

a,...(p, . . .) P̂ ss′

a1a2a3
. (19)

Likewise in Eq. (7), the spin-polarization tensor T ss′

a,...(p, . . .) is obtained by replacing the
partons a1, a2 and a3 with a single parent parton, whose flavour a is determined (see Sect. 3)
by flavour conservation in the splitting process a → a1 + a2 + a3.

4

q ! gq
g ! gg
g ! qq̄



EvoluVon	
  equaVons	
  

The evolution equations are given by standard Altarelli-Parisi equations:

df
q

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (45)

df
q̄

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

n

P
q!qg

(z0, Q)f
q̄

⇣ z

z0
, Q

⌘

+ P
g!qq̄

(z0, Q)f
g

⇣ z

z0
, Q

⌘o

, (46)

df
g

(z,Q)

d lnQ
=

↵
s

(Q2)

⇡

Z

1

z

dz0

z0

(

P
g!gg

(z0, Q)f
g

⇣ z

z0
, Q

⌘

+P
q!gq

(z0, Q)
⇣

f
q

⇣ z

z0
, Q

⌘

+ f
q̄

⇣ z

z0
, Q

⌘⌘

)

. (47)

The complete medium-induced splitting functions look like:

P
(1)

i

(z,Q) = P vac

i

(z) [1 + g
i

(x,Q,L, µ)] , (48)

where the individual terms with all the plus prescriptions and virtual pieces are summarized in
sections 2, 3. These evolution equations have to be solved with initial conditions for parton densities
for quarks, anti-quarks and gluons to equal �(1� z) at some infrared scale ⇠ fewGeV. The resulting
so-called PDF’s at the hard scattering scale Q = p

T

look like f
i/j

(z, p
T

), and have an intuitive
interpretation: probability of the parton i to be found in the parton j at the momentum transfer
scale Q = p

T

. For example f
g/q

(z, p
T

) is the solution for the gluon density from the evolution
equations with the initial conditions f

q

(z, µ
IR

) = �(1� z), f
q̄

(z, µ
IR

) = f
g

(z, µ
IR

) = 0, and so forth.
As a result of solving the A-P evolution equations we get the full LL series resummed by:

�(i)(p
T

) =
X

j=q,q̄,g

Z

1

0

dz �(j)

⇣p
T

z

⌘

f
i/j

(z, p
T

), (49)

where i = q, q̄, g. It is straightforward to check, that by plugging in the lowest order solutions of
the evolution equations, into the equations above, we reproduce Eq. (42), a nice sanity check. In
addition, the equation above when combined properly with the evolution equations contains all the
leading order logarithms resummed. This should be more relevant for the LHC phenomenology where
the energies are higher than RHIC.

TODO: Check if there are additional factors from reversing A-P equations and the
cross section formulas from initial state to the final state.

Small x approximation

The coupled Altarelli-Parisi evolution equations Eq. (45)-Eq. (47) simplify tremendously for the
small x approximation and become uncoupled. To see this we present the small x approximation of
medium-induced splitting functions:

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)

7

The	
  form	
  of	
  the	
  evoluVon	
  equaVons	
  is	
  same	
  as	
  the	
  
tradiVonal	
  Altareli-­‐Parisi	
  evoluVon	
  equaVons:	
  

For	
  the	
  FragmentaVon	
  funcVon	
  we	
  need	
  to	
  include	
  in	
  
addiVon	
  to	
  vacuum	
  evoluVon,	
  the	
  medium-­‐induced	
  
spli_ng	
  terms.	
  	
  
Similarly	
  to	
  the	
  vacuum	
  case	
  the	
  virtual	
  pieces	
  we	
  
determine	
  from	
  the	
  momentum	
  and	
  flavor	
  sum	
  rules	
  

P=Pvac+Pmed	
  

Real	
  emission	
  
calculated	
  in	
  
GO,	
  Vitev,	
  2011	
  
using	
  SCETG	
  



Small	
  x	
  limit	
  of	
  spli_ng	
  funcVons	
  

P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)

P
g!gg

=
2C

A

x
+

+

✓

2C
A

x
g[x,Q,L, µ]

◆

+

, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g[x,Q,L, µ] =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss

In this section we show that in the small x limit the approximate solution to the evolution equation
for the fragmentation function is intimately connected with the energy-loss approach. In the small x
approximation the evolution equation for the fragmentation function looks like:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
�

P (z0, Q)
�

+

D(z/z0, Q). (55)

In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
P (z0, Q)

✓

1

z0
D(z/z0, Q)�D(z,Q)

◆

⇡ ↵
s

⇡

✓

1 + z
@

@z

◆

D(z,Q)

Z

1

z

dz0 (1� z0)P (z0, Q). (56)

Now we use one more approximation, that the fragmentation function has a fixed steepness:

✓

1 + z
@

@z

◆

D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:

d lnD(z,Q)

d lnQ
= �↵

s

⇡
(n(z)� 1)

Z

1

z

dz0 (1� z0)P (z0, Q). (58)
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P
q!qg

=
2C

F

x
+

+

✓

2C
F

x
g[x,Q,L, µ]

◆

+

, (50)

P
g!gg

=
2C

A

x
+

+

✓

2C
A

x
g[x,Q,L, µ]

◆

+

, (51)

P
g!qq̄

= 0, (52)

P
q!gq

= 0, (53)

where the function g equals to:

g[x,Q,L, µ] =

Z

d�z

�
g

(�z)
d2q?

1

�
el

d�medium

el

d2q?

2k? ·q?
(k? � q?)2



1� cos
(k? � q?)2

xp+
0

�z

�

. (54)

From this it is clear that the A-P equations uncouple for di↵erent partons. In the following section
we solve approximately the small-x evolution equations and show connections to the energy loss ap-
proach.

3.3 From QCD evolution to energy loss

In this section we show that in the small x limit the approximate solution to the evolution equation
for the fragmentation function is intimately connected with the energy-loss approach. In the small x
approximation the evolution equation for the fragmentation function looks like:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
�

P (z0, Q)
�

+

D(z/z0, Q). (55)

In the equation above the splitting function P contains both vacuum or medium terms, and is given
by expressions in Eq. (50) and Eq. (51). Next we write out explicitly the evolution equation and
approximate it with z0 ⇡ 1 which follows from the fact that D(z,Q) is falling steeply with increasing
z:

dD(z,Q)

d lnQ
=

↵
s

⇡

Z

1

z

dz0

z0
P (z0, Q)

✓

1

z0
D(z/z0, Q)�D(z,Q)

◆

⇡ ↵
s

⇡

✓

1 + z
@

@z

◆

D(z,Q)

Z

1

z

dz0 (1� z0)P (z0, Q). (56)

Now we use one more approximation, that the fragmentation function has a fixed steepness:

✓

1 + z
@

@z

◆

D(z,Q) ⇡ (1� n(z))D(z,Q), (57)

and we will think of n as some number that depends on z but we neglect the dependence on Q. Using
the above two approximations we get the following simplified equation:

d lnD(z,Q)

d lnQ
= �↵

s

⇡
(n(z)� 1)

Z

1

z

dz0 (1� z0)P (z0, Q). (58)
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•  In	
  the	
  small	
  x	
  limit	
  only	
  two	
  spli_ngs	
  survive	
  
•  From	
  flavor	
  and	
  momentum	
  sum	
  rules	
  we	
  get	
  that	
  the	
  
spli_ng	
  is	
  given	
  by	
  a	
  plus	
  funcVon	
  

•  Keeping	
  finite	
  x	
  correcVons	
  one	
  needs	
  to	
  keep	
  all	
  four	
  
spli_ngs.	
  Delta	
  funcVon	
  pieces	
  do	
  not	
  vanish.	
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  Saad,	
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  2014	
  	
  



EvoluVon	
  in	
  the	
  small	
  x	
  limit	
  

•  Expand	
  the	
  convoluVon	
  integral	
  around	
  z’=1	
  
•  Assume	
  fixed	
  steepness	
  n(z)	
  
•  Solve	
  DGLAP	
  equaVons	
  exactly	
  

2

particle rapidity density [7]. The position and time
dependence of the Debye screening scale mD and
the quark and gluon scattering lengths, necessary to
evaluate P

real

i (x,Q?;↵), are obtained using an opti-
cal Glauber model for the collision geometry and a
Bjorken expansion ansatz. The coupling g between
the jet and the medium is a free parameter in the
calculation.

Special attention has to be paid to the gluon split-
ting function because it diverges for both x ! 0
and x ! 1. The first divergence is regulated with
a plus function prescription, while the second diver-
gence need not be regulated owing to the form of the
evolution equations:

Pq!qg(x) =
⇥
P

real

q!qg(x)
⇤
+

+A �(x) , (3)

Pg!gg(x) = 2CA

(✓
1� 2x

x

+ x(1� x)

◆
g

2

(x)

�

+

+
g

2

(x)

1� x

)
+B �(x) , (4)

Pg!qq̄(x) = P

real

g!qq̄(x) , Pq!gq(x) = P

real

q!gq(x) . (5)

In the equations above we have suppressed the ex-
plicit Q? and ↵ dependence for simplicity. The vir-
tual pieces of the splitting functions can be extracted
from flavor and momentum sum rules in complete
analogy to the vacuum case:

A = 0 , (6)

B =

Z
1

0

dx0

(
� 2nf (1� x

0)Pg!qq̄(x
0)

+2CA

"
x

0
✓
1� 2x0

x

0 + x

0(1� x

0)

◆
� 1

#
g

2

(x0)

)
. (7)

The DGLAP evolution equations for the fragmenta-
tion functions (FFs) read:

dDq(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z
1

z

dz0

z

0

h
Pq!qg(z

0)Dq

⇣
z

z

0 , Q
⌘

+Pq!gq(z
0)Dg

⇣
z

z

0 , Q
⌘ i

, (8)

dDg(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z
1

z

dz0

z

0

"
Pg!gg(z

0)Dg

⇣
z

z

0 , Q
⌘

+Pg!qq̄(z
0)
X

q

⇣
Dq

⇣
z

z

0 , Q
⌘
+Dq̄

⇣
z

z

0 , Q
⌘⌘#

, (9)

where z ⌘ 1 � x in the splitting functions and
Q ⌘ |Q?|. The equation for the evolution of the
anti-quark FF can be found from quark equation by
substituting everywhere Dq ! Dq̄.
QCD evolution and the energy loss approach repre-

sent two very di↵erent implementations of jet quench-
ing. It is critical to establish this connection between
them in light of the fact that energy loss phenomenol-
ogy has been very successful [7, 15, 16]. This can be
achieved only in the soft gluon bremsstrahlung limit,
where the two diagonal splitting functions Pq!qg

and Pg!gg survive. Up to (2⇡2

/↵s)Q2

?, these are
the Gyulassy-Levai-Vitev (GLV) double di↵erential
medium-induced gluon number distributions to first
order in opacity [19]. There is no flavor mixing, and
the entire branching is given by a plus function. The
DGLAP evolution equations decouple and reduce to:

dD(z,Q)

d lnQ
=

↵s

⇡

Z
1

z

dz0

z

0 [P (z0, Q)]
+

D

⇣
z

z

0 , Q
⌘
. (10)

Because the fragmentation functions D(z) are
typically steeply falling with increasing z =
p

hadron

T /p

parton

T , the main contribution in Eq. (10)
comes predominantly from z

0 ⇡ 1. We expand the
integrand in this limit, keeping the first derivative
terms, and approximate the steepness of the fragmen-
tation function with its unperturbed vacuum value:

n(z) = �d lnDvac(z)/d ln z . (11)

The analytical solution to the Eq. (10) reads:

D

med(z,Q) ⇡ e�(n(z)�1)h�E
E i

z
�hNgiz

D

vac(z,Q) , (12)

and shows explicitly that the vacuum evolution and
the medium-induced evolution factorize. We have
used the following definitions in the above formula:

⌧
�E

E

�

z

=

Z
1�z

0

dxx
dN

dx
(x)

z!0���!
⌧
�E

E

�
, (13)

hNgiz =

Z
1

1�z
dx

dN

dx
(x)

z!1���! hNgi , (14)

where xdN/dx is the medium-induced gluon intensity
distribution [19]. Note, that we have made the choice
to put all the in-medium e↵ects into the DGLAP evo-
lution. The analytic formula in Eq. (12) gives us for
the first time an insight into the deep connections be-
tween the evolution and energy loss approaches to jet
quenching. Over most of the z range the suppression
of the FFs is dominated by the the fractional energy
loss, amplified by the steepness of D(z). Near thresh-
old (z = 1) the modification is determined by the

2

particle rapidity density [7]. The position and time
dependence of the Debye screening scale mD and
the quark and gluon scattering lengths, necessary to
evaluate P

real

i (x,Q?;↵), are obtained using an opti-
cal Glauber model for the collision geometry and a
Bjorken expansion ansatz. The coupling g between
the jet and the medium is a free parameter in the
calculation.

Special attention has to be paid to the gluon split-
ting function because it diverges for both x ! 0
and x ! 1. The first divergence is regulated with
a plus function prescription, while the second diver-
gence need not be regulated owing to the form of the
evolution equations:

Pq!qg(x) =
⇥
P

real

q!qg(x)
⇤
+

+A �(x) , (3)

Pg!gg(x) = 2CA

(✓
1� 2x

x

+ x(1� x)

◆
g

2

(x)

�

+

+
g

2

(x)

1� x

)
+B �(x) , (4)

Pg!qq̄(x) = P

real

g!qq̄(x) , Pq!gq(x) = P

real

q!gq(x) . (5)

In the equations above we have suppressed the ex-
plicit Q? and ↵ dependence for simplicity. The vir-
tual pieces of the splitting functions can be extracted
from flavor and momentum sum rules in complete
analogy to the vacuum case:

A = 0 , (6)

B =

Z
1

0

dx0

(
� 2nf (1� x

0)Pg!qq̄(x
0)

+2CA

"
x

0
✓
1� 2x0

x

0 + x

0(1� x

0)

◆
� 1

#
g

2

(x0)

)
. (7)

The DGLAP evolution equations for the fragmenta-
tion functions (FFs) read:

dDq(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z
1

z

dz0

z

0

h
Pq!qg(z

0)Dq

⇣
z

z

0 , Q
⌘

+Pq!gq(z
0)Dg

⇣
z

z

0 , Q
⌘ i

, (8)

dDg(z,Q)

d lnQ
=

↵s(Q2)

⇡

Z
1

z

dz0

z

0

"
Pg!gg(z

0)Dg

⇣
z

z

0 , Q
⌘

+Pg!qq̄(z
0)
X

q

⇣
Dq

⇣
z

z

0 , Q
⌘
+Dq̄

⇣
z

z

0 , Q
⌘⌘#

, (9)

where z ⌘ 1 � x in the splitting functions and
Q ⌘ |Q?|. The equation for the evolution of the
anti-quark FF can be found from quark equation by
substituting everywhere Dq ! Dq̄.
QCD evolution and the energy loss approach repre-

sent two very di↵erent implementations of jet quench-
ing. It is critical to establish this connection between
them in light of the fact that energy loss phenomenol-
ogy has been very successful [7, 15, 16]. This can be
achieved only in the soft gluon bremsstrahlung limit,
where the two diagonal splitting functions Pq!qg

and Pg!gg survive. Up to (2⇡2

/↵s)Q2

?, these are
the Gyulassy-Levai-Vitev (GLV) double di↵erential
medium-induced gluon number distributions to first
order in opacity [19]. There is no flavor mixing, and
the entire branching is given by a plus function. The
DGLAP evolution equations decouple and reduce to:

dD(z,Q)

d lnQ
=

↵s

⇡

Z
1

z

dz0

z

0 [P (z0, Q)]
+

D

⇣
z

z

0 , Q
⌘
. (10)

Because the fragmentation functions D(z) are
typically steeply falling with increasing z =
p

hadron

T /p

parton

T , the main contribution in Eq. (10)
comes predominantly from z

0 ⇡ 1. We expand the
integrand in this limit, keeping the first derivative
terms, and approximate the steepness of the fragmen-
tation function with its unperturbed vacuum value:

n(z) = �d lnDvac(z)/d ln z . (11)

The analytical solution to the Eq. (10) reads:

D

med(z,Q) ⇡ e�(n(z)�1)h�E
E i

z
�hNgiz

D

vac(z,Q) , (12)

and shows explicitly that the vacuum evolution and
the medium-induced evolution factorize. We have
used the following definitions in the above formula:

⌧
�E

E

�

z

=

Z
1�z

0

dxx
dN

dx
(x)

z!0���!
⌧
�E

E

�
, (13)

hNgiz =

Z
1

1�z
dx

dN

dx
(x)

z!1���! hNgi , (14)

where xdN/dx is the medium-induced gluon intensity
distribution [19]. Note, that we have made the choice
to put all the in-medium e↵ects into the DGLAP evo-
lution. The analytic formula in Eq. (12) gives us for
the first time an insight into the deep connections be-
tween the evolution and energy loss approaches to jet
quenching. Over most of the z range the suppression
of the FFs is dominated by the the fractional energy
loss, amplified by the steepness of D(z). Near thresh-
old (z = 1) the modification is determined by the
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Figure 1: Comparison of evolution of quark fragmentation function (left) and gluon fragmentation
function (right) between my code and the DSS code.

3 Medium-induced splitting functions

The real splitting functions look like:

P real

q!qg

(x) = C
F

1 + (1� x)2

x
g
1

(x,k?, L, µ) , (32)

P real
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(x,k?, L, µ) , (34)

P real

q!gq

(x) = C
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1 + x2

1� x
g
4

(x,k?, L, µ) . (35)

3.1 Determining the virtual pieces

From the similar arguments as in the vacuum case, we expect the complete, real plus virtual medium-
induced splittings to have the form:

P
q!qg

(x) =
h

P real

q!qg

(x)
i

+

+A �(x), (36)

P
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P
g!qq̄

(x) = P real

g!qq̄

(x), (37)

P
q!gq

(x) = P real

q!gq

(x). (38)

From momentum and flavor sum rules, the coe�cients A and B, which in this case are functions of
k?, L, µ, are equal to:

A = 0 (39)

5

D(z,Q)med = e�(n(z)�1)h�E
E i

z
�hNgiz D(z,Q)vac

n(z) = �d lnD(z,Q)vac

d ln z
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probability not to emit a gluon, exp(−⟨Ng⟩). Con-
versely, solving Eqs. (8) and (9) numerically allows
us to unify the treatment of the vacuum and medium-
induced parton showers.
We now turn to the numerical comparison be-

tween the medium-modified evolution approach to
jet quenching and the traditional energy loss formal-
ism. We elect to include all QGP effects in the frag-
mentation functions, such that the invariant inclusive
hadron production cross section reads:

1

⟨Ncoll⟩
dσh

AA

dyd2pT
=
∑

c

∫ 1

zmin

dz
dσc(pc = pT /z)

dyd2pTc

×
1

z2
Dmed/quench

c (z) . (15)

Here, c = {q, q̄, g} and we choose the factorization,
fragmentation and renormalization scales Q = pTc

,
and dσc/dyd2pTc

is the unmodified hard parton pro-
duction cross section.
Should an energy loss approach be adopted, it is

important to realize that the soft gluon emission limit
must be consistently implemented. If the fractional
energy loss becomes significant, it is carried away
through multiple gluon bremsstrahlung. In the in-
dependent Poisson gluon emission limit, we can con-
struct the probability density Pc(ϵ) of this fractional
energy loss ϵ =

∑

i ωi/E ≈
∑

iQ
+
i /p

+, such that:

∫ 1

0
dϵ P (ϵ) = 1 ,

∫ 1

0
dϵ ϵP (ϵ) =

〈

∆E

E

〉

. (16)

A more detailed discussion is given in [7]. If a parton
loses this energy fraction ϵ during its propagation in
the QGP to escape with momentum pquenchTc

, immedi-

ately after the hard collision pTc
= pquenchTc

/(1 − ϵ).

Noting the additional Jacobian |dpquenchTc
/dpTc

| =
(1 − ϵ), the kinematic modification to the FFs due
to energy loss is:

Dquench
c (z) =

∫ 1−z

0
dϵ

Pc(ϵ)

(1 − ϵ)
Dc

(

z

1− ϵ

)

, (17)

and can be directly implemented in Eq. (15).
In Figure 1 we present our calculations of the nu-

clear modification factor RAA in the limit of soft
gluon bremsstrahlung. Results are obtained from the
parton energy loss approach (cyan band) and by us-
ing the analytic solution to the in-medium evolution
given in Eq. (12) (yellow band). The upper edge of
the uncertainty bands (solid lines) corresponds to a
coupling between the jet and the medium g = 2.0 and
the lower edge (dashed lines) corresponds to g = 2.1.
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FIG. 1: Nuclear modification factor comparison between
the traditional energy loss approach (cyan band) and the
analytic solution to QCD evolution in the soft gluon limit
(yellow band). The upper and lower edges of the bands
correspond to couplings between the jet and the medium
g = 2.0 and g = 2.1, respectively. The insets show the
ratios of different RAA curves. Data is form ALICE an
CMS.

The results of the two calculations are remarkably
similar and both reproduce well the suppression of
inclusive charged hadron production in 0-10% central
Pb+Pb collisions at the LHC measured by ALICE [4]
and CMS [5]. In both approaches the coupling g be-
tween the jet and the medium can be constrained
with an accuracy of 5% and the transport properties
of the medium, which scale as g4, can be extracted
with 20% uncertainty. The inset shows the ratio for
the different RAA curves relative to the g = 2.0 en-
ergy loss result. We observe from this inset that the
only difference between the two approaches is a small
variation in the shape of the nuclear modification ra-
tio as a function of pT . At any fixed transverse mo-
mentum the difference in the predicted magnitude of
jet quenching can be absorbed in less than 2% change
of the coupling g between the jet and the medium.

In Figure 2 we show RAAs obtained with medium-
modified FFs that are numerical solutions to the
DGLAP evolution equations, Eqs. (8), (9), with full
medium-induced splitting kernels [12] (cyan band)
and their small-x energy loss limit [20] (yellow band).
In this figure, the uncertainty bands correspond to
g = 1.9−2.0. The difference between the small-x and
full evolution is only noticeable below pT = 20 GeV,
as can be seen from the inset. At small and interme-
diate transverse momenta the solution to the DGLAP
equations beyond the soft gluon limit yields a slightly
better agreement between theory and experiment.

To understand the numerical results, we further
scrutinize the in-medium modification of FFs in Fig-

RAA(pT ) =
�AA(pT )

hN
coll

i�pp(pT )
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3.1 Determining the virtual pieces

From the similar arguments as in the vacuum case, we expect the complete, real plus virtual
medium-induced splittings to have the form:

Pq!qg(x) =
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From momentum and flavor sum rules, the coe�cients A and B, which in this case are functions
of k?, L, µ, are equal to:

A = 0 (39)
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Note that the medium-induced splitting functions are related to splitting kernels as follows:
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. (41)

3.2 Factorization of the inclusive cross section

Because of the way we normalized our definition of the medium-induced splitting functions
we get identical factorization formula for the cross section to the vacuum case:
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with an important conceptual di↵erence, that the medium splitting function depends on the
k?. Note that splitting functions P (1) contain vacuum term as well as first order in opacity
term. The equations above can be integrated over dk2

? to read:
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We present the first application of a recently-developed e↵ective theory of jet propagation in
matter SCETG to inclusive hadron suppression in nucleus-nucleus collisions at the LHC. SCETG -
based splitting kernels allow us to go beyond the traditional energy loss approximation and unify
the treatment of vacuum and medium-induced parton showers. In the soft gluon emission limit,
we establish a simple analytic relation between the QCD evolution and energy loss approaches to
jet quenching. We quantify the uncertainties associated with the implementation of the in-medim
modification of hadron production cross sections and show that the coupling between the jet and
the medium can be constrained with better than 10% accuracy.

Suppression of the production cross section for
high transverse momentum particles and jets in ultra-
relativistic collisions of heavy nuclei, commonly re-
ferred to as jet quenching [1], is one of the most-
important signatures of quark-gluon plasma (QGP)
formation in such reactions and a quantitative probe
of its properties. This phenomenon has been estab-
lished experimentally at the Relativistic Heavy Ion
Collider (RHIC) [2, 3] and the Large Hadron Col-
lider (LHC) [4–6]. It was understood theoretically in
a framework based on perturbative QCD calculations
of parton propagation and energy loss in the QGP [7].

More recently, progress has been made on formu-
lating and applying e↵ective theories of QCD, suit-
able for calculations of jet properties in hot and dense
strongly-interacting matter. The well-established
soft-collinear e↵ective theory (SCET) [8, 9] has been
extended to include the interactions with the medium
quasiparticles via a transverse t-channel momentum
exchange. The resulting soft-collinear e↵ective the-
ory with Glauber gluons (SCET

G

) [10, 11] has been
used to calculate all O(↵s) 1 ! 2 medium-induced
splitting kernels [12] and study O(↵s) e↵ects on the
in-medium parton shower [13]. The power counting
of SCET

G

correctly captures the behavior of the in-
medium branchings when the lightcone momentum
fraction x = Q

+

/p

+ of the emitted parton becomes
large (x ! 1). These large-x corrections are absent
in traditional energy loss calculations.

A critical step in improving the jet quenching phe-
nomenology is to understand the implication of the
finite-x corrections. Their implementation requires
new theoretical methods, since in the large momen-
tum fraction limit the leading parton can change fla-
vor and the splitting process cannot be interpreted
as energy loss. A natural language to capture this

physics is that of the well-known DGLAP evolution
equations [14]. As a first application of the SCET

G

medium-induced splitting kernels, we revisit the eval-
uation of the nuclear modification factor RAA for in-
clusive hadron production at high transverse momen-
tum pT (and rapidity y), defined as:

RAA(pT ) =
d�

h
AA/dyd

2

pT

hN
coll

id�h
pp/dyd

2

pT
, (1)

which continues to attract strong theoretical inter-
est [15, 16]. We consider central lead-lead (Pb+Pb)
reactions at

p
sNN = 2.76 TeV at the LHC as an ex-

ample. In Eq. (1) hN
coll

i is the average number of
binary nucleon-nucleon collisions. DGLAP evolution
equations have been used to address hadron produc-
tion in semi-inclusive deep inelastic scattering with
initial conditions obtained using an energy loss ap-
proach [17, 18].
In the presence of a QGP, all parton splitting ker-

nels are a direct sum of the universal vacuum part and
a medium-dependent component, which has been cal-
culated in Ref. [12]. Those are real emission graphs
in the DGLAP language. The splitting functions are
related to the medium-induced splitting kernels as
follows:

P

real

i (x,Q?;↵)=
2⇡2

↵s
Q2

?
dNi(x,Q?;↵)

dx d2Q?

=P

vac

i (x) gi(x,Q?;↵) . (2)

The equation above explicitly indicates that, unlike
the vacuum case where the splitting function only
depends on x, the medium-induced splitting func-
tion also depends on Q? and the properties of the
QGP ↵. We relate the temperature and density of
the gluon-dominated plasma to the measured charged
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FIG. 2: Comparison between RAA obtained with in-
medium numerically evolved fragmentation functions us-
ing the full splitting kernels (cyan band) and their soft
gluon limit (yellow band) to ALICE and CMS data. The
upper and lower edges of the bands correspond to g = 1.9
and g = 2.0, respectively.

ure 3 for 40 GeV quarks and gluons, respectively.
As a function of the hadron-to-parton transverse mo-
mentum fraction z, the differences between the var-
ious methods of computing this modification can be
much more pronounced than in RAA. This is espe-
cially true for gluon fragmentation at large z. The
observed hadron production cross section, however,
samples a wide range of momentum fractions and in
the presence of a QGP is biased toward lower values of
z. Furthermore, the quark contribution is enhanced
since Dmed

q (z) is much less suppressed than Dmed
g (z).

To summarize, we presented results for the sup-
pression of inclusive hadron production in Pb+Pb
reactions at the LHC based upon QCD factorization
and DGLAP evolution with SCETG -based medium-
induced splitting kernels. This method allows us to
unify the treatment of vacuum and medium-induced
parton showers. In the soft gluon bremsstrahlung
limit, we demonstrated the connection between this
new approach and the traditional energy loss-based
jet quenching phenomenology. Numerically, the
agreement between the two methods is quite remark-
able and they give a very good description of the
experimentally measured RAA by ALICE and CMS.
We find that the coupling between the jet and the
medium can be constrained with better than 10%
accuracy when the uncertainties that arise from the
choice of method and the fit to the data are com-
bined. In the future, it will be interesting to investi-
gate whether better differentiation between the QCD
evolution and energy loss approaches can be achieved
using parton flavor separation techniques [21, 22].
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in-medium modification with g = 2.0.
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  EvoluVon	
  (full	
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  vs	
  small	
  x)	
  

•  QCD	
  evoluVon	
  using	
  full	
  DGLAP	
  equaVons	
  in	
  the	
  medium	
  is	
  on	
  top	
  
of	
  the	
  small	
  x	
  approximaVon	
  to	
  evoluVon	
  above	
  20	
  GeV	
  

•  At	
  small	
  and	
  intermediate	
  pT	
  the	
  shape	
  of	
  full	
  x	
  evoluVon	
  is	
  in	
  
beaer	
  agreement	
  with	
  data	
  from	
  ALICE	
  and	
  CMS	
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and g = 2.0, respectively.

ure 3 for 40 GeV quarks and gluons, respectively.
As a function of the hadron-to-parton transverse mo-
mentum fraction z, the differences between the var-
ious methods of computing this modification can be
much more pronounced than in RAA. This is espe-
cially true for gluon fragmentation at large z. The
observed hadron production cross section, however,
samples a wide range of momentum fractions and in
the presence of a QGP is biased toward lower values of
z. Furthermore, the quark contribution is enhanced
since Dmed

q (z) is much less suppressed than Dmed
g (z).

To summarize, we presented results for the sup-
pression of inclusive hadron production in Pb+Pb
reactions at the LHC based upon QCD factorization
and DGLAP evolution with SCETG -based medium-
induced splitting kernels. This method allows us to
unify the treatment of vacuum and medium-induced
parton showers. In the soft gluon bremsstrahlung
limit, we demonstrated the connection between this
new approach and the traditional energy loss-based
jet quenching phenomenology. Numerically, the
agreement between the two methods is quite remark-
able and they give a very good description of the
experimentally measured RAA by ALICE and CMS.
We find that the coupling between the jet and the
medium can be constrained with better than 10%
accuracy when the uncertainties that arise from the
choice of method and the fit to the data are com-
bined. In the future, it will be interesting to investi-
gate whether better differentiation between the QCD
evolution and energy loss approaches can be achieved
using parton flavor separation techniques [21, 22].
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Comparison	
  III:	
  FragmentaVon	
  funcVons	
  

Differences	
  in	
  the	
  fragmentaVon	
  funcVon	
  calculated	
  with	
  different	
  methods	
  are	
  more	
  visible,	
  especially	
  
for	
  the	
  gluon	
  fragmentaVon	
  funcVon	
  at	
  large	
  values	
  of	
  z.	
  The	
  sensiVvity	
  of	
  RAA	
  to	
  this	
  is	
  reduced	
  because	
  	
  
the	
  gluon	
  fragmentaVon	
  funcVon	
  in	
  the	
  medium	
  is	
  more	
  quenched.	
  



Conclusions	
  
•  First	
  results	
  on	
  RAA	
  suppression	
  from	
  QCD	
  evoluVon	
  are	
  

promising	
  
•  We	
  incorporated	
  the	
  SCETG	
  calculaVons	
  of	
  medium-­‐

induced	
  spli_ng	
  kernels	
  into	
  jet	
  quenching	
  
phenomenology	
  

•  The	
  new	
  method	
  agrees	
  with	
  the	
  energy	
  loss	
  method	
  
amazingly	
  accurately	
  (and	
  with	
  data)	
  

•  Coupling	
  in	
  the	
  medium	
  is	
  constrained	
  by	
  less	
  than	
  10%	
  
from	
  comparing	
  different	
  theoreVcal	
  frameworks	
  

•  This	
  puts	
  the	
  jet	
  quenching	
  phenomenology	
  on	
  a	
  more	
  
solid	
  theoreVcal	
  grounds	
  

	
  


