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Outline

● TMD parton distributions and factorization
● The Sivers function, time reversal, and initial- / final-state interactions
● The physical picture: QCD lensing

Review: the Sivers Function

● The small-x limit: Regge kinematics
● The small-x gluon cascade and saturation
● DIS on a heavy nucleus:  QCD shadowing
● The quasi-classical limit

The Emergence of Saturation at High Energy

● A common regime: a heavy nucleus at Bjorken kinematics
● Quasi-classical factorization of the SIDIS cross-section and TMD's
● The Sivers function in the classical limit and orbital angular momentum
● Nuclear shadowing: the new importance of initial and final state interactions

Sivers Function in the Quasi-Classical Bjorken Limit



  

Review: The Sivers Function



  

The Transverse-Momentum Paradigm

● TMD Factorization makes it possible to relate the intrinsic transverse-
momentum distribution of partons within a hadron to external observables.

● The quark transverse-momentum structure of a hadron is described by the 
quark-quark correlation function 

➢ At lowest order in the coupling,        possesses a quark density interpretation:

➢ The gauge link               makes the definition gauge-invariant, but mixes the 
parton density with the associated gluon field.

● Initial- and final-state interactions modify the parton distributions accessed in 
physical processes:



  

The Sivers Function: A Lesson In Time Reversal

● But the Sivers function is allowed at the level of quark/gluon/quark correlations 
due to nontrivial initial-, final-state interactions

● The relation due to (PT) symmetry between initial- and final-state interactions 
implies a precise sign-flip relation between the Sivers function for semi-inclusive 
deep inelastic scattering (SIDIS) and the Drell-Yan process (DY):

● The Sivers function measures the intrinsic orbital 
asymmetry of quarks in a transversely-polarized 
hadron:

● At the level of a pure parton density, the Sivers function vanishes due to the (PT) 
invariance of QCD:



  

The Physical Picture: QCD Lensing

● Color conservation indicates that the FSI in 
SIDIS yields a coherent attractive force on 
quark experiences as it escapes the hadron: 
QCD lensing

SIDIS (FSI)● The final state interactions of SIDIS permit a 
T-odd imaginary phase that occurs when an 
intermediate state goes on-shell:

● Pointlike proton (colorless)
● Pointlike scalar (antiquark)
● Yukawa coupling: proton/quark/scalar

DY (ISI)
● In DY, the ISI yields a coherent repulsive 

force on the antiquark, resulting in the 
expected sign-flip due to lensing:

● But lensing due to color consevation cannot be the whole story, because the 
hadron remnants are not fully transparent to a colored probe.

➢ Shadowing due to locally incoherent colors will compete with color-
coherent lensing.
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The Emergence of
Saturation At High Energy



  

Regge Kinematics

● Small-x physics is motivated by the high-
energy Regge limit, in which center-of-mass 
energy is the dominant scale.

● The interactions occur instantaneously and are naturally ordered along the light 
cone.  This eikonal propagation of a projectile through the field of the target is 
re-summed into a Wilson line:

● Interactions in the Regge limit occur through eikonal 
scattering, by the exchange of Glauber gluons.



  

The Small-x Gluon Cascade

● This increase in gluon bremsstrahlung with energy gives the BFKL equation, which 
drives up the gluon density at small-x.

● When the energy becomes so large that its 
logarithm can compete with the coupling, it 
reorders the perturbation series:

● Emission of an extra longitudinally-soft 
(small-x) gluon is suppressed by the 
coupling, but is systematically enhanced by 
its large phase space.

● These emissions must be re-summed to give 
the small-x gluon cascade which dominates 
the physics of high energies.



  

Gluon Saturation

● Nonlinear evolution yields a saturation scale that grows 
with energy, so eventually, it cuts off the IR while still in 
the perturbative domain.

● At high enough densities, nonlinear gluon fusion 
begins to compete with bremsstrahlung, 
saturating the growth of the gluon density.

● The proliferation of incoherent color sources 
generates a correlation length, described by the 
saturation scale       , which cuts off the gluon 
distributions in the IR.

● Including these recombination processes yields a nonlinear evolution equation 
(ie, BK, JIMWLK):



  

Heavy Nuclei: A Resummation Parameter

● The leading order effect in A1/3 is a combinatoric enhancement that prefers each 
rescattering to occur on a different nucleon.

● Nature provides us with another way to approach the limit of dense color charges: 
using a heavy nucleus with a large number A of nucleons.

● DIS on a heavy nucleus in the Regge 
Limit: the virtual photon has a long 
coherence length and fluctuates into a 
quark/antiquark pair, undergoing eikonal 
rescattering from the A1/3 nucleons.

● Integrating over the momentum transfer k between nucleons puts the intermediate 
propagators on-shell and factorizes into a product of scattering on independent 
nucleons.

● The nucleus provides a well-defined regime 
to re-sum the high-density corrections, 
without the need for quantum evolution.

➢ QCD shadowing!



  

The Dense Limit is the Quasi-Classical Limit

● The 2-gluon/nucleon resummation parameter                  corresponds to interacting 
with the classical Weizsacker-Williams gluon field of the target.

● The gluon fields of the nucleus are characterized by high occupation numbers, 
reducing to their classical limit.

● Equivalently, one can solve the classical Yang-Mills 
equations for a heavy nucleus moving along the 
light-cone and recover the same formulas 
(McLerran – Venugopalan model).

● The high energy limit of QCD is the limit of high-density classical gluon fields.
● The resummation parameter                   embeds the perturbation series in a 

classical background field.
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A Common Regime for Spin and Saturation

● There is a common limit that employs both the 
kinematics necessary for spin physics and the 
high densities necessary for saturation: 
Bjorken kinematics in a heavy nucleus

● In SIDIS, the virtual photon has a short coherence length and interacts via a local 
“knockout” process due to the “large-x” Bjorken kinematics.
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● But the struck quark has a long coherence length and can undergo eikonal final-
state rescattering on the spectator nucleons.

● Since                 , TMD factorization holds, and we can express the nuclear TMD's 
in terms of nucleons and Wilson lines.

Large-x and Large-A

● Since                , we can do the calculations perturbatively, using the machinery of 
saturation physics.



  

The SIDIS Cross Section (1)

● We can relate the scattering amplitude on the nucleus to the light-cone wave 
functions of the nucleons and the rest of the amplitude (knockout + rescattering)

● But, using the fact that W(p,b) varies with impact parameter only over macroscopic 
scales ~ A1/3, we can neglect the off-forwardness in the transverse momentum.

● After introducing the Wigner functions, the knockout + rescattering amplitudes 
are still off-forward.

● By Fourier transforming the momentum difference between the amplitude and 
C.C., we obtain the Wigner distribution of nucleons in the nucleus:



  

The SIDIS Cross Section (2)

● But, as we did in the Regge limit, we can integrate over the 
longitudinal momentum carried between nucleons to put the 
intermediate propagator on shell.

● At this point, the knockout + rescattering amplitudes are still 
off-forward in the longitudinal momenta.

● This enforces path ordering and fully factorizes the knockout of a quark from 
a nucleon from the rescattering of that quark on all the other spectators.  The 
result is a “quasi-classical factorization” of the SIDIS cross-section:



  

TMD's in the Quasi-Classical Limit

● We can perform the same analysis using 
the definition of the TMD distribution 
functions.

● The kinematics of the knockout and rescattering proceed in the same way, 
reducing the matrix element of the nucleus down to the matrix element of the 
nucleon:

● This expresses the TMD's of the nucleus in terms of the TMD's of the nucleons, 
their Wigner distributions, and the eikonal rescattering factor.

● Decompose the nuclear state into a superposition of nucleons using the light-cone 
wave functions: 



  

Sivers Fuction of a Heavy Nucleus

Orbital Angular Momentum:

Intrinsic Sivers function of the nucleons:

The Odderon (T-odd rescattering):

● Using our quasi-classical factorization formula, we can directly compute the Sivers 
function of the nucleus:

● By splitting each factor into symmetric and antisymmetric parts, we can use the 
symmetry properties of the Sivers function to identify which channels can contribute



  

Orbital Angular Momentum and Shadowing

SIDIS

● We find a new mechanism that can generate the Sivers function: (orbital angular 
momentum of nucleons) x (their quark TMD's) x (symmetric rescattering).

● If we neglect the role of multiple rescattering, 
then it is equally likely to eject the quark from 
the front of the nucleus as from the back, and 
the net asymmetry integrates to zero.

● Final state interactions break this front-back 
symmetry through nuclear shadowing, making 
the quark more likely to be produced near the 
back of the nucleus.

● This mechanism is quite different from the 
“lensing” mechanism of the Sivers function, in 
which the rescattering is color-correlated and 
generates the preferred direction.

● The essential spin-orbit effect is the presence of OAM, but OAM alone is not enough 
to generate the Sivers function.  When we impose PT symmetry on the Wigner 
distribution, we find that the OAM part integrates to zero:



  

Comparing the Channels

● The transversity channel uses the Sivers function, which enters at order       , but 
does not rely on nuclear shadowing.

● Thus OAM dominates for much of the range, with the 
transversity channel only taking over at very large k

T
.

OAM dominates for

● The OAM channel uses the unpolarized quark TMD, which enters at leading order in  
      .  But it requires at least one rescattering to be nonzero, bringing in a 
suppression by            at large k

T
.

● The OAM channel has a particularly simple interpretation of the SIDIS / DY sign flip: 
shadowing from the front vs. back of the nucleus.

SIDIS DY



  

Summary

● Working in the quasi-classical large-x, 
large-A regime, we have derived a relation 
between the TMD's of a heavy nucleus 
and the TMD's of its nucleons. 

● We analyzed the T-odd Sivers function, 
identifying two contributing channels: an 
orbital angular momentum channel and a 
transversity channel.

● The OAM channel is a new mechanism, distinct 
from the usual “lensing” mechanism.  It uses 
the inherent orbital motion, together with 
nuclear shadowing, to generate the preferred 
direction.

● This machinery is quite general and can be 
used to calculate the any of the nuclear TMD's.  
This is an important step as we move toward 
the intersection of spin and saturation in the 
coming EIC era.
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Outlook and Future Prospects



  

The TMD Landscape in the Dense Limit

● Maybe this can shed some light on the zoo of spin correlations and on the 
distribution of the proton spin.

● Our approach allows a clear separation into the “wave function part” which must be 
P, T even, and the “interaction part” which may contain a T-odd part.

● The one key modeling assumption about the target is the existence of a large 
parameter A1/3 that controls the charge density.  

● The machinery we have developed is a robust method of calculating TMD's in 
the dense limit and can be applied to any of the interesting spin correlations.

● The system under consideration need not be a real nucleus; our approach is 
valid for any composite particle being decomposed into a large number of 
constituents (ie, partons in a high-energy proton).

● We can now proceed to evaluate other TMD's in the quasi-classical limit.  A good 
baseline for comparison would be                   for quarks and gluons.

● Full calculations of quark target TMD's exist in the literature, so we can in 
principle use these to do detailed calculations of the nuclear TMD's.



  

Toward the Regge Limit and Quantum Evolution

● Such a limit may be useful for studying the overlap and transition between the 
TMD formalism, small-x saturation formalism, and twist-3 collinear formalism.

● What do the relevant evolution equations look like from this perspective?  The 
nonlocal, semi-infinite Wilson lines are unusual quantities; will their small-x evolution 
be linear or nonlinear?  Can we see the connections to DGLAP evolution, CSS 
evolution, and BK/JIMWLK evolution?

● Formulating, understanding, and solving the relevant evolution equations will be 
essential for linking these low-order calculations to future EIC phenomenology.

● TMD factorization seems to only require that                and              , so this 
approach should also be valid if we consider the small-x limit                            .
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Extra Slides



  

Toy Model: A Rigid Rotator

● Assumptions: Rigid Rotator

● Result:

● Asymptotics:



  

P, T – Invariance of the Wigner Distribution
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