2 jet production in DIS at f+NL+O($\left.\alpha_{s}\right)$ $\mathrm{N}^{3} \mathrm{~L}$

Daekyoung Kang (MIT)

In collaboration with
Iain Stewart (MIT) and Chris Lee (LANL)

Jet event shape: Thrust

$\tau_{e e}=1-\frac{1}{Q} \max _{\vec{n}} \sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right| \quad$ Farhi

- Up to $O\left(\alpha_{s}^{3}\right)+N^{3} L L$

Becher and Schwartz
Abbate, Fickinger, Hoang, Mateu, Stewart

$$
\alpha_{s}\left(m_{Z}\right)=0.1135 \pm 0.0011
$$

$\tau_{\text {DIS }}=1-\frac{1}{E_{J}} \sum_{i \in \mathcal{H}_{J}}\left|\vec{p}_{i} \cdot \vec{n}\right|$

- one hemisphere
- Up to $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)+\mathrm{NLL}$ Antonelli, Dasgupta, Salam

$$
\begin{aligned}
\alpha_{s}\left(m_{Z}\right)=0.1198 & \pm 0.0013(\text { exp. }) \\
& { }_{-0.0043}^{+0.0056} \text { (th.) }
\end{aligned}
$$

- Higher precision in DIS? NNLL or higher ?

Outline

- 1-jettiness in $\mathbf{3}$ ways in DIS
- NNLL + O $\left(\alpha_{s}\right)$ for one way
- $N^{3} L L$ results for two ways

- Summary

H1 Event from www-h1.desy.de

Event shape: 1-jettiness

- N-jettiness

- Generalization of thrust

$$
\tau_{N}=\frac{2}{Q^{2}} \sum_{i} \min \left\{q_{B} \cdot p_{i}, q_{1} \cdot p_{i}, \ldots, q_{N} \cdot p_{i}\right\}
$$

- 1-jettiness: 1 jet + 1 ISR
- q_{B}, q_{j} are axes to project particle mom. $Q_{i \in X}$
- Considering 3 ways to define q_{J}
- min. groups particles into 2 regions

Why 1-jettiness?

DIS thrust: Non-Global Log beyond NLL
Dasgupta, Salam
Unknown how to resum NGL
1-jettiness: No NGL, NnLL ($n>1$) accessible
derive factorization thm. by using SCET

1-jettiness in 3 ways

Factorization theorems

$$
\sigma \sim H \times B \otimes J \otimes S
$$

$$
B=f \otimes I
$$

Factorization theorems

©

$$
\begin{aligned}
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d x d Q^{2} d \tau_{1}^{a}}=H_{q}(\mu) \int d t_{B} d t_{J} d k_{s} \delta\left(\tau_{1}^{a}-\frac{t_{B}}{Q^{2}}-\frac{t_{J}}{Q^{2}}-\frac{k_{s}}{Q}\right) \\
& \times B_{q}\left(t_{B}, x, \mu\right) J_{q}\left(t_{J}, \mu\right) S\left(k_{s}, \mu\right)+(q \leftrightarrow \bar{q}) \\
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d x d Q^{2} d \tau_{1}^{b}}=H_{q}(\mu) \int d t_{B} d t_{J} d k_{s} \delta\left(\tau_{1}^{a}-\frac{t_{B}}{Q^{2}}-\frac{t_{J}}{Q^{2}}-\frac{k_{s}}{Q}\right) \\
& \times \int d^{2} \vec{p}_{\perp} B_{q} \xrightarrow{\left(t_{B}, x, \vec{p}_{\perp}^{2}, \mu\right) J_{q}\left(t_{J}-\vec{p}_{\perp}^{2}, \mu\right) S\left(k_{s}, \mu\right)+(q \leftrightarrow \bar{q})} \text { Transverse momentum dependent } \\
& \frac{1}{\sigma_{0}} \frac{d \sigma}{d x d Q^{2} d \tau_{1}^{c}}=H_{q}(\mu) \int d t_{s} d t_{J} d k_{s} \delta\left(\tau_{1}^{a}-\frac{t_{B}}{Q^{2}}-\frac{t_{J}}{x Q^{2}}-\frac{k_{s}}{\sqrt{x} Q}\right) \\
& \left.\times \int d^{2} \vec{p}_{\perp} B_{q}\left(t_{B}, x, \vec{p}_{\perp}^{2}, \mu\right) J_{q} t_{J}-\left(\vec{q}_{\perp}+\vec{p}_{\perp}\right)^{2}, \mu\right) S\left(k_{s}, \mu\right)+(q \leftrightarrow \bar{q})
\end{aligned}
$$

NNLL predictions

DK, Lee, Stewart 2013

- One order higher than

DIS thrust resummation (NLL)

- Higher precision?

$d \tilde{\sigma}=\exp \left[L \sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\alpha_{s} \sum_{k=0}^{\infty}\left(\alpha_{s} L\right)^{k}+\cdots\right]+\mathrm{NS}\left(\alpha_{s}\right)$
singular part: LL, NLL, NNLL, N³LL,...
nonsingular part:
$O\left(\alpha_{s}\right), O\left(\alpha_{s}^{2}\right), \ldots$

Nonsingular part at $O\left(\alpha_{s}\right)$

- B amenable to analytic calculation (this talk)
- A requires jet algorithm and is done numerically

Kang, Liu, Mantry 1312.0301

- Jet region has been measured in H1 and ZEUS experiments

$\mathcal{H}_{B} \mathcal{H}_{J}$

- difficult to measure the beam region
- B can be obtained from measuring jet region alone, while requires measuring two regions.

$$
\begin{aligned}
\tau_{1}^{b} & \stackrel{\text { Breit }}{=} \frac{1}{Q} \sum_{i \in X} \min \left\{n_{z} \cdot p_{i}, \bar{n}_{z} \cdot p_{i}\right\} \\
& =\frac{1}{Q}\left[\sum_{i \in \mathcal{H}_{J}^{b}}\left(E_{i}-p_{z i}\right)+\sum_{i \in \mathcal{H}_{B}^{b}}\left(E_{i}+p_{z i}\right)\right] \\
& =\frac{1}{Q}\left[\sum_{i \in X}\left(E_{i}+p_{z i}\right)-2 \sum_{i \in \mathcal{H}_{J}^{b}} p_{z i}\right]
\end{aligned}
$$

Antonelli, Dasgupta, $\tau_{1}^{b} \stackrel{\text { Breit }}{=} 1-\frac{2}{Q} \sum_{i \in \mathcal{H}_{J}^{b}} p_{z i}$.
Salam JHEP 2000

$$
\begin{aligned}
& \tau_{1}^{c} \stackrel{\mathrm{CM}}{=} \frac{1}{x y \sqrt{s}} \sum_{i \in X} \min \left\{n_{z} \cdot p_{i}, \bar{n}_{z} \cdot p_{i}\right\} \\
&=\frac{1}{x y \sqrt{s}}\left[\sum_{i \in X}\left(E_{i}+p_{z i}\right)-2 \sum_{i \in \mathcal{H}_{J}^{c}} p_{z i}\right] \\
& \tau_{1}^{c} \stackrel{\mathrm{CM}}{=} \frac{1}{x}\left(1-\frac{2}{y \sqrt{s}} \sum_{i \in \mathcal{H}_{J}^{c}} p_{z i}\right)
\end{aligned}
$$

Nonsingular part at $O\left(\alpha_{s}\right)$

DK, Lee, Stewart

$$
\frac{d \sigma}{d x d Q^{2} d \tau_{1}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1+(1-y)^{2}\right) F_{1}+\frac{1-y}{x} F_{L}\right]
$$

$$
\mathcal{H}_{B} \mathcal{H}_{J}
$$

$$
\begin{aligned}
B_{q}=Q_{f}^{2} \frac{\alpha_{s} C_{F}}{2 \pi}[& N_{1}(\tau, x)+N_{0}(\tau, x)+\int_{x}^{\frac{1}{1+\tau}} \frac{d z}{z} f_{q}\left(\frac{x}{z}\right) R^{q}(\tau, z) \\
& \left.+(1+\tau) f_{q}(x(1+\tau)) \Delta_{2}^{q}(\tau)+\delta(\tau-1) \int_{x}^{1 / 2} \frac{d z}{z} f_{q}\left(\frac{x}{z}\right) \Delta_{1}^{q}(z)\right]
\end{aligned}
$$

$$
N_{1}(\tau, x)=-4 \frac{\ln \tau}{\tau}\left[(1+\tau / 2) f_{q}(x(1+\tau))-f_{q}(x)\right]
$$

enhanced at small x
singular term

$$
\Delta_{1}^{q}(x)=\frac{(1-2 x)(1-4 x)}{2(1-x)}+\frac{1+x^{2}}{1-x} \ln \left(\frac{1-x}{x}\right)
$$

cancels

Cumulant at NNLL+ $O\left(\alpha_{s}\right)$

- The singular undershoots for small x and overshoots for larger x
- The nonsingular is sensitive to x.
- Small discontinuities at $\tau_{\max }$

(e)

Distribution at NNLL+ O($\left.\alpha_{s}\right)$

DK, Lee, Stewart

Toward $N^{3} L L$

	$\Gamma\left[\alpha_{s}\right]$	$\gamma\left[\alpha_{s}\right]$	$\beta\left[\alpha_{s}\right]$	$\{H, J, B, S\}\left[\alpha_{s}\right]$
LL	α_{s}	1	α_{s}	1
NLL	α_{s}^{2}	α_{s}	α_{s}^{2}	1
NNLL	α_{s}^{3}	α_{s}^{2}	α_{s}^{3}	α_{s}
$\mathrm{~N}^{3} \mathrm{LL}$	α_{s}^{4}	α_{s}^{3}	α_{s}^{4}	α_{s}^{2}

Pade approx.
$\Gamma_{3}^{q}=(1 \pm 2) \frac{\left(\Gamma_{2}^{q}\right)^{2}}{\Gamma_{1}^{q}}$
0.2% in $\mathrm{e}^{+} \mathrm{e}^{-}$thrust

(B) C trans. mom. Bup to 1 loop

A B function up to 2 loops
Gaunt, Stahlhofen, Tackmann 1401.5478 $\mathrm{S}_{\mathrm{ee}}=\mathrm{S}_{\mathrm{ep}}=\mathrm{S}_{\mathrm{pp}}$ up to 2 loops Lee and Zhang

Soft function at 2 loop

- Wilson lines are different.
$\mathbf{e}^{+} \mathbf{e}^{-}:\langle 0| \bar{T}\left[\tilde{Y}_{\bar{n}}^{\dagger} \tilde{Y}_{n}\right] \delta(\cdots) T\left[\tilde{Y}_{n}^{\dagger} \tilde{Y}_{\bar{n}}\right]|0\rangle$
ep: $\langle 0| \bar{T}\left[Y_{\bar{n}}^{\dagger} \tilde{Y}_{n}\right] \delta(\cdots) T\left[\tilde{Y}_{n}^{\dagger} Y_{\bar{n}}\right]|0\rangle$
pp: $\langle 0| \bar{T}\left[Y_{\bar{n}}^{\dagger} Y_{n}\right] \delta(\cdots) T\left[Y_{n}^{\dagger} Y_{\bar{n}}\right]|0\rangle$
- Well known at $O\left(\alpha_{s}\right)$: virtual is scaleless and zero. no loop in the real.
- at $O\left(\alpha_{s}{ }^{2}\right)$:
virtual are scaleless and zero.
2 gluon cut has no loop.
1 gluon cut needs to be checked.
Nontrivial only for triple gluon vertex Same for $\mathrm{e}^{+} \mathrm{e}^{-}, \mathrm{ep}, \mathrm{pp}$!

$N^{3} L L$ results

DK, Lee, Stewart

Sensitivity to α_{s} variation

DK, Lee, Stewart

- H1 analysis (2006)
$\alpha_{s}\left(m_{Z}\right)=0.1198 \pm 0.0013$ (exp.) ${ }_{-0.0043}^{+0.0056}($ th. $)$
- Better $\delta \sigma$ at $\mathrm{N}^{3} \mathrm{LL}=>\delta \alpha_{s}=2 \%$ at $x=0.2 \sim 0.5$
- $\delta \alpha_{s}=2 \%$ by MSTW PDF uncertainty

4\% theory
uncertainty

Approximate $N^{3} L L+O\left(\alpha_{s}\right)$

DK, Lee, Stewart

$\sigma_{b}=\sigma_{a}+\Delta \sigma_{b}$

Difference from beam functions:
a few terms in fixed order part
The same RG evolution

- difference (< perturbative uncertainty) can be ignored.
assuming $\Delta \sigma_{b}($ NNLO $) \approx \alpha_{s} \Delta \sigma_{b}(N L O) \approx 1 \%<\delta \sigma$ at $N^{3} L L \approx 2^{\sim} 5 \%$

$$
\sigma_{b}\left(N^{3} L L\right) \approx \sigma_{a}\left(N^{3} L L\right)+\Delta \sigma_{b}(N L O)
$$

- For Be also have $O\left(\alpha_{s}\right)$ nonsingular part.

Summary

- Factorization thms for 1-jettiness

$$
\sigma \sim H \times B \otimes J \otimes S
$$

$$
B=f \otimes I
$$

- N^{3} LL predictions for
- Approx. $\mathrm{N}^{3} \mathrm{LL}+\mathrm{O}\left(\alpha_{s}\right)$ predictions for B
- Accuracy $\delta \alpha_{s}=2 \%$ at $x=0.2 \sim 0.5$
better than $\delta \alpha_{s}=4 \%$ theory uncertainty in H 1 analysis comparable to MSTW PDF uncertainty

Backup

NNLL+ $O\left(\alpha_{s}\right)$

$$
\tau_{1}=\sum_{k} \min \left\{\frac{2 q_{A} \cdot p_{k}}{Q_{a}}, \frac{2 q_{J} \cdot p_{k}}{Q_{J}}\right\} \quad \begin{aligned}
& Q_{a}=x_{A} A Q_{e} \\
& Q_{J}=2 K_{J_{T}} \cosh y_{K}
\end{aligned}
$$

Beam, Jet, Soft functions

from Chris Lee's talk

in SCET 2013

Nonpertubative Effect

- Estimating nonperturbative part of soft function
- For $\tau \gg \Lambda_{Q C D} / Q$

OPE gives power correction with $\mathcal{O}\left(\Lambda_{Q C D} / \tau Q\right)$ suppression

$$
\sigma(\tau)=\sigma_{\mathrm{pert}}(\tau)-\frac{2 \Omega}{Q} \frac{d \sigma_{\mathrm{pert}}(\tau)}{d \tau} \approx \sigma_{\mathrm{pert}}(\tau-2 \Omega / Q)
$$

- $\Omega \sim \Lambda_{Q C D}$: nonpertubative matrix element
- For $\tau \geq \Lambda_{Q C D} / Q$
significant nonpertubative effect convolving shape function consistent with power correction

$$
\begin{aligned}
& \sigma(\tau)=\int d k \sigma_{\text {pert }}(\tau-k / Q) F(k) \\
\rightarrow & \sigma_{\mathrm{pert}}(\tau)-\left(\int d k \frac{k}{Q} F(k)\right) \frac{d \sigma_{\mathrm{pert}}(\tau)}{d \tau}
\end{aligned}
$$

$$
F(k)=\frac{1}{\lambda}\left[\sum_{n=0}^{N} c_{n} f_{n}\left(\frac{k}{\lambda}\right)\right]^{2}
$$

Choice of scales

- For $\Lambda_{Q C D} \ll \tau \ll 1$

$$
\begin{aligned}
& \mu_{H}=Q \quad \mu_{B, J}=\sqrt{\tau} Q \\
& \mu_{S}=\tau Q
\end{aligned}
$$

- For $\tau \sim \Lambda_{Q C D} / Q$
significant nonperturbative effect soft scale freezing at $\mu_{S} \sim \Lambda_{Q C D}$

$$
\mu_{B, J} \sim \sqrt{\Lambda_{Q C D} Q}
$$

- For $\tau \sim 1$ no hierarchy in scales no large logs

$$
\mu_{H} \sim \mu_{B, J} \sim \mu_{S} \sim Q
$$

Resummation and RGE

- Fourier transformation
$y:$ conjugate variable of τ_{1}

$$
\frac{d \tilde{\sigma}}{d y}=\int d \tau_{1} e^{-i y \tau_{1}} \frac{d \sigma}{d \tau_{1}}=H(\mu) \widetilde{B}_{q}(y, x, \mu) \widetilde{J}_{q}(y, \mu) \widetilde{S}(y, \mu)
$$

$\ln \frac{d \tilde{\sigma}}{d y}=L \sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\sum_{k=1}^{\infty}\left(\alpha_{s} L\right)^{k}+\alpha_{s} \sum_{k=0}^{\infty}\left(\alpha_{s} L\right)^{k}+\cdots$

$$
L=\log (i y)
$$

- Resumming large logs
- No large logs in each function at its natural scale μ_{i}
- RG evolution from μ_{i} to common scale μ

soft function at 2 loop

- At two loops, there are 0,1 , or 2 real gluons in the cut soft function diagrams
- All purely virtual diagrams are scaleless and zero in dim. reg.
- All diagrams with two real gluons independent of $\pm i \epsilon$ prescriptions.
- Only need to consider diagrams with one real gluon:
- Three topologies: Independent emission, Three-gluon vertex, Bubble
- Independent emission: 1 cut gluon diagrams contain a scaleless virtual loop
- Bubble Diagrams just contribute to charge renormalization, 1 gluon cut independent of eikonal $\pm i \epsilon$ prescriptions.

$$
\begin{gathered}
\sim g^{2} n \cdot \bar{n} \int \frac{d^{D} p}{(2 \pi)^{D}} 2 \pi \delta\left(p^{2}\right) \theta\left(p^{0}\right) \widehat{\mathcal{M}}(p) \frac{-i}{p^{2}+i \Sigma\left(p^{2}\right)} \frac{1}{n \cdot p \pm i \epsilon} \frac{1}{\bar{n} \cdot p \pm i \epsilon} \\
\text { Measurement on cut gluon }
\end{gathered}
$$

soft function at 2 loop

- Three-gluon vertex

- Only nontrivial diagrams to check:

1105.3676

$\pm i \epsilon$ in these eikonal propagators change from ep to ee
can choose to perform q loop integral by doing $n \cdot q$ integral by contours first, leaves real integrals, making $\pm i \epsilon$ sign changes irrelevant.27

missing particles in forward region

$$
\eta=-\ln (\tan \theta / 2)
$$

- Proton remnants and particles moving very forward region out of detector coverage: $0<\theta<\theta_{\text {cut }}, \eta>\eta_{\text {cut }}$
- H1: $\theta_{\text {cut }}=4^{\circ}\left(0.7^{\circ}\right)$ and $\eta_{\text {cut }}=3.4(5.1)$ for main cal. (PLUG cal.)
- ZEUS: $\theta_{\text {cut }}=2.2^{\circ}$ and $\eta_{\text {cut }}=4.0$ for FCAL
- Boost to CM frame: $\eta^{\mathrm{CM}}=\eta-\Delta \eta \quad \Delta \eta=\ln \frac{E_{p}^{\mathrm{lab}}}{E_{p}^{\text {CM }}}=\ln \frac{920}{157}=1.8$
- $\mathrm{H} 1: \eta_{\mathrm{cut}}^{\mathrm{CM}}=1.6(3.3), e^{-\eta_{\mathrm{cut}}^{\mathrm{CM}}}=0.2(0.04)$
- ZEUS: $\eta_{\mathrm{cut}}^{\mathrm{CM}}=2.2, \quad e^{-\eta_{\mathrm{cut}}^{\mathrm{CM}}}=0.1$
- Maximum missing measurement: $\tau_{\text {miss }}=\frac{2 q_{B} \cdot p_{\text {miss }}}{Q^{2}}=\frac{m_{T}}{Q_{B}} e^{-\eta}$
- $m_{T}^{\max }=E_{p}^{\mathrm{lab}} \sin \theta_{\text {cut }}$

$$
Q_{B}=\sqrt{y / x} Q, x Q
$$

about $64(11) \mathrm{GeV}$ for H 1 and 32 GeV for ZEUS

