Quark and Glue Components of Proton Spin

- Status of nucleon spin components
- Momentum and angular momentum sum rules
- Lattice results
- Quark spin from anomalous Ward identity
- Glue helicity ΔG

X QCD Collaboration:M. Deka, T. Doi, B. Chakraborty, Y. Chen,
S.J.Dong, T. Draper, W. Freeman,
M. Glatzmaier, M. Gong, H.W. Lin, K.F. Liu,
D. Mankame N. Mathur, T. Streuer, Y. Yang

QCD Evolution Workshop Santa Fe, May 13, 2014 Where does the spin of the proton come from?

Twenty years since the "spin crisis"

□ EMC experiment in 1988/1989 – "the plot":

$$g_1(x) = \frac{1}{2} \sum_{q} e_q^2 \left[\Delta q(x) + \Delta \bar{q}(x) \right] + \mathcal{O}(\alpha_s) + \mathcal{O}(1/Q)$$
$$\Delta q = \int_0^1 dx \Delta q(x) = \langle P, s_{\parallel} | \overline{\psi}_q(0) \gamma^+ \gamma_5 \psi_q(0) | P, s_{\parallel} \rangle$$

□ "Spin crisis" or puzzle:

$$\Delta \Sigma = \sum_{q} \Delta q + \Delta \overline{q} = 0.2 - 0.3$$

Summary Gluon Polarization

0.2 Presently all Analysis in LO only $Dg(x)dx = 0.1 \pm 0.06_{0.07}$ 0.06 COMPASS, open charm, prel., 02-07 arXiv:1304.0079 COMPASS, high p_, Q²<1 (GeV/c)², prel., 02-04 COMPASS, high p , Q2>1 (GeV/c)2, prel., 02-04 0.6 ∆ g/g HERMES, single high p_ hadrons, all Q², arXiv:1002.3921 SMC, high p, Q2>1 (GeV/c)2 fit with ∆G>0, µ2=3(GeV/c)2 0.4 fit with ∆G<0, µ2=3(GeV/c)2 Final Preliminary 0.2 -0.2 -0.4 New -0.6 10⁻² 10-1 х **COMPASS Open Charm:**

△G/G=-0.08+- 0.21(stat) +- 0.11(sys.) (Value supersedes previous publication)

C.Franco

∠ļ

See Talk 1193 by F. Kunne

(Systematic error still under investigations)

Horst Fischer DIS2010

Quark Orbital Angular Momentum from connected insertion (~ valence)

Status of Proton Spin

- Quark spin ΔΣ ~ 20 30% of proton spin (DIS, Lattice)
- Quark orbital angular momentum? (lattice calculation (LHPC,QCDSF) $\rightarrow \sim 0$)
- Glue spin ΔG/G small (COMPASS, STAR) ?
- Glue orbital angular momentum is zero (Brodsky and Gardner) ?

Status of Proton Spin

- Quark spin ΔΣ ~ 20 30% of proton spin (DIS, Lattice)
- Quark orbital angular momentum? (lattice calculation (LHPC,QCDSF)→ ~ 0)
- Glue spin ΔG/G small (COMPASS, STAR) ?
- Glue orbital angular momentum is zero (Brodsky and Gardner) ?

Hadron Structure with Quarks and Glue

• Quark and Glue Momentum and Angular Momentum in the Nucleon $(\overline{u}\gamma_{\mu}D_{\nu}u + \overline{d}\gamma_{\mu}D_{\nu}d)(t)$

Momenta and Angular Momenta of Quarks and Glue

Energy momentum tensor operators decomposed in quark and glue parts gauge invariantly --- Xiangdong Ji (1997)

$$T_{\mu\nu}^{q} = \frac{i}{4} \left[\bar{\psi} \gamma_{\mu} \vec{D}_{\nu} \psi + (\mu \leftrightarrow \nu) \right] \rightarrow \vec{J}_{q} = \int d^{3}x \left[\frac{1}{2} \bar{\psi} \vec{\gamma} \gamma_{5} \psi + \vec{x} \times \bar{\psi} \gamma_{4} (-i\vec{D}) \psi \right]$$

$$T^{g}_{\mu\nu} = F_{\mu\lambda}F_{\lambda\nu} - \frac{1}{4}\delta_{\mu\nu}F^{2} \longrightarrow \vec{J}_{g} = \int d^{3}x \left[\vec{x} \times (\vec{E} \times \vec{B})\right]$$

Nucleon form factors

$$\left\langle p, s \mid T_{\mu\nu} \mid p's' \right\rangle = \overline{u}(p,s) [T_1(q^2)\gamma_\mu \overline{p}_\nu - T_2(q^2)\overline{p}_\mu \sigma_{\nu\alpha} q_\alpha / 2m$$

-iT_3(q^2)(q_\mu q_\nu - \delta_{\mu\nu} q^2) / m + T_4(q^2) \delta_{\mu\nu} m / 2] u(p's')

Momentum and Angular Momentum

$$Z_{q,g}T_1(0)_{q,g} \quad \left[\text{OPE}\right] \to \left\langle x \right\rangle_{q/g} \left(\mu, \overline{\text{MS}}\right), \quad Z_{q,g} \left[\frac{T_1(0) + T_2(0)}{2}\right]_{q,g} \to J_{q/g}(\mu, \overline{\text{MS}})$$

Renormalization and Quark-Glue Mixing

Momentum and Angular Momentum Sum Rules

$$\begin{split} \langle x \rangle_{q}^{R} &= Z_{q} \langle x \rangle_{q}^{L}, \quad \langle x \rangle_{g}^{R} = Z_{g} \langle x \rangle_{g}^{L}, \\ J_{q}^{R} &= Z_{q} J_{q}^{L}, \quad J_{g}^{R} = Z_{g} J_{g}^{L}, \\ Z_{q} \langle x \rangle_{q}^{L} + Z_{g} \langle x \rangle_{g}^{L} = 1, \quad Z_{q} T_{1}^{q}(0) + Z_{g} T_{1}^{g}(0) = 1, \\ Z_{q} J_{q}^{L} + Z_{g} J_{g}^{L} &= \frac{1}{2} \quad \Rightarrow \begin{cases} Z_{q} T_{1}^{q}(0) + Z_{g} T_{1}^{g}(0) = 1, \\ Z_{q} (T_{1}^{q} + T_{2}^{q})(0) + Z_{g} (T_{1}^{g} + T_{2}^{g})(0) = 1, \\ Z_{q} T_{2}^{q}(0) + Z_{g} T_{2}^{g}(0) = 0 \end{cases}$$

Mixing

$$\begin{bmatrix} \langle x \rangle_q^{\overline{MS}}(\mu) \\ \langle x \rangle_g^{\overline{MS}}(\mu) \end{bmatrix} = \begin{bmatrix} C_{qq}(\mu) & C_{qg}(\mu) \\ C_{gq}(\mu) & C_{gg}(\mu) \end{bmatrix} \begin{bmatrix} \langle x \rangle_q^R \\ \langle x \rangle_g^R \end{bmatrix}$$

M. Glatzmaier, KFL arXiv:1403.7211

Lattice Parameters

- Quenched 16³ x 24 lattice with Wilson fermion
- Quark spin and <x> were calculated before for both the C.I. and D.I.
- κ = 0.154, 0.155, 0.1555 (m_n = 650, 538, 478 MeV)
- 500 gauge configurations
- 400 noises (Optimal Z₄ noise with unbiased subtraction) for DI
- 16 nucleon sources

Disconnected Insertions of $T_1(q^2)$ and $T_2(q^2)$ for u/d Quarks

Gauge Operators from the Overlap Dirac Operator

Overlap operator

 $D_{\rm out} = 1 + \gamma_5 \varepsilon(H); \quad H = \gamma_5 D_W(m_0)$ Index theorem on the lattice (Hasenfratz, Laliena, Niedermayer, Lüscher) index $D_{ov} = -Tr\gamma_5(1-\frac{a}{2}D_{ov})$ Local version (Kikukawa & Yamada, Adams, Fujikawa, Suzuki) $q_L(x) = -tr\gamma_5(1 - \frac{a}{2}D_{ov}(x, x)) \xrightarrow[a \to 0]{} a^4q(x) + O(a^6)$

Gauge field tensor

$$\mathbf{tr}_{s}\sigma_{\mu\nu}aD_{o\nu}(x,x)=c^{T}a^{2}F_{\mu\nu}(x)+O(a^{3}),$$

Liu, Alexandru, Horvath – PLB 659, 773 (2007)

Glue $T_1(q^2)$ and $T_2(q^2)$

S.J. Dong, J.-F. Lagae, and KFL, PRL 75, 2096 (1995)

$g_A^0 = (\Delta u + \Delta d)_{con} + (\Delta u + \Delta d + \Delta s)_{dis} = 0.62(9) + 3(-0.12(1)) = 0.25(12)$

	Lattice	Expt. (SMC)	NRQM	RQM
$g_A^0 = \Delta u + \Delta d + \Delta s$	0.25(12)	0.22(10)	1	0.75
$g_A^3 = \Delta u - \Delta d$	1.20(10)	1.2573(28)	5/3	1.25
$g_A^8 = \Delta u + \Delta d - 2\Delta s$	0.61(13)	0.579(25)	1	0.75
Δu	0.79(11)	0.80(6)	1.33	1
Δd	42(11)	-0.46(6)	-0.33	-0.25
Δs	12(1)	-0.12(4)	0	0
F_A	0.45(6)	0.459(8)	0.67	0.5
D_A	0.75(11)	0.798(8)	1	0.75
F_A / D_A	0.60(2)	0.575(16)	0.67	0.67

 $F_A = (\Delta u - \Delta s)/2; \quad D_A = (\Delta u - 2\Delta d + \Delta s)/2$

Renormalized results: $Z_q = 1.05, Z_g = 1.05$

	CI(u)	CI(d)	CI(u+d)	DI(u/d)	DI(s)	Glue
<x></x>	0.416	0.151	0.567	0.037	0.023	0.334
	(40)	(20)	(45)	(7)	(6)	(56)
T ₂ (0)	0.283	217	0.061	-0.002	001	-0.056
	(112)	(80)	(22)	(2)	(3)	(52)
	0.704	070	0.629	0.035	0.022	0.278
2J	(118)	(82)	(51)	(7)	(7)	(76)
	0.91	-0.30	0.62	-0.12	-0.12	
g _A	(11)	(12)	(9)	(1)	(1)	
	-0.21	0.23	0.01	0.16	0.14	
2 L	(16)	(15)	(10)	(1)	(1)	

Quark Spin, Orbital Angular Momentum, and Gule Angular Momentum

 $\Delta q \approx 0.25;$ $2 L_q \approx 0.47 \ (0.01 (valence) + 0.46 (sea));$ $2 J_g \approx 0.28$ M. Deka et al., 1312.4816 Summary of Quenched Lattice Calculations

- Complete calculation of momentum fractions of quarks (both valence and sea) and glue have been carried out for a quenched lattice:
 - Glue momentum fraction is ~ 33%.
 - $-g_A^0 \sim 0.25$ in agreement with expt.
 - Glue angular momentum is ~ 28%.
 - Quark orbital angular momentum is large for the sea quarks (~ 47%).
- These are quenched results so far.

Uncertainty of Quark Spin Calculation

- Recent calculation of strange quark spin with dynamical fermions
 - R. Babich et al. (1012.0562) $\Delta s = -0.019(11)$
 - QCDSF (G. Bali et al. 1206.4205) gives $\Delta s = -0.020(10)(4)$

much smaller than that of of quenched result.

C. Alexandrou et al. (arXiv:1310.6339)
 Δs ~ -0.0227(34)

2+1 flavor DWF configurations (RBC-UKQCD)

La ~ 4.5 fm m_π ~ 170 MeV

(O(a²) extrapolation)

La ~ 2.8 fm m_π ~ 330 MeV

24^3 x 64, a =0.115 fm

La ~ 2.7 fm m_{π} ~ 295 MeV

32^3 x 64, a =0.085 fm

La ~ 5.5 fm m_π ~ 140 MeV

48^3 x 96, a =0.115 fm

La ~ 5.5 fm m_π ~ 140 MeV

64^3 x 128, a =0.085 fm

Quark Spin from Anomalous Ward Identify

- Calculation of the axial-vector in the DI is very noisy
- Instead, try AWI $Z_A \partial_\mu A^0_\mu = 2mP + \frac{N_f}{8\pi^2} G_{\mu\nu} \tilde{G}_{\mu\nu}$
 - Overlap fermion --> mP is RGI.
 - Overlap operator for $q(x) = -1/2 \operatorname{Tr} \gamma_5 D_{ov}(x, x)$ is RGI.
 - P is totally dominated by small eigenmodes.
 - q(x) from overlap is exponentially local and is dominated by high eigenmodes.
 - Directly check the origin of `proton spin crisis'.

Overlap on 2+1 flavor domain-wall fermion on $24^3 \times 64$ lattice

Valence at strange quark mass (~ 100 MeV)

Anomaly contribution < -0.1 for physical u/d mass

2mP contribution is small for u/d and charm is large enough cancel with that of anomaly. Eventual understanding of `proton spin crisis' ?

Glue Helicity ΔG

Jaffe and Manohar

 $S_g = \int d^3x \, \vec{E} \times \vec{A} \text{ in } A^+ = 0$ gauge and IMF frame.

Collins, Soper; Manohar

 $\Delta G S^{+} = \int dx \, \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} \, e^{-ixP^{+}\xi^{-}} \langle PS \, | \, F_{a}^{+\alpha}(\xi^{-})L^{ab}(\xi^{-},0)\tilde{F}_{\alpha,b}^{+}(0) \, | \, PS \rangle$

 X.S. Chen, T. Goldman, F. Wang; Wakamatsu; Hatta, etc.

$$S_{g} = \int d^{3}x \ \vec{E} \times \vec{A}_{phys},$$

$$A^{\mu} = A^{\mu}_{phys} + A^{\mu}_{pure}, \quad F^{\mu\nu}_{pure} = 0;$$

$$A^{\mu}_{phys} \rightarrow U^{\dagger}A^{\mu}_{phys}U, \quad A^{\mu}_{pure} \rightarrow U^{\dagger}A^{\mu}_{pure}U - \frac{i}{g}U^{\dagger}\partial^{\mu}U$$
or $A^{\mu} \rightarrow A^{\mu}$

Glue Helicity ΔG

• X. Ji, J.H. Zhang, Y. Zhao; Y. Hatta, X. Ji, Y. Zhao

$$\Delta G \ S^{+} = \int dx \ \frac{i}{2xP^{+}} \int \frac{d\xi^{-}}{2\pi} \ e^{-ixP^{+}\xi^{-}} \langle PS | F_{a}^{+\alpha}(\xi^{-})L^{ab}(\xi^{-},0)\tilde{F}_{\alpha,b}^{+}(0) | PS \rangle$$
$$= \frac{1}{2P^{+}} \langle PS | \varepsilon^{ij}F^{i+}A_{phys}^{j} | PS \rangle;$$
where $A_{phys}^{\mu} \equiv \frac{1}{D^{+}}F^{+\mu}$

However, at IMF

$$A^{\mu}_{phys} \equiv \frac{1}{D^{+}} F^{+\mu} = A^{\mu} - \frac{1}{D^{+}} \partial^{\mu} A^{+} \to A^{\mu} - A^{\mu}_{\parallel} = A^{\mu}_{\perp} \text{ (i.e. } A^{\mu}_{C})$$

• Therefore,

$$\Delta G \mathbf{S}_{z} = \frac{\langle PS | \int d^{3}x \ (\vec{E} \times \vec{A}_{\perp})_{z} | PS \rangle}{2E_{P}}$$

Challenges and Summary

- Continuum limit at physical pion mass and with large lattice volume (5.5 fm) with chiral fermions are being carried out.
- 48³ x 96 and 64³ x 128 lattices with large number of eigenvectors (~ 2000)
- Decomposition of proton spin into quark spin, quark orbital angular momentum, glue helicity, and glue orbital angular momentum on the lattice is feasible.

Renormalized results: $Z_q = 1.05, Z_g = 1.05$

	CI(u)	CI(d)	CI(u+d)	DI(u/d)	DI(s)	Glue
	0.416	0.151	0.567	0.037	0.023	0.334
<x></x>	(40)	(20)	(45)	(7)	(6)	(56)
$T_{2}(0)$	0.283	217	0.061	-0.002	001	056
	(112)	(80)	(22)	(2)	(3)	(52)
	0.704	070	0.629	0.035	0.022	0.278
2J	(118)	(82)	(51)	(7)	(7)	(76)

$\left|T_{2}(0)_{CI}^{R}+T_{2}(0)_{DI}^{R}+T_{2}(0)_{g}^{R}\right|=0$

I.Yu. Kobzarev, L.B. Okun, Zh. Eksp. Teor. Fiz. 43, 1904 (1962) [Sov. Phys. JETP 16, 1343 (1963); S. Brodsky et al. NPB 593, $311(2001) \rightarrow$ no anomalous gravitomagnetic moment 27

Momentum fractions <x>^q, <x>^g

Angular Momentum fractions J^q, J^g

