Nucleon g₂ Structure Function Measurement at Large x and Color Forces

Zein-Eddine Meziani

Outline:

Temple University

- Introduction
- Quark-gluon correlations and color forces
- JLab d2n and SANE experiments
- Experimental results
- Summary

On behalf of the d2n and the SANE collaborations

Courtesy of CERN Courier

Inclusive Deep Inelastic Scattering: 1-D View

Polarized structure functions
 g₁(x,Q²) (parton model interpretation)
 g₂(x,Q²) (quark-gluon correlations)

- Q^2 :Four-momentum transfer x : Bjorken variable ν : Energy transfer M : Nucleon mass
- W: Final state hadrons mass

$$\mathbf{L} \quad \frac{d^2\sigma}{dE'd\Omega} (\downarrow \Uparrow - \uparrow \Uparrow) = \frac{4\alpha^2}{MQ^2} \frac{E'}{\nu E} \left[(E + E'\cos\theta)g_1(x, Q^2) - \frac{Q^2}{\nu}g_2(x, Q^2) \right]$$

$$\mathbf{T} \quad \frac{d^2\sigma}{dE'd\Omega} (\downarrow \Rightarrow - \uparrow \Rightarrow) = \frac{4\alpha^2\sin\theta}{MQ^2} \frac{E'^2}{\nu^2 E} \left[\nu g_1(x, Q^2) + 2Eg_2(x, Q^2) \right]$$

$$\mathbf{May 14, 2014} \qquad \mathbf{QCD Evolution Workshop, Santa Fe, New Mexico}$$

Moments of spin structure functions

Moments of Structure Functions: Probing Color Forces

 $\tau = 2$

 $\tau > 2$

single quark scattering $\Gamma_1(Q^2) \equiv \int_0^1 dx \, g_1(x, Q^2)$ $= \Gamma_1^{\text{twist}-2}(Q^2) + \frac{M_N^2}{9 \, Q^2} \left[a_2(Q^2) + 4 \, d_2(Q^2) + 4 \, f_2(Q^2)\right] + \mathcal{O}\left(\frac{M_N^4}{Q^4}\right)$

 $\tau \equiv \text{twist} \equiv \text{operator dimension} - \text{spin}$

Moment of spin structure function g_1

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) \, dx = \mu_2 + \frac{\mu_4}{Q^2} + \frac{\mu_6}{Q^4} + \cdots$$

leading twist higher twist

 $\mu_2^{p,n}(Q^2) = (\pm \frac{1}{12}g_A + \frac{1}{36}a_8) + \frac{1}{9}\Delta\Sigma + pQCD$ corrections

 $g_A = 1.257$ and $a_8 = 0.579$ are the triplet and octet axial charge, respectively $\Delta \Sigma$ = singlet axial charge

QCD Evolution Workshop, Santa Fe, New Mexico

Moments of Structure Functions (continued)

$$\implies a_2(Q^2) \equiv 2 \int_0^1 dx \, x^2 \, g_1^{\text{twist}-2}(x,Q^2) \rightarrow \text{target mass correction term}$$

 \rightarrow $d_2(Q^2)$ \rightarrow dynamical twist-3 matrix element

$$d_2(Q^2) = \int_0^1 dx \ x^2 \left[2g_1(x, Q^2) + 3g_2(x, Q^2) \right] \quad d_2(Q^2) = \int_0^1 dx x^2 \bar{g}_2(x, Q^2)$$

$$\frac{1}{2} \langle N | \bar{\psi} \gamma^{\{\alpha} g \widetilde{G}^{\beta\}\gamma} \psi | N \rangle = d_2 \left(p^{\{\alpha} p^{\beta\}} S^{\gamma} - p^{\gamma} p^{\{\beta\}} S^{\gamma\}} \right)$$

 \implies $f_2(Q^2)$ \implies dynamical twist-4 matrix element

$$f_2(Q^2) = \frac{1}{2} \int_0^1 dx \ x^2 \left[7g_1(x, Q^2) + 12g_2(x, Q^2) - 9g_3(x, Q^2) \right]$$

 $rac{1}{2}\langle N|ar{\psi}\gamma_{lpha}g ilde{G}^{etalpha}\psi|N
angle=f_{2}S^{eta}$ May 14, 2024 QCD Evolution Workshop, Santa Fe, New Mexico

g_2 and quark-gluon correlations

 $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$

• a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int^1 g_1(x,Q^2) \frac{dy}{u}$$

• a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 1992):

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left[\frac{m_{q}}{M}h_{T}(y,Q^{2}) + \xi(y,Q^{2})\right] \frac{dy}{y}$$
Transversity
$$q-g \text{ correlations}$$

$$d_2 = 3 \int_0^1 dx x^2 \bar{g}_2(x) = \int_0^1 dx x^2 \left[3g_2(x) + 2g_1(x) \right]$$

May 14, 2014

"Color Polarizabilities"

X.Ji 95, E. Stein et al. 95

How does the gluon field respond when a nucleon is polarized ?

Define color magnetic and electric polarizabilities (in nucleon rest frame):

 $\chi_{B,E} 2M^{2}\vec{S} = \langle PS | \vec{O}_{B,E} | PS \rangle$ where $\vec{O}_{B} = \psi^{\dagger} g \vec{B} \psi$ $\vec{O}_{E} = \psi^{\dagger} \vec{\alpha} \times g \vec{E} \psi$ $d_{2} = (\chi_{E} + 2\chi_{B})/4$ $f_{2} = \chi_{E} - \chi_{B}$

 d_2 and f_2 represent the response of the color $\vec{\mathsf{B}}$ & $\vec{\mathsf{E}}$ fields to the nucleon polarization

Lorentz Color Force (M. Burkardt)

Consider a charge e moving near speed of light ($\vec{v} = (0, 0, -1)$) along the $-\hat{z}$ direction. The electromagnetic Lorentz force is written as:

$$F^{y} = e\left[\vec{E} \times \vec{v}\vec{B}\right]^{y} = e(E^{y} - B^{x}) = -e\sqrt{(2)}F^{+y}$$

Color Lorentz force reads:

$$F^{y} = -\frac{\sqrt{2}}{2P^{+}} \langle P, S | \bar{q}G^{+y}\gamma^{+}q | P, S \rangle$$
$$= -\frac{1}{2P^{+}} \langle P, S | \bar{q}(B^{x} - E^{y})\gamma^{+}q | P, S \rangle$$
$$= -M^{2}d_{2}$$

M. Burkardt, Phys. Rev. D 88, 114502 (2013) and Nucl. Phys. A 735, 185 (2004).

May 14, 2014

Average Color Lorentz Force (M. Burkardt)

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \langle P, S | \bar{q}(0)gG^{+y}(0)\gamma^+q(0) | P, S \rangle$$

 \hookrightarrow d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon

 $\langle F^y(0) \rangle = -M^2 d_2$ (rest frame; $S^x = 1$)

$$F_{E}^{y}(0) = -\frac{M^{2}}{4}\chi_{E} = -\frac{M^{2}}{4}\left[\frac{2}{3}\left(2d_{2}+f_{2}\right)\right]$$
$$F_{B}^{y}(0) = -\frac{M^{2}}{2}\chi_{B} = -\frac{M^{2}}{2}\left[\frac{1}{3}\left(4d_{2}-f_{2}\right)\right]$$

Earlier nucleon world results of g_2

Recent work on g₂: V. Braun et al. Phys. Rev. D83 (2011) 094023 May 14, 2014 QCD Evolution Workshop, Santa Fe, New Mexico

Models and Lattice evaluations of d_2

Quark Bag Models

M.Stratmann, Z.Phys.C60,763(1993). X.Song,Phys.Rev.D54,1955(1996). X.Ji and P.Unrau, Phys.Lett.B333,228(1994).

Chiral Soliton Model

H.Weigel and L.Gamberg, Nucl. Phys. A680, 48 (2000). M.Wakamatsu, Phys. Lett. B487,118(2000).

Lattice QCD

M.Gockeler et al., Phys.Rev.D72:054507, (2005)

Two Jefferson lab experiments dedicated to measure the g_2 structure function

Hall A d₂ⁿ and Hall C SANE experiments Neutron and Proton

Spokespeople:

B. Sawatzky, S. Choi, X. Jiang and Z.-E.M

Students: D. Flay, D. Parno, M. Posik

and the Hall A collaboration

Spokespeople: O. Rondon, S. Choi, M. Jones and Z.-E. M

Students: W. Armstrong, H. Kang, A. Liyanage, J. Maxwell, J. Mulholland

and the Hall C collaboration

Posik, Flay, Parno et al. Arxiv: 1404.4003v2 Submitted to PRL Analysis close to completion

May 14, 2014

Jefferson Lab Polarized DIS experiments at 6 GeV

The JLab E06-014 (d₂ⁿ) Experiment

Spin Asymmetries of the Nucleon Experiment (SANE)

³He g_2 structure function

M. Posik, D. Flay, D. Parno et al. Arxiv: 1404.4003v2 Submitted to PRL

V. Braun et al. Nucl. Phys. B603 (2001) 69-124

³He g_2 structure function

QCD Evolution Workshop, Santa Fe, New Mexico

d_2^n results compared to calculations

JLab 12 projection of d₂ⁿ Planned in Hall C

QCD Evolution Workshop, Santa Fe, New Mexico

Extraction of the twist-4 matrix element

$$\mu_4^n = \frac{1}{9}M^2 \left(a_2^n + 4d_2^n + 4f_2^n \right)$$

May 14, 2014

Color forces in the neutron

Group	$Q^2 \; ({\rm GeV}^2/c^2)$	$f_2^n \times 10^{-3}$	$F_E \ ({\rm MeV/fm})$	$F_B \ ({\rm MeV/fm})$
E06-014	3.21	$76.23 \pm 0.79 \pm 40.1$	$-51.85 \pm 1.32 \pm 29.90$	$66.64 \pm 2.43 \pm 30.00$
E06-014	4.32	$73.29 \pm 0.83 \pm 40.1$	$-54.18 \pm 1.37 \pm 29.90$	$55.39 \pm 2.53 \pm 30.00$
Instanton	0.40	38.0	-30.41	30.41
QCD sum rule	1	-13.0 ± 6.0	54.25 ± 15.52	79.52 ± 30.06
QCD sum rule	1	10.0 ± 10.0	29.73 ± 16.62	81.75 ± 30.64

- The electric and magnetic average color forces in the neutron are about equal and opposite
- A new measurement of the proton is needed to perform a flavor tagging of the force.
- A lattice calculation of f_2 is still missing?!

Flavor separated color forces

Table: Flavor separated color forces.

d_2^p Input	d_2^n Input	F^u (MeV/fm)	F^d (MeV/fm)
E155	E155	-26.22±44.54 _{stat}	-151.96±103.13 _{stat}
LQCD	LQCD	-45.48±54.10 _{stat}	21.40±34.78 _{stat}
E155	E0-6014(3)	$-91.01 \pm 36.63_{stat} \pm 4.39_{sys}$	$107.23 \pm 19.20_{stat} \pm 17.55_{sys}$
E155	E0-6014(4)	$-70.36{\pm}36.65_{\textit{stat}}\ {\pm}3.69_{\textit{sys}}$	$24.61 \pm 19.96_{stat} \pm 14.77_{sys}$
LQCD	E0-6014(3)	$-65.33 \pm 53.67_{stat} \pm 4.39_{sys}$	$100.81\pm21.56_{stat}\pm17.55_{sys}$
LQCD	E0-6014(4)	$-44.68 \pm 53.69_{stat} \pm 3.69_{sys}$	$18.19 \pm 22.24_{stat} \pm 14.77_{sys}$

Waiting for the new proton results ...

Summary

- The neutron d_2 is measured with precision and found to be consistent with Lattice QCD calculations.
- The proton d_2 is also measured with precision and the results will be available soon.
- The Lorentz electric and magnetic color forces in the neutron are determined and found to be equal and opposite in sign.
- Together with the proton the flavor decomposition of the color forces will be carried out.
- This program will be pursued at JLab 11 GeV for higher precision and greater Q² and x coverage.

A_1^n results from the d_2^n experiment

