Unraveling the hidden structure of the deuteron with DVCS

Moskov Amarian Old Dominion University

Kim Egiyan Memorial Workshop on SRC JLAB , October 21, 2006

OUTLINE

- Introduction
- DVCS on spin-1 target
- Beam-spin asymmetry
- Existing Data
- Experimental Setup
- Projected physics results
- Summary

Physics Motivation

- DVCS combines features of both: elastic and deepinelastic scattering
- Therefore it allows for the first time to investigate partonic structure of any nuclei as of a single hadron
- Depending on the spin of the target different GPDs contribute to DVCS
- Below we discuss mainly how to measure deuteron GPDs via coherent DVCS

Coherent electroproduction of real photons

- γ-quanta can be produced exclusively via two processes:
- DVCS
- Bethe-Heitler
- Both processes can occur on any nuclear target
- In spin-1 target new GPDs manifest themselves
- Some of them vanish in the forward limit

GENERAL FORMALISM

CFFs, GPDs and Deuteron Form Factors

• $\mathcal{H}_{k}(\xi,t) = \Sigma \int \mathbf{C}_{i}(\xi,\mathbf{x})\mathbf{H}_{k}(\mathbf{x},\eta,t)d\mathbf{x}$ for $k = \{1,...,5\}$ • $\mathcal{H}_{k}(\xi,t) = \Sigma \int \mathbf{C}^{+}(\xi,\mathbf{x})\mathbf{H}_{k}(\mathbf{x},\eta,t)d\mathbf{x}$ for $k = \{1,...,4\}$ Generalized Parton Distributions (GPDs) \mathbf{H}_{k} (k= 1,...,4) axial-vector \mathbf{H}_{k} (k= 1,...,5) vector

Deuteron Form Factors

NOTE: In natural units: $G_{c}(0) = 1$ $G_{M}(0) = \mu_{d} = 1.714$ $G_{Q}(0) = Q_{d} = 25.83$

Deuteron SFs, GPDs and Parton Densities

In the forward limit Structure Functions (SFs)

 $\begin{array}{ll} \mathsf{F}_1 \sim \mathsf{H}_1(x,0,0) = [\mathsf{q}^+(x) + \mathsf{q}^-(x) + \mathsf{q}^0(x)]/3 & \text{unpolarized} \\ \mathsf{g}_1 \sim \widetilde{\mathsf{H}}_1(x,0,0) = \ \mathsf{q}^+(x) - \mathsf{q}^-(x) & \text{polarized} \\ \mathsf{b}_1 \sim \mathsf{H}_5(x,0,0) = \ \mathsf{q}^0(x) - [\mathsf{q}^+(x) + \mathsf{q}^-(x)]/2 & \text{tensor SF} \end{array}$

 H_2 , H_3 , H_4 and \tilde{H}_2 , \tilde{H}_3 , \tilde{H}_4 are inaccessible in the forward limit Parton Densities for helicty states along z-axis $q^+(x)$ - parallel $q^-(x)$ - antiparallel $q^0(x)$ - helicity -0 state

Phys.Rev.Lett.95:242001,2005 By HERMES Collaboration

Beam Spin Asymmetry

- $A_{LU} = [d\sigma^+(\phi) d\sigma^-(\phi)] / [d\sigma^+(\phi) + d\sigma^-(\phi)]$
- For spin-1 target

$$\mathbf{A}_{\mathsf{LU}} \sim \frac{\mathsf{Im} \left[2\mathbf{G}_{1}\mathcal{H}_{1} + (\mathbf{G}_{1} - 2\tau \mathbf{G}_{3})(\mathcal{H}_{1} - 2\tau \mathcal{H}_{3}) + (2\tau/3) \mathbf{G}_{3}\mathcal{H}_{5} \right] \sin(\phi)}{2\mathbf{G}_{1}^{2} + (\mathbf{G}_{1} - 2\tau \mathbf{G}_{3})^{2}}$$

$$\tau = \Delta^2 / 4M_d^2$$
; ($\Delta^2 = t$ -Mandelstam)

Theoretical Predictions

- Different models for contributions of
- $\mathcal{H}_{_{1}}$, $\mathcal{H}_{_{3}}$ and $\mathcal{H}_{_{5}}$ to $A_{_{LU}}$ (following D.Mueller)
- Model A includes \mathcal{H}_{1}
- Model B same as A, but with smaller sea-quark contribution
- Model **B**' is **B** plus \mathcal{H}_3 contribution
- Model **B^** is **B** plus \mathcal{H}_5

A_{LU} Predictions

DVCS on Nuclei

- The only existing data on DVCS on Nuclei are from HERMES on a deuteron and neon targets (now also on Kr and Xe)
- Data on a Neon are dominated by coherent scattering
- However data on a deuteron are dominated by incoherent scattering on a single nucleon

CLAS E6 analysis

 From preliminary E6 data analysis sizeable beam-spin asymmetry in coherent DVCS on deuteron

CLAS DVCS Setup

- Scattered electron and deuteron in standard CLAS acceptance
- Photon in Inner Calorimeter

Detection of Photons

Inner calorimeter provides excellent mass resolution

Detection of Deuterons

- Left panel shows TOF spectra
- Right panel shows minimum kinetic energy of the deuteron in CLAS to be detected
- Deuterons in the range of interest P<1 GeV/c are well separated

Moeller Electrons, Target and Solenoid

- Simulation of Moeller electrons with solenoid magnet installed
- Target area and IC are shown along the beam line
- The actual experiment will use liquid deuterium target
- With maximum luminosity of L=1.5 · 10³⁴/cm² · sec

CLAS Acceptance for d-DVCS

- CLAS acceptance for d-DVCS as a function of Δ^2 , Q² and x_B
- Each plot shows (from top to bottom) the simulated distribution: without CLAS, with detected electron, plus detected photon, plus detected deuteron

A_{LU} Projected Errors

- First measurements of the Deuteron Partonic structure as of single hadron
- H₃ contribution dominates
- Direct access to the partonic structure of the deuteron in D wave state

Summary

- This work is related to coherent DVCS on a deuteron
- Experiment will allow for the first time to get an access to partonic structure treating deuteron as a single hadron
- From model predictions beam-spin asymmetry is very sensitive to GPD H₃ related to quadrupole FF of the deuteron
- It is hidden in a forward limit and was never measured !
- In order to separate between different models it will require at least 720h of beam time
- With minimum of 80% of beam polarization
- At beam energy $E_e = 6 \text{ GeV}$
- And luminosity $L = 1.5 \cdot 10^{34}/cm^2 \cdot sec$
- Experiment requires to run with CLAS + IC + SM
- Proposal was approved by CLAS Collaboration, found "interesting and feasible" by PAC29 and recommended for a future
- The future is running!