Study of nuclear transparency and bound nucleon form factors via tagged quasi-elastic scattering from the deuteron

> K. Griffioen College of William & Mary

Topical Workshop on Short-Range Correlations in Nuclei to Memorialize Kim Egiyan

October 20-21, 2006

Jefferson Lab, Newport News, VA USA

d(e,e'p)n Quasi-Elastic Scattering

- We have studied the reaction e + d ---> e' + p + nusing CLAS to detect e' and p for $E_{beam} = 5.7 \text{ GeV}$
- We look at all processes at high Q² that yield p+n alone in the final state (E6 run)
- Search for point-like configurations (PLC) of the struck proton and modifications to the proton form factor in short-range correlations (SRC)
- Reconstruct neutron recoil momenta 0<p_n<650 MeV/c for Q²<6 GeV² from missing momentum
- Measure proton recoil momenta 250<pp<1000 MeV/c for Q²<6 GeV² in CLAS

Warm-up with d(e,e')

- Quasi-elastic scattering for x > 1 is sensitive to SRCs
- CLAS E6 provides (e,e') data over a large range of *x* and Q²
- Data prove consistent with best models for x > 1

D(e,e') with Sargsian Model for 1.7<Q²<6.9 GeV² (data: Butuceanu) Blue: before acceptance corrections

Variables and Cross Sections for d(e, e'p)n $d^{6}\sigma/d^{3}E'd^{3}p_{s}$ $d^{3}E' \Rightarrow dx dQ^{2} d\phi_{e}$ $d^{3}p_{s} \Rightarrow dp_{s} d\theta_{\gamma s} d\phi_{s}$

Unpolarized --> one ϕ is arbitrary --> 5-fold differential 4-momentum conservation --> 4-fold differential (x, Q², α_s , ϕ_{vs})

 $d^6\sigma \sim P_1(\phi_e)P_2(\phi_s)P_3(x)P_4(Q^2)P_5(p_s)$ works to 10% for 6 GeV data with $\theta_{\gamma s}$ determined by 4-momentum conservation P_1 and P_2 are uniform distributions

Components of the Deuteron Wavefunction

Reduced FSI of a PLC

Light-Cone Fraction α_s

- $\alpha_s = \text{fraction of d}$ momentum carried by spectator nucleon; $\alpha_s = 1$: internal momentum is transverse to **q**
- Red: $\alpha_s = 1$
- Black: $\alpha_s > 0$
- $\sigma_{FSI}/\sigma_{PWIA} vs p_n$
- For $\alpha_s = 1$: screening for 0.2<p_n<0.3 and double scattering for p_n>0.3

$$\alpha_n = \frac{E_n - p_n \cos \theta_{\gamma n}}{m_n}$$

Transparency Ratios

Z Phys A352(95)97 Frankfurt, Strikman, Sargsian

Fig.3

Left: T=exp/PWIA p_n=0, 100, 200, 300, 400 MeV/c (I-IV) w/ & w/o CT Right: T= exp/PWIA w/o CT

Momentum Distributions at 6 GeV

- Reconstructed p_n distributions for $Q^2 = 2, 3, 4, 5$ GeV^2 at $E_{beam}=5.7$ GeV (E6 CLAS)
- e n elastic (red)
- Region of interest is $p_n < 0.7 \text{ GeV/c}$

Missing Mass Technique

- E6 data with 50 MeV MM resolution
- Relatively clean separation of elastic and inelastic by fitting peak and background

Feynman Diagrams

- (a) PWIA
- (b) Meson Exchange Currents (MEC)
- (c) FSI
- (d) Isobar Configuration (IC)

Diagrammatic Description of 6 GeV Data

- Red: PWIA
- Magenta: with FSIs
- Blue: with FSIs and IC

- Curves from Laget
- Generalized Eikonal Approximation (GEA) in near future to confirm this

Diagrammatic Description of 6 GeV Data

- Red: PWIA
- Magenta: with FSIs
- Blue: with FSIs and IC

Selection of Regions in p_n

CT Results

- Experimental ratios: σ(<0.3) / σ(0.1) σ(0.25) / σ(0.1) σ(0.5) / σ(0.1)
- Black points: E6
 6 GeV
- Dotted red: PWIA
- Dashed blue: Laget PWIA+FSI+IC
- No observed CT

D(e,e'p_s) (Butuceanu) $\cos\theta_{pq}, \theta_{pq}$: summed over *x*, p_s $200 < p_s < 1000$ MeV/c

D(e,e'p_s) (Butuceanu) p_s : summed over x, θ_{pq} x: summed over p_s , θ_{pq}

D(e,e'p_s) (Butuceanu) Transparency Ratio

Where the FSIs Are

- Top: $\alpha_s > 1.23$; blue = full calculation; red = PWIA
- Bottom: $\alpha_s = 1$ (cyan) below $p_n=0.3$ GeV/c; same as upper curve for $p_n>0.3$ GeV/c
- FSI absent for p_n<0.2 GeV/c and for 0.45<p_n<0.55 GeV/c

Nuclear Modification of Form Factors

- $T_{e/e}$ is the ratio for 0.45< p_n <0.65 and α_s > 1.23 to p_n <0.1 and α_s = 1
- $T_{t/t}$ is the same ratio for PWIA

d(e,e'p)n; 5.76 GeV

$$FF_{nm} = \frac{1}{\left(1 + \frac{Q^2}{r}\right)^2}$$

$$\frac{T_{e/e}}{T_{t/t}} = \frac{1/\left(1 + \frac{Q^2}{r}\right)^4}{1/\left(1 + \frac{Q^2}{0.7 \,\text{GeV}^2}\right)^4}$$

Summary

- e+ d -> e' + n + p
 - simple, rigorously defined, easily measured reaction channel
 - nearly complete kinematics of a rare process at high Q²

• Measurements

- d(e,e') for x > 1 SRC
- d(e,e'p) with recoiling n
- d(e,e'p) with recoiling p
- The physics
 - No evidence for CT up to $Q^2=6 \text{ GeV}^2$
 - No evidence for in-medium modifications of nucleon form factors up to Q^2 =6 GeV²