"Spectator protons" in $\mathrm{d}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{\mathrm{s}}\right)$ with CLAS

In memoriam of Kim Egiyan

who was already thinking about all of this Physics when I still went to high school...
...and has been a invaluable supporter and friend on the "Deeps" experiment.

Overview

- Structure of a bound neutron
- "Spectator Tagging"
- The "Deeps" experiment
- Results
- Momentum distributions
- Final state interactions
- Structure Functions
- The BoNuS experiment
- Future Plans and Summary

GOAL: Answer 2 related questions

1) How can we explore the structure of the neutron if all we have are neutrons bound in nuclei?

- In many cases, a neutron bound in deuterium can be considered "nearly free".
- BUT: For certain kinematics (large $x>0.5$, resonance region $W<2$) the high-momentum (short-distance tail) of the deuteron wave function plays a large role and might distort the result.

2) Can we learn something about what happens to a nucleon if it is part of a short-distance pair?

- Many ideas: Off-shell modifications of on-shell structure functions, color delocalization, suppression of point-like components, "fusion" into hidden-color objects or even 6-quark bags

Structure Functions of the Neutron

- Simple subtraction (deuteronproton) yields nonsense
- Kinematic shift of the effective Bjorken variable x
$x_{\text {measured }}=\frac{Q^{2}}{2 M v}$

$$
x_{\text {relevant }}=\frac{Q^{2}}{2\left(E_{n} v-\vec{p}_{n} \cdot \vec{q}\right)}
$$

0.70
0.69
0.80
0.78
0.90
0.85
1.00
0.90

+ Binding effects, coherent scattering, final state interactions, non-nucleonic degrees of freedom in the ground state
("EMC"-effect)

What can we do?

1) To learn more about the structure of the neutron we can "select the part of the deuteron wave function" where binding and off-shell effects are minimized, and we can kinematically correct for Fermi motion.
2) To learn more about structure modifications of a deeply bound nucleon, we can emphasize the high-momentum part of the deuteron wave function (corresponding to short distances).

Method (in both cases): Lepton scattering off the deuteron with simultaneous detection of a backwards-going "spectator" proton:

$$
\mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{\mathrm{s}}\right) \mathrm{X}
$$

"Spectator Tagging"

Deviations from free structure function: Off-shell Effects (should depend on p_{s}, x, Q^{2})

Deviations from the simple "spectator"picture: Final State Interaction (should depend on $\theta_{q p_{s}}$)

Ciofi degli Atti and Kopeliovich, Eur. Phys. J. A17(2003)133

Modification of Bound Neutrons - the $\mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{\mathrm{s}}\right)$ Experiment

- CLAS Experiment 94-102 at Jefferson Lab led by Kim, K. Griffioen and SEK
- Run period "E6" in Hall B
- $5.75 \mathrm{GeV} / 7 \mathrm{nA}$ Electrons on a 5 cm long LD_{2} target => $L=10^{34} / \mathrm{cm}^{2} \mathrm{~s}$
- 8 calendar weeks in spring of 2002; 4.5 billion triggers
- 2 Ph.D. students:

Dr. Alexei Klimenko (ODU) and Cornel Butuceanu (W\&M)

Experimental Details

A typical event
Acceptance for protons in the backward hemisphere

Results: Momentum Distribution

Results: Angular Distributions measured vs. simulated event rates

$$
\mathrm{Q} 2=1.8 \mathrm{GeV} 2, \mathrm{~W}^{*}=0.94 \mathrm{GeV}, \mathrm{ps}=0.3 \mathrm{GeV} / \mathrm{c}
$$

Q2 $=1.8 \mathrm{GeV} 2, \mathrm{~W}^{*}=0.94 \mathrm{GeV}, \mathrm{ps}=0.56 \mathrm{GeV} / \mathrm{c}$

$\mathrm{Q} 2=2.8 \mathrm{GeV} 2, \mathrm{~W}^{*}=2.4 \mathrm{GeV}, \mathrm{ps}=0.3 \mathrm{GeV} / \mathrm{c}$

Results: comparison with FSI model by Ciofi degli Atti et al.

$\mathbf{W}^{*}=1.25 \mathrm{GeV}, \mathrm{ps}=0.56 \mathrm{GeV} / \mathrm{c}$

$\mathbf{W}^{*}=1.25 \mathrm{GeV}, \mathrm{ps}=0.39 \mathrm{GeV} / \mathrm{c}$

$\mathbf{W}^{*}=2 \mathrm{GeV}, \mathrm{ps}=0.56 \mathrm{GeV} / \mathrm{c}$

Results: Ratio test

Ratio for $\mathrm{ps}=\mathbf{0} .3 \mathrm{GeV} / \mathrm{c}$

$$
\sigma\left(x^{*}=0.45\right)
$$

$$
\text { Ratio }=\frac{\frac{\sigma\left(x x^{*}=0.25\right)}{\sigma(x=0.45)}(\text { bound } \mathrm{n})}{\left.\frac{\sigma(x=0.25)}{\sigma(x r e e} \mathrm{n}\right)}
$$

Ratio for $\mathrm{ps}=\mathbf{0 . 3 9} \mathbf{G e V} / \mathbf{c}$

- Independent of deuteron WF, acceptance, kinematic factors
- Should be sensitive to off-shell effects at large x, but also influenced by FSI and target fragmentation

Inclusive Scattering off a "free" Neutron - the BoNuS* Experiment

- $\mathrm{D}\left(\mathrm{e}, \mathrm{e}\right.$ ' $\left.\mathrm{p}_{\text {back }}\right)$ at Jefferson Lab with CLAS and RTPC**
- $1,2,4$ and 5 GeV electrons impinging on a $6 \mathrm{~mm} \emptyset, 20 \mathrm{~cm}$ long D_{2} gas target (7.5 atm) => $L=0.2 \cdot 10^{34} / \mathrm{cm}^{2} \mathrm{~s}$
- Ran 3 months (October - December 2005)
- Jefferson Lab, Old Dominion Univ., Hampton Univ., William \& Mary, James Madison Univ., Univ. of Houston and the CLAS collaboration

Target-detector system for slow protons

- Thin-walled gas target
(7 atm., room temperature)
- Radial Time Projection

Chamber (RTPC) with
Gaseous Electron
Multipliers (GEMs)

- 4 Tesla longitudinal magnetic field
(to suppress Möller electrons and to measure momentum)
- 3-dimensional readout of position and energy loss ("pads")

RTPC - GEMs

300-500 V, Gain 100-200, 3 layers

BoNuS - Experimental Setup

First results

Electron-Proton vertex difference

Proton track in RTPC

Expected Data

The Future - Jlab at 12 GeV

$\mathrm{D}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{\mathrm{s}}\right)$

BoNuS

D(e,e'p ${ }^{\text {b }}$)X in CLAS++

Summary

- Light cone (as well as "non-relativistic") wave functions describe the momentum distribution of protons emitted "backwards" from deuterium rather well.
- Final state interactions play an important role, especially for more forward angles (relative to \mathbf{q}) and large proton momenta. They are more pronounced for large final state mass W or small Bjorken x.
- For large "spectator" momenta (neutron is far "off-shell") there may be a reduction of the structure function $\mathrm{F}_{2 \mathrm{n}}$ compared to that for a free neutron.
- New measurements with small spectator momenta will allow us, for the first time, to extract $\mathrm{F}_{2 \mathrm{n}}$ at large x without large nuclear uncertainties.
- A rich program ayvalt 綡, with Jefferson Lab at 12 GeV .

