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Outline

Introduction - how to describe SRC in high energy processes - 
deuteron case 

Theoretical expectations for SRC related properties of nuclear 
wave function/spectral function, decay function

Fast backward (FB) nucleon production and SRC

First steps in looking for  SRC in high Q2 electron scattering -
  (e,e’) at x> 1, e+A →e+ FB nucleon + X

Summary and outlook
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Key SRC results of last three years:
 (e,e’) x>1, pA→ppn +X, eA→epp/epn +X,



Strong repulsion at r< rc~0.4 fm !!!

Does it makes sense to speak in this situation about nucleons since                                  

rN =
〈
r2
pe.m.

〉1/2
≈ 0.8 fm and rc ! 2rN ?

Quark distribution in the nucleon is  ρN(r)= exp(-μr), μ=0.8 GeV 

2ρN(rc/2) =ρN(0) ⇒ rc =.35 fm

Short-range NN 
correlations (SRC) have 
densities comparable to 
the density in the center of 
a nucleon - drops of cold 
dense  nuclear matter
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Old and persistent question: Why nuclei do not collapse into a system of size of a 
nucleon/ quark soup?

Traditional answer:  Short-range repulsion between  nucleons - repulsive core



Microscopic 
nuclear structure

& study of cold dense nuclear 
matter - complementary to 
studies of hot dense matter

Quark vs hadronic degrees 
of freedom in nuclei

Origin of intermediate and 
short range nucleon-

nucleon
 forces- quark vs meson 

exchanges

M

p

pn

n p n

n p

=π +, ρ+
,...

d

d

u

Meson Exchange                                    Quark interchange

d

u

u

qq

Dynamics of  neutron star 
formation and structure

SRC

Events generators for heavy ion 
collisions - fluctuations in 

central collisions
Baym, Blattel and F &S 93

still not implemented
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Short-range correlations in nuclei - for years referred as an elusive though 
important feature of the nuclear wave structure.

 For our purposes medium range D-wave correlations are included in this definition - 
which is a physical/practical one - removal of one  nucleon  of the correlation leads to a 
release of the second one.  

Two nucleon short-range correlation.V(r)

!k1

!k2

!k1 + !k2 ≈ 0
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To resolve short-range structure of nuclei on the level of nucleon/hadronic 
constituents one needs processes which transfer to the nucleon 
constituents of SRC both energy and momentum larger than the scale of 
the NN short range correlations q0 ≥ 1GeV, !q ≥ 1 GeV

⇒ Need to treat the scattering processes in the relativistic domain.  There is 
a price to  pay:  relativistic (light-cone) treatment of the nucleus - however 
in broad kinematic range a smooth connection with nonrelativistic 
description of nuclei.
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Corollary: Properties of nuclei seen by low energy probes 
described well using notion of quasiparticles - 
SRC effects are hidden in parameters of these 
quasiparticle.



Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

⇒ High energy process develops along the light cone. 

Similar to the perturbative QCD the amplitudes of the processes 
are expressed through the wave functions on the light cone. Note: 
in general no benefit for using LC for low energy processes.
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However for low momentum component in nuclei and for 2N SRC correspondence 
with nonrelativistic wave functions is unambiguous and  rather simple            FS76



Decomposition over hadronic states could be useless if too 
many states are involved in the Fock representation

|D〉 = |NN〉 + |NNπ〉 + |∆∆〉 + |NNππ〉 + ...

Problem - we cannot use a guiding principle experience of the 
models of NN interactions based on the meson theory of nuclear forces 
- such models have a Landau pole close to mass shell and hence generate a 
lot of multi meson configurations. (On phenomenological level - problem 
with lack of enhancement of antiquarks in nuclei)

Instead, we can use the information on NN interactions at energies 
below few GeV and the chiral dynamics combined with the following 
general quantum mechanical principle - relative magnitude of different 
components in the wave function should be similar to that in the NN 
scattering at the energy corresponding to off-shellness of the component.  



12

The analyses using QCD dispersion sum rules [49–51] have demonstrated that the properties of light hadrons
(nucleon, π-, ρ-mesons, . . .) are basically determined by the quark condensates. For example, if there were no quark
condensate, a nucleon would have a mass of the order of 10 MeV due to terms mqq̄q in the QCD Lagrangian. (mq is
the current mass of the light quarks, mu ≈ 4 MeV, md ≈ 7 MeV, ms ≈ 150 MeV.) The numerical value of the chiral
condensate in the normalization point ∼ 0.5 GeV is [52, 53]

〈0|ūu|0〉 = 〈0|d̄d|0〉 ≈ −(240 MeV)3. (2.14)

This number can be roughly interpreted as the presence in the vacuum of one quark and antiquark of each flavour
per fm3.

2.2.3. Is the spontaneously broken chiral symmetry responsible for most of nuclear physics?

Due to the small values of the bare masses of the u, d, and s quarks as compared to the typical scale of the
strong interactions, mρ ≈ 770 MeV, the QCD Lagrangian is approximately symmetric under the group of chiral
transformations: q → exp(iγ5ωaλa)q, where ωa is a constant vector and λa are the Gell-Mann matrices for SU(3).
If the chiral symmetry were unbroken in the limit mq = 0 (as is the case in perturbative QCD) an approximate
degeneracy of the hadron states with different space parity would be observed. In particular, the vector meson 1−
(nucleon 1/2+) would have the same mass as the axial meson 1+ (nucleon resonance 1/2−). The observed splittings
mA1 − mρ ≈ 0.4 GeV and mN(1535) − mN ≈ 0.6 GeV are too large to be induced by nonzero bare masses of quarks.
This discussion shows that the almost precise chiral symmetry of the QCD Lagrangian is spontaneously broken due
to nonperturbative effects, e.g. due to the formation of a quark-antiquark condensate 〈0|ūu + d̄d + s̄s|0〉. But if
a continuous symmetry is spontaneously broken, the Goldstone theorem predicts the existence of massless bosons
(in the limit mq = 0). The real masses of these bosons are nonzero since the mass term in the QCD Hamiltonian
HI = muūu + mdd̄d + mss̄s violates the chiral invariance. The “pseudo-goldstone” bosons can be identified with the
nonet of pseudoscalar mesons π, K, η, η′. The large mass of η′ is due to the ghost pole specific for QCD (see refs.
[54, 55]).

As a consequence of the small masses of pseudogoldstones, the physics of the strong interactions at space-time
intervals

√
(∆x)2 ' 1/mρ (2.15)

should be determined by their interactions. The effective chiral Lagrangian (including terms with four derivatives of
the field U) has been calculated in refs. [56–58]:

L =
∫

d4x
1
4
F 2

πTr(∂µU(x)∂µU+(x) + LWZ + Lm + · · · . (2.16)

Fπ = 94 MeV is the π → µν decay constant. U(x) = exp iπa(x)λa/Fπ, and πa(x) is the nonet of chiral fields
(a = 1, . . . , 9). LWZ is the Wess-Zumino term arising due to the Adler-Bardeen axial anomaly. The term Lm is
proportional to the quark masses. We shall not write these terms explicitly. The dots denote terms containing higher
derivatives of U . The chiral QCD Lagrangian enables us to calculate (in good agreement with experiment) low-energy
π-meson and K-meson interactions and even the properties of the η(560) and η′(960) mesons. (See, e.g., ref. [59].)
The broken chiral symmetry (PCAC) has been successfully applied to the πN interaction (see ref. [60] and references
therein).

Since the pion is a Goldstone boson, its interaction with hadrons is proportional to the pion momentum kπ for
small kπ (in the limit of zero quark masses). As a result, the dominant contribution to nonresonant pion production
comes from pion emission off the external nucleon lines. The emission from the interaction blob is suppressed by an
extra factor ∼ kπ/mρ [61]. Therefore, direct (nonresonant) pion production in the process NN → NNπ is small in a
wide kinematical region:

σ(NN → NNπ)
σ(NN → NN)

( k2
π

16π2F 2
π

. (2.17)

The right-hand side of eq. (2.17) is actually the standard parameter of chiral perturbation theory. Equation (2.17)
explains the well-known experimental observation that up to Tp ( (2 − 5) GeV the inelastic nucleon cross section is
determined by two-body processes of baryon resonance production (predominantly ∆-isobar for Tp ≤ 1.5 GeV). Thus
the typical mass scale that determines the admixture of nonnucleon components in the wave function of the nucleus
is not mπ but m∆ − mN ≈ 0.3 GeV and for the deuteron (due to its isoscalarity) ! 2(m∆ − mN) ≈ mN∗ − mN ∼
(0.5 − 0.6) GeV. Thus, broken chiral symmetry seems relevant for the dominance of the nucleon degrees of freedom
in the wave function of the nucleus.

,
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Important simplification of the LC description due to  the structure of the final 
states in NN interactions: direct pion production is suppressed for a wide range 
of energies due to chiral properties of the NN interactions:

⇒ Main inelasticity for NN scattering for Tp ≤ 1 GeV is Δ-isobar 

production which is forbidden in the deuteron channel.  

|Δ Δ> threshold is kN =

√

m2
∆
− m2

N
≈ 800 MeV !!!

Small parameter for inelastic effects in the deuteron WF, 
while relativistic effects are already significant as v/c ~1

kN ≈ 550 MeV

☝ - Correspondence argument (WF  ↔ continuum) is not applicable for 

the cases when the probe interacts with rare configurations in the bound 
nucleons due to the presence of an additional scale.

For the nuclei where single Δ can be produced 



Light-cone Quantum mechanics of two nucleon system

Due to the presence of a small parameter (inelasticity of NN interactions) it makes 
sense to consider two nucleon approximation for the LC wave function of the 
deuteron.       FS76

Key point is presence of the unique matching between nonrelativistic and LC wave 
functions in this approximation. Proof (quite lengthy) is based on Lorentz invariance 
constrains on the form of interaction which enters in the LC equation for the scattering 
amplitude:

We found a representation in which equations for the scattering amplitude in NR 
QM and for LC have very similar structure. So, if a NR potential leads to a good 
description of phase shifts, the same is true for its LC analog. Hence simple 
approximate relation for LC and NR two nucleon wave functions 

=

T TV V

+

i i if f fn



Z
Ψ2
NN

(
m2+ k2t
α(2−α)

)
dαd2kt
α(2−α)

= 1

Spin zero case
rescale α light cone fraction (fraction of momentum carried by a nucleon in 
a fast frame)   α→2α  so that 0<α <2  with α=1 corresponds to a nucleon 
at rest  ( more convenient when generalizing to A>2)

Relation between LC and NR wf.∫
φ2(k)d3k = 1

Ψ2

NN

(

m2 + k2
t

α(2 − α)

)

=
φ2(k)

√

(m2 + k2)

Similarly for the spin 1 case we have two invariant vertices as in NR theory:

 hence there is a simple connection to the S- and D- wave NR WF of D
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for a fixed number of particles within Foldy’s approach. In contrast to [101] we consider eq. (2.20) as an approximate
equation, valid for the deuteron WF due to the small value of inelasticities only, and, observe, that the form of eq.
(2.22) for the deuteron WF is unambiguously determined by the physical approximations discussed above. Eq. (2.20)
coincides with the light cone form of the quasipotential equation [142]. However in this approach the angular condition
restrictions have not been imposed. Thus, in ref. [142] eq. (2.22) has not been obtained.

2.3.2. Properties of the light cone WF of the deuteron

1. Due to the rotational invariance in the transverse plane ψD(α, k⊥) = ψD(α, k2
⊥).

2. In the two-nucleon approximation for the deuteron WF due to antisymmetry ψD(α, k⊥) = −ψD(2− α, k⊥).

3. Within the two-nucleon approximation due to the angular condition ψD(α, k⊥) = ψD(k2), see the discussion
above.

4. Account of the deuteron and nucleon spins. The form of the IMF deuteron WF follows from the space parity
conservation and from the condition that the two nucleon system has the total angular momentum equal to 1:

ψD
µ εD

µ = Ū(p1){γµΓ1(M2
NN) + (p1 − p2)µΓ2(M2

NN)}U(−p2)εD
µ . (2.23)

Here p1 and p2 are the momenta of the proton and of the neutron. M2
NN = 4(m2 + k2

⊥)/{α(2 − α)} is the invariant
mass of two nucleon system. εD

µ is the deuteron polarization vector. Evidently, eq. (2.23) is a direct generalization of
the γ∗ WF considered in section 2 2.1.

In the case of the longitudinal deuteron polarization, due to the increase of the components of the vector εD
µ with

the deuteron momentum, energy non-conservation in the vertex D→ NN requires special treatment. As a result it is
necessary to account for the terms of the order 1/P in the spin structure of the vertex D → NN (really the vacuum
pairs in the deuteron WF). If the contact terms in the high energy scattering amplitude are absent the contribution of
the longitudional deuteron polarization can be calculated from the physical requirement that the deuteron is mostly
formed long before the moment of the interaction. Consequently, the conservation of the angular momentum leads
to a constraint on the light cone WF of deuteron that the two nucleon system has angular momentum equal to 1.
Therefore

εD
L = {(p1 + p2)z, (p1 + p2)0}/MNN. (2.24)

Eq. (2.24) enables to separate effects of the nucleon inner motion in the deuteron. In the deuteron rest frame the
constraint due to angular momentum conservation is simplified and the vector εD

L coincides with ez. Eq. (2.24)
naturally arises in the dispersion approach since in this case the “mass” of the deuteron is equal to the mass of the
two nucleon system.

In the case of γ∗ eqs. (2.23, 2.24) are not valid for the longitudinal polarization of γ∗ as the point-like nature of γ
allows small longitudinal distances. The method to reconstruct this amplitude was suggested by Gribov [125].

For applications it is convenient to express ψD through the two-component spinors ϕ in two-nucleon rest frame,
and the S- and D-wave functions of deuteron, U(k2), W (k2), which are solutions of eq. (2.22)

ψD = ϕ∗
{

σµU(k2)− W (k2)√
2

(
σµ −

3kµ(σk)
k2

)}
ϕ. (2.25)

Here M2
NN = 4(m2 + k2), 1

3

∑
|ψD|2 = U2 + W 2 the sum goes over nucleon, deuteron spin states. It is convenient to

normalize these WF as
∫

1
3

∑
|ψ2

D|d3k =
∫

[U2(k) + W 2(k)]d3k = 1. (2.26)

Comparing eqs. (2.23) and (2.25) and using the standard formulae

U(k) =
√

ε + m

(
1

σk/(ε + m)

)
ϕ, U(−k) =

√
ε + m

(
σk/(ε + m)

1

)
ϕ

which express Dirac-spinors through two-component spinors ϕ, we obtain:

Γ1(M2) =
1√
ε

[
U(k)− W (k)√

2

]
(2.27)

α = 1 +
k3√

m2 + k2

NR wave function



For two body system in two nucleon approximation 
the biggest difference between NR and virtual nucleon 
approximation and LC is in the relation of the wave function 
and the scattering amplitude

Let us illustrate this  for the high energy deuteron break up
 h + D→X + N  in the impulse approximation with nucleon been in the 

deuteron fragmentation region - spectator contribution.

For any particle, b,   in the final state in the target fragmentation region the 
light cone fractions are conserved under longitudinal boosts
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2.5. Relativistic effects in the hadron scattering from deuteron

A theoretical description of high-energy hadron-deuteron interactions is considerably more complicated than that
for lepton-deuteron scattering processes. Realistic models of these reactions however can be constructed by applying
traditional physical approximations like the impulse approximation or Glauber theory generalized by Gribov [162] to
the high energy processes with multiparticle production (see also [163, 164] There exist two important reasons for the
validity of these approximations for high-energy hadronic processes: (a) In the high-energy process the fast deuteron
prescattering state is formed long before the target at distances of order

∼ 1
EN2 + EN2 − ED

∼ 2P

4(m2 + k2
⊥)/α(2− α)−M2

D

. (2.50)

Moreover, due to Lorentz dilatation the characteristic time between different fluctuations within the fast deuteron
becomes larger at high energy than the characteristic time for the interaction with the target ∼ 1/m. Therefore the
deuteron in some sense can be considered as a collection of free nucleons. In typical high energy hadronic reactions the
energy transfer is not sufficient to resolve quarks and gluons. Thus, soft hadronic processes could not be considered
as incoherent in terms of pointlike quarks and gluons. That is why they are usually described in terms of hadron
exchanges. (b) Experimentally average Feynman x, p⊥ for nucleon in inelastic h + N → N + X reaction are about
0.5 and 0.4 GeV/c respectively. Thus in inelastic hD reaction large momentum ∼ 1 GeV/c is transfered to the target
nucleon in the deuteron rest frame.

Let us now consider inclusive high-energy reactions

hadron + D→ b + X,

where the produced hadron b is kinematically forbidden for the scattering from a free nucleon. Let particle ”b” be in
the deuteron fragmentation region. At infinite energies this kinematic region corresponds to the condition that the
light cone fraction of the deuteron momentum carried by particle ”b” αb/2 = (Eb + pbZ)/(ED + pDZ) is within the
limits 2 > αb > 1. The condition αb = 1 is the kinematic boundary for the elementary processes h + N→ b + X. In
the deuteron rest frame and Eh →∞ this condition has the form:16

2 > αb ≡
(√

m2
b + p2

b − pbZ

)
/MD > 1 (2.51)

where the Z axis is chosen along the projectile direction. For light particles b like N, π, k this region covers backward
angles only. For mb > mN it covers also forward angles. In this review we restrict ourselves to the discussion of fast
backward (FB) particles production, since only this kinematic region has been investigated experimentally. These
particles are referred to in the literature as cumulative particles [13, 14], backward particles [22, 23], backward emitted
particles [46] etc.

Since these reactions are typical fragmentation processes their inclusive cross section should be independent of
initial energy at Eh →∞:

Eb
d3σD+h→b+···

d3pb

≡ GD/b
h (ED, pb) = GD/b

h (αb, pb⊥). (2.52)

This property is known as Feynman scaling [128] and it is observed for all high energy hadron reactions if αb is not
small (see e.g. [127]). The experience in quantum field theory (cf. section 2 2.1) hints that GD/b

h cointains information
on the deuteron WF.

2.5.1. Direct mechanism of fast backward (FB) particles production

Let us first consider the case of FB particles “b” absent in the deuteron WF (π, k, Λ). A natural mechanism for
this reaction is the production of particle “b” in the scattering of an initial hadron h from a nucleon with α > 1 (a
backward nucleon in the deuteron rest frame) [25, 59, 61–63, 76–78]. In impulse approximation the direct mechanism

16 Evidently at intermediate energies kinematic restrictions are more stringent and part of the region αb < 1 is forbidden for the scattering
from free nucleon.

Hence in the rest frame 
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25

(a) (b)

FIG. 2.13: The spectator mechanism of the nucleon production.

done by applying the general equation (2.19) for the impulse approximation and eq. (2.49) for ρN
D(α, k⊥). The final

formula has the form

Eb
d3σD+h→b+···

d3pb

=
∫

[U2(k) + W 2(k)]d3kEb
d3σh+N→b+···

d3pb

(ν̃, pb). (2.53)

Here ν̃ is given by eq. (2.19a) and the relationship between α and k is given by eq. (2.21).

2.5.2. Spectator mechanism of fast backward nucleon production

The so called spectator mechanism dominates FB nucleon (see fig. 2.13a). One of nucleons of the deuteron scatters
from hadron h, loses its energy and therefore releases its neighbour-spectator. In the impulse approximation the cross
section of this process is determined by the imaginary part of the zero-angle amplitude (see fig. 2.13b)

dσD+h→N+···

(dα/α)d2k⊥
=

1
ν

Imf [ν̃]
ψ2

D(α, k⊥)
(2− α)2

. (2.54)

Here ψD(α, k⊥) is the light cone deuteron WF. All notations correspond to eq. (2.19). In section 2 2.4 it has been
found that ψ2

D is directly expressed through the S, D deuteron WF: ψ2
D(k) = [U2(k) + W 2(k)]

√
m2 + k2 (cf. eq.

(2.49)). The factor (2 − α)−2 in the eq. (2.54) is due to the initial and final state phase volume of the interacting
nucleon. ν̃ is given by eq. (2.19a). Because of the optical theorem Imf(ν) = νσtot(ν). We neglect here elastic and
diffractive processes because energy transferred to the interacting nucleon is not large in this case and therefore final
state interaction will suppress yield of spectators (cf. section 7 7.4). Finally we obtain [61–63]:

dσD+h→N+···

(dα/α)d2p⊥
= σhN

inel.[ν̃] · [U2(k) + W 2(k)]
(2− α)

√
k2 + m2. (2.55)

The relationship between α and k is given by eq. (2.21).

2.5.3. Glauber screening of spectator mechanism

Eq. (2.55) overestimates the spectator yield since the projectile h can transfer positive longitudinal momentum to
the FB nucleon provided both nucleons are at close impact parameters, see fig. 2.14.

This is the Glauber correction familiar from the analysis of total and elastic cross sections. Recall that AGK
cancellation is not complete in this case since the spectator itself participates in the reggeon-deuteron interaction.
To explain basic features of this phenomenon we assume that similar to quantum mechanics Glauber screening
corresponds to the eikonal diagram 2.15. Within the eikonal approach this procedure overestimates the Glauber
screening as rescattering diagrams of next order fig. 2.16 will somewhat reduce the contribution of diagram fig. 2.15.

dσD+h→N+···

(dα/α)d2p⊥
= σhNinel.[(2−α)sNN] · [U

2(k)+W 2(k)]
(2−α)

√
k2+m2

dσD+h→N+···

(dα/α)d2p⊥
= σhNinel.[(2−α)sNN] · (2−α)[U2(p)+W 2(p)](2−α)

√
p2+m2

LC imp.approx.

NR imp.approx.

NR/Virtual nucleon:  observed momentum is the same as in the WF,  
asymptotic at                         , is determined by WF at finite momentum 
0.75 m, and has the same (2-α) dependence on α.

α → 2, kt = 0

LC nucleon:  nonlinear relation between internal momentum k and 
observed momentum p.   Asymptotic at  α→2 , is determined by WF at 
k→∞.  Similar to particle physics.

α = 2(
√

m2 + p2 − p3)/mD

α = 1 +
k3√

m2 + k2
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FIG. 3.17:

α/2 = (
√

m2 + p2−p3)/mD. The result of the calculation overestimates experimental data by (30-50 %26. It is worth

noting that in the studied range of spectator momenta the dominant contribution is given by D-wave. To check this

important feature of the realistic WFs experiments with polarized deuteron beams are necessary (see [7] and section

3 3.3).

3.5.3. Comparison with other approaches

First we compare predictions of eq. (3.37) with the quantum mechanical approach and the Bethe-Salpeter approach

[65], which is similar to approaches [114, 170, 171] for the deuteron structure functions and the deuteron form factor,

which were discussed in the previous subsections. These approaches lead to eqs. (3.44) and (3.45)respectively27

G
D/N
h (p) = σhN

totψ
2
D(p)(1 + p3/M)(2− α). (3.44)

G
D/N
h (p) = σhN

totψ
2
D(p)(2− α)θ(2− α). (3.45)

Here p is the spectator momentum in the deuteron rest frame. 1 + p3/M , (2 − α) is the Möller flux factor, which

reflects the Doppler shift for the frequency of the interacting nucleon. α is given by eq. (3.43) and ψ2(p) = (U2(p) +

W 2(p))/(
√

m2 + p2). θ(2− α) accounts for the phase space restrictions due to energy conservation.

Eq. (3.37) and eqs. (3.44), (3.45) correspond to a qualitatively different space-time picture of the strong interaction.

Thus it seems instructive to compare predictions of these models for the nucleon yield. To be definite we use the

deuteron rest frame.

(1) In the Bethe-Peierls approximation when p/m " 1 (p2 ! mεD) all formulae coincide. Really this case cor-

responds to the pointlike vertex D → NN, where expression (3.37) follows from the exact calculation of the

Feynman diagrams [1–3, 61–63].

26 We consider this as one of the evidencies that the absolute normalization of the data [27] should be increased by a factor 1.5-2 (cf.

footnote on p. 84. Note also that it is necessary to check the accuracy of scaling in variable α at α 1.5 at higher energies.

27 To simplify the comparison we consider here the predictions of the models in the impulse approximation.

LC

NR
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FIG. 3.15: The fast backward proton production in the pD scattering at p⊥ = 0 [27, 39]. The solid curve is the result of
calculation in the relativistic Glauber approximation. Dashed curve is the QCD prediction of section 4 normalized at pN =
0.5 GeV/c. The broken (dashed) curves is the prediction of the Schmidt-Blankenbecler model [71] assuming α(pcm/pcm max)
scaling normalized at pN = 0.3 GeV/c.

FIG. 3.16: Test of the α scaling hypothesis in p+p→ π+ +X reaction at pN = 8.9 GeV/c [27] (p⊥ = 0). The solid and dashed
curves are the predictions based on the high energy data [182, 183] assuming α scaling and radial scaling (x = Ecm/Ecm max ≈
pcm/pcm/pcm max) For authors: is this relation OK? correspondingly.

The same pattern of scaling onset is observed for the process p+p→ π +X (fig. 3.16). We want to emphasize that
condition (3.42) is not fulfilled if standard variables such as x = p∗L/p∗max or E∗/E∗

max are used (see e.g., [25, 37, 71]) to
compare asymptotic formulae with experiment. In particular these variables vary up to x = 1 at any incident energy.
As a result an artificial violation of the Yang scaling is introduced, see e.g. fig. 3.16 and the dotted curve in fig. 3.15.
This is especially clear for the region of small spectator momenta pN, where the validity of the impulse approximation
can be strictly proved. For example the use of variable x = p∗/p∗max leads to a change of the cross-section of the
p + D → p + X reaction by a factor of 300 at x = 1

2 , p⊥ = 0 in the range Einc
N = 2-100 GeV (at large energy x = 1

2 ,
p⊥ = 0 corresponds to pN = 0).

In fig. 3.15 a calculation of p + D → p + X [61–63, 106–109] using eq. (3.37) is compared with experimental data
[27, 38, 39]. We use the Hamada-Johnston WF of the deuteron-solution of Weinberg eq. (2.22) and scaling variable

Numerical difference between NR and LC 
for deuteron fragmentation is relatively 

small up to rather large momenta



Around 1974- measurement of fast backward (cumulative) pion production  at high 
energies at Dubna - turned out to be  wrong

Led to rediscovering of old ITEP (Moscow) data on fast backward nucleon by 
Leksin group ~ 1975 

I first met Kim (May 75?) - heard his discussion with Leksin on merits of 
measurement of FB proton production in photon -nucleus scattering

76 - Khovanski  from ITEP  neutrino group asked me and Leonya 
Frankfurt  whether what we do for the deuteron could be relevant to 
their observation of production of FB nucleons in ν+Ne→μ + “FB 
proton” +X reaction (very interesting data - do not have time to 
discuss it in this talk)



Prompted us to extend studies of structure and ways to probe short range 
correlations to A>2 nuclei. We suggested that phenomenon of production of 
fast backward (FB)  nucleons and mesons*)  is due to the interaction with SRC

*) We wanted to name them backfires (US name for Soviet fighter 
jets) but gave up because of censorship problems.
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FIG. 6.1: Production of a fast backward nucleon in the W ∗ scattering from the two-nucleon correlation spectator mechanism.

function ρ̃N
A(α, k⊥,M2

Rec). One can in particular investigate the increase with x of the average number of fast forward
nucleons which balance the momentum of struck nucleon. However the cross section of this reaction is rather low and
the final state interaction between forward going nucleons could be essential.

Therefore it seems much more feasible to use as a trigger the presence of a fast nucleon (pN > 0.3 GeV/c) in
the backward (relative to γ∗, W ∗) hemisphere. This selection enhances the contribution of short range correlations,
because such protons cannot be produced in a collision of a free nucleon or in the nucleus evaporation. (In fact the
data on such reaction were accumulated as byproduct on the DST of all big neutrino bubble chambers for a long time.
First analysis of such data was undertaken recently by Fermilab-ITEP-IHEP-Michigan collaboration in FNAL [22, 23]
and SCAT collaboration in Serpukhov [24].) An evident advantage of using a leptonic probe (instead of hadronic one)
is that the lepton provides a rather direct information about the struck nucleon momentum. At the same time the
study of the final state gives information about the structure of correlation. (Therefore in a certain sense reaction
(6.1) is more close to low energy eA → e′ + p + p + X reactions discussed e.g. in [203, 210] than to eA → e′ + p + X
reactions.)

A natural mechanism for reaction (6.1) is the following: γ∗, W ∗ strikes one of the nucleons of the correlated system,
which has a forward momentum in the nucleus rest frame releasing the backward going nucleon from the correlation
(see fig. 6.1). Before starting a formal derivation let us consider what one should expect if reaction (6.1) is dominated
by the scattering off the pair correlation. In this case large α of the backward nucleon40 is balanced by α′ ≈ 2− α of
the struck nucleon. Consequently the average light cone momentum carried by the quarks of the balancing nucleon is
2−α times smaller than for the average nucleon with α ∼ 1. Therefore the mean x for events with backward nucleon
should be smaller than in the average case:

〈x〉α = (2− x)〈x〉. (6.2)

The decrease of 〈x〉α was first predicted in [31] and it is observed now in two experiments [22–24].

6.1. The basic formulae

To describe the reaction (6.1) quantitatively it is necessary to introduce the production function
ρN1N2
A (α1, k1⊥,α2, k2⊥). By definition ρN1N2

A (α1, k1⊥, α2, k2⊥)/ρN2
A (α2, k2⊥) is the probability for a nucleon N1 to

be produced if a nucleon N2 is instantaneously removed from the nucleus. In principle ρN1N2
A can be calculated by

solving the many-body Weinberg type equation for the nuclear WF and decomposing the WF of the recoiling system
over the free particle states (nucleons, nucleus fragments). This procedure is analogous to that used for the calculation
of the nuclear spectral function.

It is important that the removal of a nucleon from the nucleus in the reaction (6.1) can well be considered as
instantaneous because the energy transfer to the target nucleon in νN scattering is large at any x. Thus, the spectator
contribution to the cross section of the reaction (6.1) is given by eq. (6.3) (cf. equations for the % + D → %′ + p + X
reaction in section 3 3.3) which is really a particular case of the sudden approximation:

dσν(ν̃)+A→µ∓+p+X

dx dy (dα/α) d2k⊥
=

G2
F

π
Eν

MA

A

∫
dα1 d2k1⊥

α1

∑

N=p,n

ρpN
A (α, k⊥,α1, k1⊥)

×
[
F2N

(
x

α1
, Q2

)
(1− y) +

1
2
y2 x

α1
2F1

(
x

α1
, Q2

)
± y(1− 1

2
y)

x

α1
F3

(
x

α1
, Q2

)]
. (6.3)

40 In the nucleus lab. frame α = ( m2 + p2 − (pq)/|q|)/mN, where p is the lab. frame nucleon momentum. Large α > 1 corresponds to
backward going nucleon in the nucleus rest frame.
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FIG. 7.1: Production of fast backward spectators in hA collision.

In the case of nucleon production, we impose also the condition pN > 0.3 GeV/c, to avoid any significant contribution
of nucleon evaporation. To simplify the presentation, we shall use, for a while the two-nucleon (pair) correlation
approximation for the nuclear WF (see section 2 2.4).

At large incident energy, the average energy transfer to each of the ν inelasticly interacting nucleons is of the
order 0.5 GeV (the same as in the elementary hN inelastic interaction). Similar to the deuteron case this energy is
sufficient to destroy all pair correlations associated with any of ν nucleons, i.e. the incident hadron h going through
the nucleus knocks out nucleons moving forward (in the nucleus rest frame) releasing backward moving nucleons of
the pair correlations (see fig. 7.1). Similarly to the case of deuteron stripping it is natural to call this process a
spectator mechanism [69, 70]. In the approximation of the pair correlation matrix the probability to find a nucleon
with momentum pN(α, p⊥), correlated with a given nucleon is equal to (1/A)ρN

A(α, p⊥). (Cf. eq. (2.38). Recall that
ρN
A(α, p⊥) is the single nucleon density of the nucleus in the momentum space.) Therefore using eq. (7.3) we obtain

[106–110]42

GA/N
h (α, p⊥) =

A∑

n=1

1
A

ρN
A(α, p⊥)nσn = σhN

in ρN
A(α, p⊥) (7.5)

since the nucleon can be emitted in each of the n collisions.
Eq. (7.5) is quite similar to the impulse approximation. This is so because we neglected in the derivation that the

spectator could have had the same impact parameter as the projectile and, thus, would lose its α due to inelastic
interactions with the incoming hadron. Taking into account this possibility, we are lead, similarly, to the deuteron
case (section 2 2.5), to the Glauber screening factor κh in eq. (7.5)

GA/N
h (α, p⊥) = κhAσhN

in ρN
A(α, p⊥). (7.6)

The inclusion of j-nucleon correlations with j > 2 may modify eq. (7.6). In this case, κh will depend on α, as the
efficiencies of breaking 2- and 3-nucleon correlations are somewhat different (cf. eq. (7.10)). Consequently, in a wide
region, GA/N

h (α, p⊥) is proportional to ρN
A(α, p⊥) and therefore measurement of GA/N

h provides a direct information
about the nuclear WF.

We explained in section 2 2.5 that α, p⊥ dependence of ρN
A varies slowly with A. Thus, it follows from eq. (7.6)

that GA/N
h (α, p⊥) should universally depend on A, α, p⊥ for different projectiles. In particular the following universal

relationship is valid

GA1/N
h1

(α, p⊥)/GA1/N
h2

(α, p⊥) = GA2/N
h1

(α, p⊥)/GA2/N
h2

(α, p⊥). (7.7)

One should not be confused by the resemblance of the form (7.5) with the impulse approximation. It reflects merely
the inclusive nature of the reaction (7.4): not one but several target nucleons participate in the collision and are
knocked forward in each hA collision. To illustrate this point, we calculate GA/(N1+N2)

h – inclusive cross section for
production of two FB nucleons which is equal zero in the impulse approximation, provided only scattering from pair

42 G
b/c
a (x, p⊥) ≡ x dσa+b→c+X/dx d2p⊥ is the inclusive cross section of the reaction a + b→ c + X.
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nucleus  scattering
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Basis of the SRC spectator approximation
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8.3.2. Properties of the spectral function at large nucleon momenta

In order to foresee the pattern of y-scaling violation and the range of applicability of the scaling laws derived
in section 8 8.2, and to explain what numerical calculations are needed now it is necessary to analyse the general
properties of PA(k,E) at large k. (Remember that at present no calculations of PA(k,E) exist for large k and A > 3,
due to the lack of an effective procedure to calculate the N > 2 nucleon wave function for the continuum.) The
straightforward generalization of this analysis will also be of use in the discussion of the properties of the light-cone
spectral function in section 8 8.4.

For potentials singular for r → 0 the dominant contribution to nA(k) at large k is evidently given by the two-nucleon
correlations, i.e., by configurations where the momentum of the fast nucleon is balanced by one nucleon (see fig. 8.6),
i.e.

nA(k) ∼
k→∞

ψ2
2N(k) ∼ ψ2

D(k). (8.33)

Here ψ2N(k) (ψD(k)) is the high-momentum component of the two-nucleon (deuteron) wave function. In the current
calculations of nA(k) for different nuclei (3He, 4He, 16O) eq. (8.33) is approximately satisfied for k ! (0.3−0.4) GeV/c.
In principle the high-momentum behaviour of ψ2

2N(k) depends on the quantum numbers of the two-nucleon system;
spin, isospin, orbital momentum, and it could be different from ψ2

D(k).
Provided that the internucleon potential V (k) is local and

V (k)
∣∣
k→∞∼ k−n, (8.34)

with n > 1, the behaviour of nA(k) for k → ∞ is controlled by the Born diagram of fig. 8.7 and therefore [466, 467]

nA(k)
∣∣
k→∞∼ V 2(k)

k4
. (8.35)

It follows from the above discussion (eqs. 8.34 and 8.35) and the relation between nA(k) and PA(k,E) (eq. 8.26)
that at large k the dominant contribution to

∫
PA(k,E)dE arises from the region of large E:

E(k) + ER(k) ∼ k2/2m. (8.36)

Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and the rest of
the residual nucleus tends to reduce E(k) but by a small amount (% k2/2m for large k). Equation (8.36) reasonably
agrees with the trend observed in a numerical calculation of P3He(k,E) [468].

An immediate consequence of eqs. (8.36) and (8.27) – which in fact follows from the kinematical analysis of section
8 8.2 8.2.1 – is that the states with E(k) satisfying eq. (8.36) do not give a contribution to the cross section of
reactions (8.1) and (8.2) for x > 2. Consequently, for large negative y such that x(y,Q2 → ∞) < 2, the right-hand
side of eq. (8.34) should considerably increase with Q2 until Emax in eq. (8.31) reaches the value given by eq. (8.36)
(i.e., until x(y,Q2) becomes smaller than 2; for y = −0.4 GeV/c and A & 1 this corresponds to Q2 > 2 GeV2).
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2N(k) depends on the quantum numbers of the two-nucleon system;
spin, isospin, orbital momentum, and it could be different from ψ2

D(k).
Provided that the internucleon potential V (k) is local and

V (k)
∣∣
k→∞∼ k−n, (8.34)

with n > 1, the behaviour of nA(k) for k → ∞ is controlled by the Born diagram of fig. 8.7 and therefore [466, 467]

nA(k)
∣∣
k→∞∼ V 2(k)

k4
. (8.35)

It follows from the above discussion (eqs. 8.34 and 8.35) and the relation between nA(k) and PA(k,E) (eq. 8.26)
that at large k the dominant contribution to

∫
PA(k,E)dE arises from the region of large E:

E(k) + ER(k) ∼ k2/2m. (8.36)

Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and the rest of
the residual nucleus tends to reduce E(k) but by a small amount (% k2/2m for large k). Equation (8.36) reasonably
agrees with the trend observed in a numerical calculation of P3He(k,E) [468].

An immediate consequence of eqs. (8.36) and (8.27) – which in fact follows from the kinematical analysis of section
8 8.2 8.2.1 – is that the states with E(k) satisfying eq. (8.36) do not give a contribution to the cross section of
reactions (8.1) and (8.2) for x > 2. Consequently, for large negative y such that x(y,Q2 → ∞) < 2, the right-hand
side of eq. (8.34) should considerably increase with Q2 until Emax in eq. (8.31) reaches the value given by eq. (8.36)
(i.e., until x(y,Q2) becomes smaller than 2; for y = −0.4 GeV/c and A & 1 this corresponds to Q2 > 2 GeV2).

(a) asymptotic of the wave function is determined by the singularity of the potential

For the single nucleon density matrix

➠

nA(k) =
∫

d3kiψ
2
A(ki)δ(k − k1)δ(

A∑

1

ki)

nA(k)|k→∞ = a2(A)ψ2
D(k)

k>kF?

α2
α1

α1+α2 ~ 2

In case of LC more complicated but not a bad approximation for 
1.6>α>1.25
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• 2N Correlations
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r2p
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a)                                                           b)

q

-Type 2N-I correlations: E(2N−I)
m =

√
m2 + p2

m − m −TA−1

-Type 2N-II correlations: E(2N−II)
m =

√
m2 + p2

r2 +
√
m2 + p2

r3 − 2m

• 3N Correlations

r2pr2p

a)                                                  b)

q q

rp

p

rp

p

3

3

mm

-Type 3N-I correlations: E(2N−I)
m ≈ |εA|

-Type 3N-II correlations: E(3N−II)
m = 2

√
m2 + p2

m − 2m −TA−1

Use 3He(e,e’ppn)

reactions to 
study pn, pp and 
ppn correlations.

Remember:
structure (though not 
probability) of 2N and 
3N correlations is very 

similar in A=3 and 
heavy nuclei

(b) Instantaneous removal of one nucleon of 2N SRC leads to release of the 
second nucleon of SRC with initial LC fraction and transverse momentum due 
to a large difference between the scale of local NN potential and interaction 
with the rest of the nucleons

Spectator is released Emission of FB nucleon is 
suppressed due to strong FSI

To test the approximation we needed data on FB proton production as a 
function of the angle and momentum - by chance I found the preprint from 
Kim’s group (just published) with the first angular and momentum spectra - 
with tables (first tables in these studies !!!)

This gives a operational description of a new quantity for probing  the structure of 
SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon after 
removal of a fast nucleon (formal operator definition in Phys.Rep.88)
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the nucleus wavefunction averaged over spins and in- 

tegrated over the motion of  other nucleons. Here c~, 

PT are the fraction of  the pair momentum carried by 

one of  the nucleons in the IMF and its transverse mo- 

mentum (the Z axis IS chosen in the direction of  the 

incident particle) In what follows we shall neglect 

the motion of  the pair as a whole. This approxima- 

tion seems reasonable for enough from the kinemat- 

Ical boundary of  pair correlation. Owing to the an- 

gular condition p(cq ki)  depends only of  the invar- 

lant mass of  the pair [10] 

M2N = (m 2 +p2)/ot(1-a). (1) 

The structure function F2A(X, y, p) for the proc- 

ess (1) can be expressed through p(M2NN ) and nucleon 

structure functions F2p(X , y) ,  F2n(X , y)  as :~1 

1 E x 
GA(x'Y' v)= 2p - , x +  "2,' h---a-)J i2) 

Here x, y are conventional deep inelastic variables. 

In our approximation (neglection of  the pair motion): 

o~ = ( ~ -  p3)/2m. (3) 

Inclusive cross section of  reaction (ii) has the form 

E d 3 o/d3p = X Otot(NN)p(M2N)/2(1-~), (4) 

where X characterises the efficiency of  kicking off  the 

nucleon by the incident hadron. 

Firs t ly  we shall compare the description based on 

eq. (4) with experimental data [11, 12]. 

1. The proton spectra for different angles can be 

expressed through each other. Experimental spectra 

for different angles can be fitted as Ed3o/d3p = 

Cexp (-B(O)p2). In fig. 1 we present the results of  

the calculanon of  B(0) on the basis of  eq (4). 

B(180 °) = 12.5 (GeV/c) 2 was used as the only input. 

At 0 < 90 ° the discussed approximation should be 

rather poor since the contribution of  scattered pro- 

tons becomes essential there. 

2. The cross section for sufficiently heavy nuclei 

should be roughly proportional to Z due to nuclear 

forces saturation ~2, i.e. P "~ ZOo where f Po do~ d2k± / 
2c~(1-~) is the probability to find a nucleon corre- 

lated with the given proton. Therefore the proton 

spectra for scattering from different isotopes of  the 

6 

v 

4 

,1 The phase volume of the nucleon is d3p/E = dot d2PT/a. 
,2 At this point we neglect the nuclear surface effects. 

i ~ (P)+,~ p+! 
} +g p+X 

L.< 
-08 -06 -04 -02 0 02 04 06 08 

Fig. l. 

same nuclei should be practically the same which 1s 

in agreement with experimental data [13]. 

3. For comparison with conventional nuclear phys- 

ics it is convenient to introduce the auxiliary variable 

k (see the discussion for the deuteron case [4] ) 

= [1 + k3/ l, = PT" (5) 

As a result M2N = 4(m 2 + k2). To check the idea 

about umversal behavlour of  nuclear wavefunctions 

at small distances, Po(k)/x/m2 + k 2 should be com- 

pared as in [4] with ~D(k)..2 In fig. 2 P o ( k ) / ~  2 
extracted from the data [11, 12] is compared with 

Hamada-Jonstone wavefunction of  the deuteron 

which fits experimental data on deuteron [4]. If  for 

a rough estimate we take X = 1, then Po(k)/x/m2+ k--- 2 

= ( 4 - 5 )  ff2(k).  

4. Precocious scaling observed experimentally [I 1 ] 

is expected due to weak energy dependence of 

Otot(hN). 
5. The smooth behaviour of  the proton spectra 

near the boundary of  pair correlation (a = 1) indi- 

cates the importance of  many nucleon correlanon in 

nuclei which in line with nuclear physics ideas [ 14]. 

The alternatwe explananon of  (il) as due to mul- 

tiple rescatterlngs In the final state [15] seems to be 

excluded on the basis of  existing data. Indeed if the 

multiple rescattermg was essential: (a) the proton 

spectra should drop faster for light nuclm (e.g. 12C) 

than for heavy ones (e.g. 208p) (experimentally angular 
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few of them: (a) pprr- configuration could be inves- 

tigated in the reaction v + d ~ / ~ -  + p + p + X select- 

ing nucleons with momenta t> 300 MeV/c and study- 

mgy-dlstributions. Selection of both nucleons going 

forward enhances the contribution of fig. 3, since %r 

is larger for this configuration therefore this kinemat- 

ical region is most sensmve to the meson admixture 

in the deuteron wavefunctlon; (b) resonance admix- 

tures can be studied in reactions e(u, ~) + d ~ e(/a-, 

S )  + A(N*) + X with (N*) in F region. Selection of 

x > 0.2 suppresses due to kinematical reasons (e.g. 

[9] ) the contribution from the resonances produced 

m the elementary act. Most clear case is again the 

neutrino scattering. For example at x > 0.2 in vd 

scattering only A2+ but not A -  spectators could be 

produced because v interact with d quarks and do 
q 

not  interact wxth u quark. 

Our thanks to V.N. Gribov, D.I. D'jakonov, I.T. 

Dyatlov, G.A. Leksin, L.N. Lipatov, V.D. Khovansky 

for fruitful discussions. 
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γ

Angular dependence of the slope of the proton emission spectrum:

G.Leksin et al 76

dσh(γ)+A→p+X

d3p/E
∝ exp(−B(θ)p2)

from F&S Phys.Lett. 1977 

two nucleon correlation 
approximation
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and momentum dependence of  the spectra are the 

same [ 11 ] what is natural for mechanism discussed 

above), (b) precocious scaling and independence of  

the type of  incident particle can hardly be understood 

since number of  slow protons (with momenta of  the 

order 1 GeV/c) which take part in the rescatterlng 

strongly depends at the intermediate energies ( 1 - 3  

GeV) of  the energy and of  the incident particle (p, 70, 

(c) number of  fast protons and pions with the equal 

momentum should be of  the same order at h i g h  ene r -  

gies (experimentally proton to pion ratio is about 102 

at p ~ 500 MeV/c) [11]. 

More detailed and unambiguous information could 

be obtained from the reaction i, as it follows from the 

eq. (2) and the above discussion. 

1. To simplify eq. (2) it was assumed that proton 

and neutron distributions in the nucleus are the same. 

In fact the different x dependence of  F2p(X, y), 
F2n(X, y) makes it possible to dlStlngmsh pn and pp 

pairs in nucleus. 

2. Due to linear increase vN total cross section 

with energy the spectrum of backward nucleons for 

reactions: v(~) + A ~ / a -  (/l +) + N + X will decrease 

( l - a )  times faster than for e + A ~ e+N + X, p(n) + 

A ~ N + X reactions. Therefore the comparison be- 

tween e, v scattering enables to investigate the transi- 

tional region between two nucleon and three nucleon 

correlations. 

3. The mechanism discussed above contributes in 

the limit kinematical region, a < 1. Outside this re- 

gion many particle correlations become essential. 

Therefore it seems interesting to study the average 

number of  fast nucleons in the final state as a func- 

tion of  a. Naively one could expect that it will in- 

crease with a. For a < 1 only one additional fast nu- 

cleon is expected m the forward hemisphere. 

4. It follows from eq. (2) that x, y distributions 

depend on a. In particular )Ta = 2)2(1-a) where )7 is 

average x for the total sample. 

5. In the above discussion we have neglected all 

configurations in nucleus other than build from nu- 

cleons. The study of  the reactions (i) can check the 

accuracy of  this approximation. First of all presence 

of the meson components (hke e.g. NNn configura- 

tions) can be mvestigated in v, ~ reactions (see fig. 3) 

as y distribution is rather sensitive to the admixture 

of antiquarks in nuclear wavefunctlon. The selecnon 

of nucleons in F region helps to suppress the contri- 

bution from normal configurations in nucleus and 

therefore to increase the relative contribution from 

diagrams like fig. 3. If  the configurations with 7r me- 

son admixture essential we would see considerable 

change o f y  distributions in ~ scattering (the visible 

increasing of  the number of  antiquarks as a function 

of the spectator momentum). 

6. In the case of  deuteron some of  its configura- 

tions can be studied in more detail. Let us briefly list 

w 

D " N 

N 

Fig 3. 
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ρ

Momentum distribution normalized to its value at 300 MeV/c.

Hamada-Johnston WF
Extracted from the data assuming 
dominance of 2N SRC

ρ

We also estimated from these data  a2(12C)= 4 ÷ 5



dσh+A→N+X

dαd2pt

α

= κhAσhN
in ρN

A (α, pt)

where  factor             accounts for local screening effects κh

21

We also predicted universal A-dependence of the inclusive spectra for 
different projectiles

Experimentalists from Moscow claimed that another quantity is univeral  - 
multiplicity of FB nucleon  the way to distinguish was to compare proton 

and photon projectiles (due to very different A-dependence of total 
inelastic cross sections) - we found that our scaling worked
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i’~ zooP 14

critical 0

The energy dependence of G~”was investigated [15] at E,
1-> 1.5GeV where the momentum

dependence of G~!”does not change with E~.The integral of inclusive cross section

I d
2o-

= J dp dO dp d~OIO.4<p<1.OGev/c,159.6<0<164.4

was measured. The ratio cr
1,/o~is presented in fig. 8.13 together with the fit using eq. (8.13) with

E0 = 1.4 GeV. For xi we use the fit from [176]: xi = 0.7A°’
3.It can be seen from the figure that eq. (8.13)

reasonably describes the change of A-dependence of Ge”.
There is no direct measurements of the energy dependence of GVA~since a bremstrahlung photon

spectrum was used in [21]. However we could apply the standard differential method to estimate the

energy dependence of the ratio R = G ~“ (pN)/G~ (PN) using measurements [21]with different E~

We found [71] that R becomes practically energy independent at considerably lower energies than in

the pion case (see fig. 8.14). This is in line with eq. (8.14).

(c) The role of increase of the essential longitudinal distances can be illustrated also [71] by the

example of the semi-inclusive reactions like ir~+ A —* p + h” + X reaction studied in [181]atE,. = 3.4 GeV.

Correlation between emission of a FB proton and a fast forward h”’ (Ph~— 3 0eV/c) was investigated for

A= Al, Cu, Pb. For light nuclei a small negative correlation R = (T~AG~/P±h/{G~/h— 1} is expected since

in such process the energytransfer to the FNC is smaller than in the average process. With increasingA the
negative correlation should increase approximately as

R + 1 1/Ve~(A) (8.15)

because selection of events with the fast forward h” corresponds to selection of collisions with xi = 1. The

estimate (8.15) (with i’e~(A)calculated using E,. = 3.4 0eV data shown in fig. 8.13 and eq. (2.40))
reasonably describes both the A-dependence of R and its absolute value.

It would be of interest to study correlations in the similar reactionsatmuch higher projectile energies. If

h has large x in the projectile fragmentation region

R = ~ 1.

(5P/~t. 50

150

40

100 _____ Cu -. 30

50 ______ At 20

_____________________-—-—. ‘_~‘ 10 + c5r

4. 7 8
E
0&eV I

1 2 3 4 5
Fig. 8.13. Energy dependence of CIo~”for 0 = 160°in ir@)A scat-
terIng [15].Full pointscorrespond to proton scattering.The straight lines Fig. 8.14. Thecomparison of the energy dependence of the FB proton

represent the fit using eq. (8.13). yield in pion and photon scattering.

Onset of approximate energy independence of the inclusive spectra is 
earlier in the  γ - A than in pA due to small screening in the γA case

Comparison based on Erevan (γ) and Moscow  (p,π) data

Publication of 1977 let to many years of my interactions with Kim 
and his group, regular visits to Erevan. 
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FIG. 8.2: Comparison of the FB nucleon yields from 4He and D. The experimental points from [27, 38, 39] illustrate precocious
limiting fragmentation for p+4 He→ p+X reaction. Dot-dashed curve for 4He is the calculation in the two-nucleon correlation
approximation which uses as input n(k) from [118]. The shaded region is the calculation with inclusion of three-nucleon
correlations described in the text.

FIG. 8.3: The ratio of the differential cross sections per nucleon for the p+A→ p+X reaction (A1 = Ta, A2 = C) for different
emission angles. The experimental data are from 400 GeV measurement for 70 ≤ θ ≤ 160◦ [35, 36] and 9 GeV measurement
for θ = 180◦ [33, 34].

demonstrate that universality is valid practically in all backward hemisphere at α ≥ 1.2. For example the ratio

R(pN, Ta, C) =
1

ATa
GTa/P

p (pN)
/

1
Ac

GC/P
p (pN)

does not change more than by a factor ∼ 2 (fig. 8.3) while the cross sections decrease by a factor 2 × 104! (see figs.
8.4(a), 8.4(b)). (The data [33–36] indicate some small increase of the ratio R(pN,Ta, C) and also R(pN,Ta,6 Li) in the
region α ! 2.2 though in the region 1.2 < α < 2.2 the ratio is constant within experimental accuracy.)

At small nucleon momenta (pN ∼ 0.4 GeV/c) GA/N
a rather weakly depends on the emission angle θ, though with

increase of pN the spectrum becomes strongly anisotropic (figs. 8.4(a), 8.4(b)).
To compare the data obtained using different targets and projectile it is convenient to fit GA/N

a (pN) in the form

GA/N
a (pN) = Ca exp{−T/T0(θ)} % Ca exp{−B(θ)p2}

which reasonably describes the data (especially exp(−T/T0) fit) up to pN ∼ 1 GeV/c (as usually T is kinetic energy
of the FB nucleon).

23

For a description of the data at a broad range of momenta we had to 
introduce and calculate 3-, 4-,... N correlations. Allowed to describe plenty 
of data on FB nucleon, pion ...production. 3N, 4N dominate at α> 1.5
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Figs. 8.4, 8.5. Comparison of the FNC model with the 400GeV data [18].

(see figs. 8.4, 8.5). (The data [17,18] indicate some small increase of the ratio R(,PN, Ta, C) and also

R(,pN,Ta,6Li) in the region a  2.2 though in the region 1.2<a <2.2 the ratio is constant within
experimental accuracy.)

At small nucleon momenta (PN — 0.4 0eV/c) G~’~rather weakly depends on the emission angle 0,

though with increase of PN the spectrum becomes strongly anisotropic (figs. 8.4, 8.5).

To compare the data obtained using different targets and projectile it is convenient to fit G~(pN)in
the form

G~(pN)= Ca exp{— T/T
0(0)} Ca exp{—B(0)p

2}

which reasonably describes the data (especially exp(—T/T
0) fit) up to PN — 1 0eV/c (as usually T is

kinetic energy of the FB nucleon).

Comparison of the data [21, 15, 16] indicates that the slope parameter B(0) does not depend on A,
on the projectile (y, ir, p and even i, 1) and its energy with accuracy <10% (see, e.g. fig. 8.6). B(0) does

not change also if events with fixed number of FB nucleons (2, 3, 4) are selected [181,182].

There are some indications of irregularities in the momentum shape of G~: a bump was observed

in n, ir + C—* p+ X reactions at PN = 0.4 GeV/c (p0 = 7GeV/c, p,,. = 4GeV/c) and in p + D—~p + X

reaction at PN = 0.35 0eV [184] (EN = 1 0eV); in D(p) + Pb— p + X collisions a minimum was observed
at 1500 (170°)[185] in the angular dependence of G~’~(pN)at PN = 0.5 0eV/c.

Strength of 2N correlations is similar to the one found in (e,e’),(p,2p)

Observations of (p,2pn) &(e,e’) at x>1 confirm the origin of 
SRC as the dominant source of the fast backward nucleons



Next step was to look for correlations in large Q eA scattering with FB 
nucleons - we discussed with Kim in the summer of 83  

August 84 - Kim is due to leave for SLAC - Korean airliner shot 
down near Sakhalin island - visit is canceled    

↓
Suggests that Misak will work with us - to establish interface of theory 
and experiment

Spring 84 - Misak first comes to Leningrad & we start to write a proposal to 
do coincidence experiments with electrons at SLAC nuclear facility

Forced to focus on the experiment at the Erevan electron machine 
designed primarily by Yuri Orlov) which previously did not have an 
extracted beam (because  Orlov could not continue his work  )



First A(e,e’p) experiment with detection of protons in backward hemisphere 
was performed by Erevan group in 1986 - previous (e,e’p) experiments 

measured knocked out protons which are emitted forward along q.→

First results: YERPHI-1351-46-91, Jul 1991

Published:

Collapse of USSR
⇒ ⇒ Eli comes in the fall of 91 - no 

electricity to run upgraded 
version of experiment

PhD of M.Amaryan



knockout spectator 2N SRC

fsi with intermediate Δ-isobar

Δ-isobar
spectator 2N SRC



First nuclear physics proposal for Hall B

It was accepted and led to active participation of the Erevan 
group in the research of Hall B.   Though most of the ideas of the 
proposal still not implemented.



Study of the simplest reaction to check dominance of 2N, 3N SRC 
and to measure absolute probability of SRC:  A(e,e’) at x>1

Define x=Q2/2q0mN

x=1 is exact  kinematic limit for all Q2 for the scattering 
off a free nucleon

x=2 (x=3) is exact  kinematic limit for all Q2 for the 
scattering off a A=2(A=3) system (up to <1% correction due 
to nuclear binding

W 2
= Q2

+ 2q0MA + M2

A ≥ M2

A

=⇒ Q2
+ 2q0MA ≥ 0

=⇒ x ≤ MA/mN

28

Parallel development for more details 
- D.Day’s talk
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will depend only on the ratio aj(A)/aj(A′). This ‘scal-
ing’ of the ratio will be strong evidence for the dominance
of scattering from a j-nucleon SRC. Note that motion of
the SRC will change the value of the ratio, but not the
scaling itself [7, 8].

Final state interactions (FSI) also can affect the inclu-
sive cross section and must be taken into account . In
SRC studies, FSI consists of two components: interac-
tion of the struck nucleon (i) with other nucleons in the
j-nucleon SRC and (ii) with nucleons in the A−j residual
nucleus. Due to the smaller distances and smaller relative
momenta of nucleons in the SRC, the first component of
FSI dominates [9, 21]. This means that FSI are localized
mainly within SRCs, hence the FSI can modify σ(j) but
not aj(A) (ratios) in the decomposition of Eq. (1)

Since the probabilities of j-nucleon SRC are expected
to drop rapidly with j ( since the nucleus is a dilute
bound system of nucleons) one expects the cross section
ratios of heavy and light nuclei for j < xB < j + 1 to
equal A′

A · aj(A)
aj(A′) . Moreover one expects that the relative

probabilities of j-nucleon SRC should grow with A (for
A ≥ 12) as [4]

aj(A) ∝ 1
A

∫
d3rρj

A(r), (2)

where ρA(r) is the nuclear density. Eq. 2 predicts a faster
increase with A of higher relative correlations, leading to
an expectation of steps in the ratio of σ(A)

σ(A′) for heavy and
light nuclei. Observation of such steps (ie: scaling) would
be a crucial test of the dominance of SRC in inclusive
electron scattering. It would demonstrate the presence
of 3-nucleon SRC and confirm the previous observation
of 2-nucleon SRC.

In particular, for 1.4 < xB < 2 and Q2 > 1.4
(GeV/c)2 one expects [6, 9] that the ratio R(A, 3He) =

3σA(Q2,xB)
Aσ3He(Q

2,xB) of inclusive electron scattering from nucleus
A and 3He is independent of Q2 and xB (ie: it scales).
This scale factor is related to the relative probability of
2-nucleon SRC those nuclei. In our previous work [10] we
directly measured these ratios for the first time and es-
tablished that they indeed scale, confirming findings [9]
which reported scaling based on the comparison of the
data for A ≥ 3 [11–13] and A = 2 [14] obtained in some-
what different kinematic conditions. In this work, we
repeat our previous measurement with higher statistics.

Moreover we can use the ratio R(A, 3He) to search
for the even more elusive 3-nucleon SRC: correlations
which originate from both short-range NN interactions
and three-nucleon forces. As 3-nucleon SRC are very
low-probability, we need to suppress 2-nucleon SRC by
choosing xB > 2 so that ν $ k2/2mN . This analysis was
designed to probe for 3-nucleon correlations by looking
for scaling in the region 2 ≤ xB ≤ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 4He and solid 12C targets. The

2002 measurements used 4.471 GeV electrons incident on
a solid 56Fe target and 4.7 GeV electrons incident on a
liquid 3He target. The 12C and 56Fe data were taken
with an empty liquid-target cell.

Scattered electrons were detected in the CLAS spec-
trometer [15]. The lead-scintillator electromagnetic
calorimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 µ target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of non-uniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM,
to determine the electron acceptance correction fac-
tors, taking into account “bad” or “dead” hardware
channels in various components of CLAS. The mea-
sured acceptance-corrected, normalized inclusive electron
yields on 3He, 4He, 12C and 56Fe at 1 < xB < 2 agree
with Sargsian’s radiated cross sections [16] that were
tuned on SLAC data [17] and described reasonably well
the Jefferson Lab Hall C [18] data.

We calculated the radiative correction factors for xB <
2 using Sargsian’s cross sections [19] and the formalism of
Mo and Tsai [20]. These factors are almost independent
of xB for 1 < xB < 2 for all nuclei used. Since there are
no theoretical cross section calculations for xB > 2, we
used the 1 < xB < 2 correction factors for 1 < xB < 3.

We construct the ratios of inclusive cross sections as a
function of Q2 and xB , with corrections for CLAS accep-
tance, and elementary electron-nucleon cross sections:

r(A, 3He) =
A(2σep + σen)

3(Zσep + Nσen)
3Y(A)

AY(3He)
CA

rad (3)

where Z and N are the number of protons and neutrons
in nucleus A, σeN is the electron-nucleon cross section,
Y is the normalized yield in a given (Q2,xB) bin [32] and
CA

rad is the ratio of the radiative correction factors for A
and 3He (CA

radA = 0.95 and 0.92 12C and 56Fe respec-
tively). In our Q2 range, the elementary cross section
correction factor A(2σep+σen)

3(Zσep+Nσen) is 1.14 ± 0.02 for C and
4He and 1.18 ± 0.02 for Fe. Fig. 1 shows the resulting
ratios integrated over Q2 > 1.4 GeV2.

These cross section ratios a) scale the first time for
1.5 < xB < 2, which indicates that 2-nucleon SRCs dom-
inate in this region (see Ref. [10]), b) increase with xB

for 2 < xB < 2.25, which can be explained by scattering
off nucleons involved in moving 2-nucleon SRCs, and c)
scale a second time at 2.25 ≤ xB ≤ 2.8, which indicates
that 3-nucleon SRCs dominate in this region.

Assuming that the scaling regions indicate the kine-
matical domain where the corresponding SRCs dominate,
the ratio of the per-nucleon SRC probabilities in nucleus
A relative to 3He, a2(A/3He) and a3(A/3He), are just
the values of the ratio r in the appropriate scaling region.
a2(A/3He) is evaluated at 1.5 < xB < 2 and a3(A/3He)
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The ratios of inclusive electron scattering cross sections of 4He, 12C and 56Fe to 3He have been
measured at 1 < xB < 3 for the first time. At Q2 > 1.4 GeV2, the ratios exhibit two separate
plateaus, at 1.5 < xB < 2 and at 2.2 < xB . This pattern is predicted by scattering from 2- and
3-nucleon short-range nucleon correlations (SRC). Relative to A = 3, the per-nucleon probabilities
of 3-nucleon SRC are 2.3, 3.2, and 4.6 times larger for A = 4, 12 and 56, which is a faster increase
with A than for 2-nucleon SRC. The increase of the probability of 2- and 3-nucleon correlations
from A = 12 to A = 56 is consistent with the second and third powers, respectively, of the nuclear
density. The absolute per-nucleon probabilities of 2-nucleon SRC range from 0.15 for 4He to 0.25
for 56Fe, while the probabilities of 3-nucleon SRC are about 30 times smaller.

PACS numbers: PACS : 13.60.Le, 13.40.Gp, 14.20.Gk

Understanding short-range correlations (SRC) in nu-
clei has been one of the persistent though rather elusive
goals of nuclear physics for decades. The structure of
the nucleon-nucleon interaction and calculations of nu-
clear wave functions using realistic nucleon-nucleon in-
teractions suggest a substantial probability, ∼ 25%, for
a nucleon in a heavy nucleus to have a momentum above
the Fermi momentum, kF (for A ≥ 4, kF ≈ 240 MeV/c) .
The dominant mechanism for generating high momenta
in the wave function is the two nucleon interaction at dis-
tances less than the average internucleon distance, cor-
responding to nuclear densities several times higher than
the average nuclear density. It involves both tensor forces
and short-range repulsive forces, which share two impor-
tant features, locality and large strength (much larger
than the mean field interaction). The short-range corre-
lations produced by these forces result in the universal
shape of the nuclear wave function for all nuclei for mo-
mentum k > kF [1, 2]. For a review and references, see
Ref. [3].

A characteristic feature of this dynamics is that the
momentum k of a high-momentum nucleon is balanced,
not by the rest of the nucleus, but by the other nucle-
ons in the correlation. Therefore, for a 2-nucleon SRC,
the removal of a nucleon with large momentum, k, is
associated with a large excitation energy ∼ k2/2mN cor-
responding to the kinetic energy of the second nucleon.
The relatively large energy scale (≥ 100 MeV) involved
in the interaction of the nucleons in the correlation makes
it very difficult to resolve correlations in intermediate

energy processes. Though some experimental evidence
for the presence of SRC is available from the analysis
of high energy hadron- and photon-nucleus interactions
(see Ref. [4, 5] and references therein), it is not definitive.
Hence measurements using high energy electrons seemed
a natural candidate to move forward.

The simplest of such processes is inclusive electron
scattering, A(e, e′), at four-momentum transfer Q2 ≥ 1.5
GeV2 and xB = Q2/2mNν > 1 where ν is the energy
transfer. In this reaction we can strongly suppress scat-
tering off the mean field nucleons by requiring xB ≥ 1.3
and we can resolve SRC by transferring energies and mo-
menta much larger than the SRC scale.

Ignoring corrections due to the motion of the SRC in
the mean field of the rest of the nucleus, we can decom-
pose the nuclear cross section at high nucleon momen-
tum into pieces due to electrons scattering from 2-, 3-
and more-nucleon SRC [4, 6]:

σ(A) =
∑

j=2

A
aj(A)

j
σ(j) (1)

where σ(A) and σ(j) are the cross sections of electron-
nucleus and electron-j-nucleon-correlation interactions
respectively (and both depend on xB and Q2), and aj(A)
is the ratio of the probabilities for a given nucleon to be-
long to correlation j in nucleus A and to belong to a nu-
cleus consisting of j nucleons. In the region of (xB , Q2)
where scattering from one type of SRC (eg: 2-nucleon)
dominates, the ratio of inclusive cross sections from two
different nuclei will be independent of xB and Q2 and
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FIG. 2.9: A typical configuration for the j-nucleon correlation.

In relativistic theory the answer is more complicated. It seems fruitful for the theoretical analysis of hard phenomena
to define formally the notion of j-nucleon correlation. Look at a subsystem of j nucleons in the ground state having
invariant mass ! jmN, where nucleons obtain large relative momenta due to hard short-range interactions between
all j nucleons. Typical example of the three-nucleon correlation is shown in fig. 2.8. Before a hard interaction the j
nucleons are in the average configuration (αi ∼ αj ∼ 1), j-nucleon correlation contribute to ρN

A(α, k⊥) in the region
α < j only due to momentum conservation. In the non-relativistic Schrödinger equation this kinematic decomposition
of j-nucleon correlations is not evident. Therefore one cannot relate simply n(k) to ρN

A(α, k⊥) for α " 2.
Though at α→ A A-nucleon correlation should dominate ρN

A(α, k⊥), in the region 1 < α# A relative contributions
of different configurations are determined by the competition of two factors: the small probability aj to find a
correlation with large j and the enhancement of higher correlations due to a slower decrease of their contribution
to ρN

A(α, k⊥) at large α (see eq. (2.43)). Therefore it seems natural to expect that at least in the region of not too
large α # 3 (which is probed until now) few-nucleon correlations (FNC) dominate. Thus, the nucleon density matrix
ρN
A(α, k⊥) can be effectively expanded over the contribution of j-nucleon correlations ρj(α, k⊥):

1
A

ρN
A(α, k⊥) =

A∑

j=2

ajρj(α, k⊥). (2.38)

More accurate treatment is required to account for the c.m. motion of the j-nucleon configuration in the mean field
of the nucleus. It is expected that this effect should lead to small corrections except near the edge of the j-nucleon
correlation. This is because the scale of the repulsive potential is considerably larger than that for the long-range
potential.

The aj ’s in eq. (2.38) can be estimated on the basis of the non-relativistic Schrödinger equation for nuclear WF
since they are determined by the mean internucleon distances. The well known fact that the nucleon density in the
center of the nucleus is larger than near the surface leads to a certain dependence of aj on the atomic number. This
dependence can be estimated in the gas approximation where15 for j # A

aj ∼ (1/A)
∫

[ρA(r)]jd3r. (2.39)

Here ρA(r) is the nucleon density in the coordinate space normalized according to
∫

ρA(r)d3r = A. The calculation
using the conventional fits of ρA(r), obtained in electron and proton scattering data [158, 159] leads to a rather similar
A dependence of aj , which can be roughly approximated as

a2 ∼ A0.15; a3 ∼ A0.22; a4 ∼ A0.27 (2.40)

in the range A = 12− 207. Thus ρN
A(α, k⊥) should be a practically universal function of α, k⊥ in a wide α, k⊥ range.

In momentum space ρj(α, k⊥) corresponds to the contribution of j-nucleon configuration, where the large momentum
of the fast nucleon is balanced by the other (j − 1) nucleons of this configuration (see fig. 2.9). The momentum
dependence of ρ2 is expected to be similar to that of the deuteron, since the short distance behaviour is independent
of the nucleus structure. (In principle some difference could arise from the presence of pp, pn pairs in spin singlet
states and different orbital momenta of nucleons.) The calculation of n4He using the Reid potential is in agreement
with n(k) ∼ ψ2

D(k) [118].
To estimate ρj≥3(α, k⊥ = 0) at large α we assume that a fast nucleon with α→ j collects the large momentum as

a result of j − 1 hard two-body collisions with other nucleons. A typical diagram for the three-nucleon correlation is
shown in fig. 2.8. The black blob in fig. 2.8 corresponds to the off-energy-shell two-nucleon amplitude (solution of

15 We thank Prof. V.A. Khodel for the explanation, how these formulae can be obtained within the Fermi liquid theory. Similar expression
for a2 was discussed by Erikssons [157]. This estimate is rather rough, since gas approximation is not good if large hard core effects are
present.

for A> 12

Qualitative idea - to absorb a large Q at x>j at least j nucleons should come 
close together.  For each configuration wave function is determined by local 
properties and hence universal. In the region where scattering of j nucleons is 
allowed, scattering off j+1 is a small correction.
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It is convenient to normalize σj(x,Q2) so that

σj(x,Q2) = σe(B=j)(x,Q2)/j for x > j − 1. (8.9)

Thus, aj(A) is the ratio of the probabilities for a given nucleon to belong to correlation j in nucleus A and to a nucleus
consisting of j nucleons. It follows from eq. (8.7) that

σj(x,Q2) = 0 for x > j. (8.10)

Evidently, typical internucleon distances rc in the correlation {j} are considerably smaller than the average internu-
cleon distances in nuclei, rNN ∼ 1.7 fm. Thus, the probability of correlation j should rapidly decrease with j roughly
as (rc/rNN)3(j−1). If we use as a guide our analysis of kinematically forbidden (kf) nucleon and pion production in the
high-energy reactions p+A → p(π)+X in terms of the few-nucleon correlation model (see summary in section 6 6.4),
rc ∼ 1 fm and (rc/rNN)3 ∼ 0.2. Since the probability of a j-nucleon correlation rapidly decreases with j one should
expect that correlations with j = [x] + 1 would dominate in the cross section. Consequently the structure functions
F1,2(x,Q2) of different nuclei should be proportional in the regions j − 1 < x < j with Q2-independent coefficients
[449]

σeA(x,Q2)/σeC(x,Q2)
∣∣
j−1<x<j

= (A/C)aj(A)/aj(C). (8.11)

In the transition region x ∼ j the ratio on the left-hand side of eq. (8.11) should somewhat increase with increasing
x (for A > C) since aj+1(A)/aj+1(C) > aj(A)/aj(C) due to the increase of the average nuclear density with A. The
size of the transition region is difficult to estimate since it depends on the difference of the excitation energies and
momentum distributions of the spectator systems, etc.

Let us first consider the region of j = 2 correlations (1 < x < 2). For simplicity we shall assume that the wave
functions of j = 2 correlations with different (iso)spin and charge are proportional (cf. refs. [451, 452]). In this case
the x-dependences of the contributions of these correlations to σ2(x,Q2) should be similar. Thus, for nuclei with
Z $= N we can rewrite eq. (8.11) as

σeA(x,Q2)/σeD(x,Q2) = Zap
2(A)γ(Q2) + Nan

2(A)[1 − γ(Q2)], (8.12)

where ap(n)
2 is the probability for a proton (neutron) to belong to correlation j = 2, as compared to that in the

deuteron. If the correlation consists of nucleons only,

γ = σep(Q2)/[σep(Q2) + σen(Q2)], (8.13)

where σeN is the cross section of elastic eN scattering. Experimentally γ % 0.7 for Q2 ! 2 GeV2. In the quark cluster
model [450]

γ = (2e2
u + e2

d)/(3e2
u + 3e2

d) % 0.6, (8.14)

where eu (ed) is the electric charge of the u (d) quark.
At present there exists only a limited set of data on σe 3He for 1 < x < 2 and sufficiently large Q2 [437–439] which

can be compared with similar data on deuterium [432–436].99 Using the compilation of the data for σe 3He and σeD of
refs. [432–439] and accounting for the small difference of Q2 in the two cases on the basis of eq. (8.55), we find that
for x ∼ 1.5 and 2.5 ! Q2 ! 1 GeV2 the ratio F2 3He(x,Q2)/F2D(x,Q2) is practically constant and

ap
2(3He) % 1.7. (8.15)

It follows from eqs. (8.12)-(8.15) that the value of ap
2(3He) derived is practically insensitive to the value of an

2(3He),
especially if one assumes that an

2 − ap
2 for 3He (this is consistent with the calculations [451, 452]).

Very recently S. Rock kindly provided us with the Al/D ratios extracted from the analysis of the target container
events in the E133 SLAC experiment. A sample of these data at Q2 % 2.5 GeV2, for which the errors are the smallest,
is presented in fig. 8.2. The data are consistent with eq. (8.11) in the x, Q2 range where the average internal momenta
of the struck nucleons exceed 0.3 GeV/c [cf. eqs. (8.60) and (8.56)]. The analysis of the data using eq. (8.11) leads
to a2(Al) = 5 ± 1, which is in reasonable agreement with our estimates [449], see the next subsection.

99 The situation will change in the near future when the analysis of the data obtained at SLAC for a wide range of nuclei and over a rather
large interval of Q2 will be completed. First data on σ(e − Fe)/σ(e −4 He) are discussed in section 8 8.2 8.2.4.

FSI is present in the interaction with j -nucleons, but not with the 
rest of the system as they are far away, while j nucleons have a small 
invariant mass in the final state. However it is also practically 
universal (fsi NN interaction is practically the same for I=0,1 except 
very close to the threshold).

Scaling of the ratios of (e,e’) cross sections at x>1
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Scientists believe that the crushing forces
in the core of neutron stars squeeze nucle-
ons so tightly that they may blur together.
Recently, an experiment by Kim Egiyan and
colleagues in Hall B at the US Department
of Energy’s Jefferson Lab caught a glimpse
of this extreme environment in ordinary
matter here on Earth. Using the CEBAF
Large Acceptance Spectrometer (CLAS)
during the E2 run, the team measured
ratios of the cross-sections for electrons
scattering with large momentum transfer
off medium, and light nuclei in the kine-
matic region that is forbidden for low-
momentum scattering. Steps in the value
of this ratio appear to be the first direct
observation of the short-range correlations
(SRCs) of two and three nucleons in nuclei,
with local densities comparable to those in
the cores of neutron stars.

SRCs are intimately connected to the
fundamental issue of why nuclei are dilute
bound systems of nucleons. The long-range attraction between nucle-
ons would lead to a collapse of a heavy nucleus into an object the
size of a hadron if there were no short-range repulsion. Including a
repulsive interaction at distances where nucleons come close
together, ≤0.7 fm, leads to a reasonable prediction of the present
description of the low-energy properties of nuclei, such as binding
energy and saturation of nuclear densities. The price is the prediction
of significant SRCs in nuclei.

For many decades, directly observing SRCs was considered an
important, though elusive, task of nuclear physics; the advent of
high-energy electron–nucleus scattering appears to have changed
all this. The reason is similar to the situation encountered in particle
physics: though the quark structure of hadrons was conjectured in
the mid-1960s, it took deep inelastic scattering experiments at SLAC
and elsewhere in the mid-1970s to prove directly the presence of
quarks. Similarly, to resolve SRCs, one needs to transfer to the
nucleus energy and momentum ≥1 GeV, which is much larger than
the characteristic energies/momenta involved in the short-distance
nucleon–nucleon interaction. At these higher momentum transfers,
one can test two fundamental features of SRCs: first, that the shape
of the high-momentum component (>300 MeV/c) of the wave func-
tion is independent of the nuclear environment, and second, the
balancing of a high-momentum nucleon by, predominantly, just one
nucleon and not by the nucleus as a whole.

An extra trick required is to select kinematics where scattering off

low-momentum nucleons is strongly sup-
pressed. This is pretty straightforward at
high energies. First, one needs to select
kinematics sufficiently far from the regions
allowed for scattering off a free nucleon,
i.e. x = Q2/2q0mN < 1, and for the scatter-
ing off two nucleons with overall small
momentum in the nucleus, x < 2. (Here Q2

is the square of the four momenta trans-
ferred to the nucleus, and q0 is the energy
transferred to the nucleus.) In addition,
one needs to restrict Q2 to values of less
than a few giga-electron-volts squared; in
this case, nucleons can be treated as par-
tons with structure, since the nucleon
remains intact in the final state due to final
phase-volume restrictions.

If the virtual photon scatters off a two-
nucleon SRC at x > 1, the process goes as
follows in the target rest frame. First, the
photon is absorbed by a nucleon in the
SRC with momentum opposite to that of

the photon; this nucleon is turned around and two nucleons then fly
out of the nucleus in the forward direction (figure 1). The inclusive
nature of the process ensures that the final-state interaction with
the rest of the nucleus does not modify the cross-section. Accord-
ingly, in the region where scattering off two-nucleon SRCs domi-
nates (which for Q2≥1.4 GeV2 corresponds to x > 1.5), one predicts
that the ratio of the cross-section for scattering off a nucleus to that
off a deuteron should exhibit scaling, namely it should be constant
independent of x and Q2 (Frankfurt and Strikman 1981). In the
1980s, data were collected at SLAC for x > 1. However, they were in
somewhat different kinematic regions for the lightest and heavier
nuclei. Only in 1993 did the sustained efforts of Donal Day and col-
laborators to interpolate these data to the same kinematics lead to
the first evidence for scaling, but the accuracy was not very high.

The E2 run of the CLAS detector at Jefferson Lab was the first exper-
iment to take data on 3He and several heavier nuclei, up to iron, with
identical kinematics, and the collaboration reported their first find-
ings in 2003 (Egiyan et al. 2003). Using the 4.5 GeV continuous
electron beam available at the lab’s Continuous Electron Beam
Accelerator Facility (CEBAF), they found the expected scaling behav-
iour for the cross-section ratios at 1.5 ≤ x ≤ 2 with high precision.

The next step was to look for the even more elusive SRC of three
nucleons. It is practically impossible to observe such correlations in
intermediate energy processes. However, at high Q2, it is straightfor-
ward to suppress scattering off both slow nucleons and two-nucleon

NUCLEAR PHYSICS
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Close nucleon encounters
Jefferson Lab may have directly observed short-range nucleic correlations, with densities

similar to those at the heart of a neutron star. Mark Strikman explains.

Fig. 2. Scattering of a virtual photon off a
three-nucleon correlation, x > 2, before (left)
and after (right) absorption of the photon.

Fig. 1. Scattering of a virtual photon off a two-
nucleon correlation, x > 1.5, before (left) and
after (right) absorption of the photon.

!!

Scattering off  a two-nucleon correlation, x>1.5
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W for γ* scattering off two nucleon system is well below the 
threshold for production of Δ-isobar. Hence inelastic processes 
eN→eX are strongly suppressed. For same reason scattering off 
6q configurations (even if they are present in nuclei) does  not 

contribute in this kinematics
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History of study of the scaling ratios.

Prediction  FS 80☺
First evidence from 3He/D - FS81

Al/D - provided by S.Rock , curves by Misak , 88

Finally extracted  data from SLAC NA3 experiment  
together with Donal Day and Misak Sargsian  93

Evidence for x> 2 scaling for 4He /3He,  88

A/3He, 2>x>1,  - Jlab  2004

A/3He, 3>x>2,  - Jlab  2005
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First direct 
measurement 
led  by Kim 

Egiyan 



FSI of struck nucleon with slow nucleons  at x> 1.3 

The struck nucleon has 
virtuality

where p=pint+q

If  |pint|    is  small,  

is  large. Hence  it is not legitimate to apply semiclassical 
approximation for the calculation of the Green function. 

Statements in the literature that FSI with low momentum nucleon is large and 
strongly enhances the cross section in the discussed limit (Benhar,  Fabrocini, 
Fantoni, Miller, Pandharipande  & Sick, 91) are due to neglect of these effects.
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Distances for which FSI of a struck nucleon with momentum less than the 
Fermi momentum  can contribute to the inclusive cross section 

Switch to old fashioned non-covariant  formalism where energy is not 
conserved and momentum is conserved to determine what at what 
distances, r,  fsi can contribute 

where v is the struck nucleon velocity v=p/E,  
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Only fsi close to mass shell when momentum of the struck 
nucleon is close to one for the scattering off a correlation. At 
very large Q - light-cone fraction  of  the struck nucleon 
should be close to x (similar to the parton model situation) - 
only for these nucleons fsi can contribute to the total cross 
section, though even this fsi is suppressed.
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W − MD ≤ 50 MeV

Masses of NN system produced in the process are small - 
strong suppression of isobar, 6q degrees of freedom.
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Assuming in the spirit of the dominance of the two nucleon correlations in the 
spectral function that the mean value of excitation energy corresponds to the 
scattering off the 2N SRC pair at rest we can determine mean value of the light 
cone fraction at which scattering happens

FS88
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New Jlab data 
from Hall B. 

Q2 > 1.5 GeV2

Fe/C ratios for x~1.75, 
x~2.5 agree within 
experimental errors with 
our prediction - density 
based estimate:

a2 = (A1/A2)
0.15

a3 = (A1/A2)
0.22

The best evidence for presence of 3N SRC. One probes here  interaction 
at internucleon distances <1.2 fm corresponding to local matter densities 
≥5ρ0  which is comparable to those in the cores of neutron stars!!!  
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FIG. 1: Weighted cross section ratios of (a) 4He, (b) 12C and
(c) 56Fe to 3He as a function of xB for Q2 > 1.4 GeV2. The
horizontal dashed lines indicate the 2-nucleon and 3-nucleon
scaling regions which have been used to calculate the per-
nucleon probabilities for 2- and 3-nucleon SRCs in nucleus A
relative to 3He.

is evaluated at 2.25 < xB < 2.8 corresponding to the
dashed lines in Fig. 1. The chances for each nucleon to
be involved in a 2-nucleon SRC in 4He, 12C and 56Fe are
1.96, 2.51 and 3.00 times higher than in 3He (see Ta-
ble I). The chances for each nucleon to be involved in
a 3-nucleon SRC are, respectively, 2.3, 3.2 and 4.6 times
higher than in 3He.

The systematic uncertainty in the relative per-nucleon
SRC probabilities are discussed in Ref. [10]. For the
4He/3He ratio, all uncertainties except those of the beam
current and target density cancel, giving a total system-
atic uncertainty of 0.7% . For the solid-target to 3He
ratios, only the electron detection efficiency cancels, giv-
ing a total systematic uncertainty of 6%.

To obtain the absolute values of the per-nucleon prob-
abilities of SRCs, a2N (A) and a3N (A), from the mea-
sured ratios, a2(A/3He) = a2N (A)

a2N (3He) and a3(A/3He) =
a3N (A)

a3N (3He) , we need to know the absolute per-nucleon
SRC probabilities for 3He, a2N (3He) and a3N (3He). The
probability of 2-nucleon SRC in 3He is the product of
the probability of 2-nucleon SRC in deuterium and the
relative probability of 2-nucleon SRC in 3He and d,
a2(3He/d). We define the probability of NN SRC in deu-
terium as the probability that a nucleon in deuterium has

a momentum p > 275 MeV/c since that is the minimum
recoil momentum corresponding to the onset of scaling at
Q2 = 1.4 GeV2 and xB = 1.5. Note that this experiment
is the first to measure the momentum onset at which 2-
nucleon SRC dominate. This momentum distribution in-
tegral gives 0.041±0.008 [21] where the uncertainty is due
to the uncertainty in the momentum onset of 2-nucleon
SRC. The second factor of 1.97±0.095 [10] is the average
of the experimental (1.7±0.3 [9]) and theoretical (2.0±0.1
[16, 22]) of a2(3He/d) . Thus, a2N (3He) = 0.08 ± 0.016.

TABLE I: a2(A/3He) and a3(A/3He) are the per-nucleon
probabilities of 2- and 3-nucleon SRC in nucleus A relative
to 3He. a2N (A) and a3N (A) are the absolute per-nucleon
probabilities of 2- and 3-nucleon SRC in nucleus A (in %).
Errors shown are statistical (first) and systematic.

a2(A/3He) a2N (A)(%) a3(A/3He) a3N (A)(%)
3He 1 8.0±0.0±1.6 1 0.18±0.00±0.06
4He 1.96±0.01± 0.03 15.6±0.1±3.2 2.33±0.12±0.04 0.42±0.02±0.14
12C 2.51±0.01± 0.15 20.0±0.1±4.4 3.18±0.14±0.19 0.56±0.03±0.21
56Fe 3.00±0.01± 0.18 24.0±0.1±5.3 4.63±0.19±0.27 0.83±0.03±0.27

Thus, the absolute probabilities for 2-nucleon SRC are
0.156, 0.20 and 0.24 for 4He, 12C and 56F respectively
(see also Table I). In other words, at any moment, in
56Fe, 12C, 4He and 3He, respectively, 6–7, 1.0, 1/3 and
1/8 of 2-nucleon SRCs can be found.

Similarly, to obtain the absolute probability of 3-
nucleon SRC we need the probability that the three nu-
cleons in 3He are in a 3-nucleon SRC. The start of the
second scaling region at Q2 = 1.4 GeV2 and xB = 2.25
corresponds to pmin ≈ 500 MeV/c. In addition, since
this momentum must be balanced by the momenta of
the other two nucleons, we require that p1 ≥ 500 MeV/c
and p2, p3 ≥ 250 MeV/c. This integral over the Bochum
group’s [24] 3He wave function is 0.07% using the CD
Bonn Potential [25] without 3-nucleon forces (3NF),
0.12% using CDBonn with the Tucson-Melbourne (TM)
3NF [27], 0.23% using the Urbana potential [26] with TM
3NF and 0.24% using the the Urbanna potential with
Urbanna-IX 3NF [28]. (Clearly, absolute A(e, e′) cross
sections at xB > 2 are needed to constrain these poten-
tials.) We will use the average value of these estimates
including 3NF: a3N(3He) = 0.18 ± 0.06%.

Using this value we calculate the absolute values of
a3N (A) shown in the fourth column of Table I. The per-
nucleon probabilities of 3-nucleon SRC in all nuclei are
smaller than the 2-nucleon SRC probabilities by more
than one order of magnitude.

We compared the 2-nucleon SRC probabilities to var-
ious models. The SRC model predicts [6] the relative
probabilities a2(4He/3He) = 2.03 and a2(12C/3He) =
2.53, as well as the A-dependences for A≥ 12 (see Eq.
2), which implies that a2(56/3He)/a2(12/3He) = 1.26.
These are remarkably close to the experimental values of
1.96 ± 0.01 ± 0.03, 2.51 ± 0.01 ± 0.15, and 1.20 ± 0.02
respectively. (Note that most of the systematic errors

Day, L.Frankfurt,  
Sargsian, MS, 93

K.Egiyan, et al 2005

Significant 
uncertainties in 
absolute scale

Amazingly good agreement between two analyses for a2 (A)
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Compare also to the analysis of BNL EVA data  on large angle 
C(p,2p) - a2(C) ~ 5

Yaron et al 02

L.Frankfurt & MS, 88 a2(Al) ~ 5±1    from SLAC data
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in Sec. IV for the data. !2" 60°!$c.m.!120° !for all target
positions". The calculations include all the described nuclear
effects !EMC, ISI/FSI, and CT".
Figure 13 shows the measured longitudinal # distributions

at 5.9 GeV/c and 7.5 GeV/c together with the calculations.

In the calculation we used the two-nucleon correlation model

for the high-momentum component of the nuclear wave

function, discussed in Sec. II. For the parameter a2(
12C)

which defines the strength of the SRC in the nuclear spectral

function %Eq. !9"& we used the value a2'5 obtained from the
analysis of high Q2 and large Bjorken x A(e ,e!)X data Ref.
%15&.
The calculations agree well with the data, (2"0.8 for

5.9 GeV/c and (2"2.0 for 7.5 GeV/c .
The next question we ask is whether the data allow us to

understand the ingredients contributing to the strength of the

# distribution at lower # values.
First, we determine whether the high-momentum-transfer

elastic pp scattering off the bound nucleon still follows the

s#10 energy dependence. In Fig. 14 we compare the calcula-

tions using s-independent ‘‘pp cross sections’’ !triangle
points" and the ‘‘real’’ pp cross sections parametrized ac-
cording to Eq. !10" !solid points". If there were no scaling for
hard pp scattering in the nuclei, the #-distribution would

peak around #"1, as shown by the calculations with no ‘‘s
weighting’’ !triangles". The data clearly show a shift to lower
#, which confirms the strong s dependence of the quasielas-
tic process.

Next we address the question of whether the strength seen

at #!1 comes from SRC in the nucleus. Figure 15 shows

two calculated # distributions for the incoming proton mo-

mentum of 5.9 GeV/c . One distribution is calculated with

the harmonic oscillator wave function only %i.e., a2"0, in
Eq. !9"& !triangle points". The second distribution is calcu-
lated with the SRC contribution to the high-momentum tail

of the nuclear wave function, described by a2"5 !solid
points". These two nuclear wave functions were referred to

FIG. 13. A comparison between calculated # distributions !!"
and the experimental data !"" at 5.9 GeV/c !a" and 7.5 GeV/c !b".

FIG. 14. Calculated longitudinal # distributions with !!" and
without ()) s weighting compared to the measured data !"", at
5.9 GeV/c !a" and 7.5 GeV/c !b".

FIG. 15. Longitudinal # distributions for 5.9 GeV/c !", data;
), calculations with a2"0; !, calculations with a2"5.0).
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A detailed analysis of the EVA data by I.Yaron, E.Piasetzky, 
M.Sargsian and F&S  2002 within 2N SRC model including 
fsi effects, etc allowed to determine light-cone distribution 
of fast forward moving nucleons 
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n(k) for 2H, 4He 16O, nuclear matter

Pieper et al 92

Consistent with  a fast onset of the asymptotic behavior above the 
Fermi momentum 

a2(n.m.) ~ 5÷6
42

Parallel theoretical developments in the nonrel. calculations of 
high momentum nucleus properties - few glimpses relevant for 
our discussion
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Large differences between in nD(p) for p>0.4 GeV/c  - absolute value and 
relative importance of S and D waves between currently popular models for 
though they fit equally well pn  phase shifts. Traditional nuclear physics probes 
are not adequate to discriminate between these models.

D-wave dominates in a large momentum range above 300 MeV/c. Known at least 
since 70’s
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The pp/pn ratio is likely to depend on the momentum of the struck 
nucleon. For example for 3He for a pn/pp pair with the third nucleon at 
rest. Fermi motion of the pair smears the momentum dependence of the 
ratio (M.Sargsian)
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Nucleon Momentum Distributions
Other Observables
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FIG. 11. The momentum distributions of 16O corresponding to
harmonic oscillator (top) and Woods-Saxon (bottom) wave functions,
giving the best density shown in Fig. 8. The thin solid curves include
only the central correlation function, whereas the thick solid curves
include all of them. Our results are compared with the results of
Ref. [7] (stars), obtained with the same correlation functions. The
results of Ref. [5] obtained within the variational Monte Carlo
approach using the AV 14 interaction are also shown by full squares.
The value of the kinetic energy obtained by integrating n(k) are
〈T 〉 = 297.87 MeV (central, HO), 〈T 〉 = 476.55 MeV (full, HO);
〈T 〉 = 306.99 MeV (central, WS), and 〈T 〉 = 494.48 MeV (full,
WS). In this and the following figures, the normalization of n(k) is
4 π

∫
n(k)k2dk = 1.

For the TBD matrix one obtains

ρSM
2 (r1, r2) = 1

2

∑

αβ

[ ϕ&
α(x1) ϕ&

β(x2) ϕα(x1) ϕβ(x2)

−ϕ&
α(x1) ϕ&

β(x2) ϕβ(x1) ϕα(x2)]

= 1
2

4 [4 ρo(r1) ρo(r2) − ρo(r1, r2) ρo(r2, r1)],

(45)

where ρo(r i) = ρo(r i , r i).
When OBMD matrix (21) is evaluated with correlated wave

functions (6) at first order of the η expansion, the following

FIG. 12. The same as in Fig. 11, but for 40Ca and correlation
functions from Fig. 4 and mean-field wave functions giving the best
charge density of Fig. 9. The value of the kinetic energy obtained
by integrating n(k) are 〈T 〉 = 782.87 MeV (central, HO), 〈T 〉 =
1178.45 MeV (full, HO); 〈T 〉 = 836.24 MeV (central, WS), and
〈T 〉 = 1245.21 MeV (full, WS).

expression is obtained:

ρ(r1, r ′
1) = ρSM(r1, r ′

1) + ρH (r1, r ′
1) + ρS(r1, r ′

1), (46)

FIG. 13. The effect of the various correlation functions on the
momentum distribution of 16O. f1 approximation, only central corre-
lation; f3 approximation, f (2) = f (3) = f (5) = 0; f6 approximation,
full correlation set, n = 1, . . . , 6. Calculations were performed with
correlation functions from Fig. 3 and HO wave functions.

054310-8

Alvioli et al 05

nA(k) for large k are 
quite different for 

different potentials, 
but a2 values are 

rather close

Calculations confirm dominance of tensor forces, but relative contribution of 
central forces varies from 

  
10% to 20 %

important number for interpretation of E850 pn rates, will use later
←
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FIG. 8.6:

FIG. 8.7:

8.3.2. Properties of the spectral function at large nucleon momenta

In order to foresee the pattern of y-scaling violation and the range of applicability of the scaling laws derived
in section 8 8.2, and to explain what numerical calculations are needed now it is necessary to analyse the general
properties of PA(k,E) at large k. (Remember that at present no calculations of PA(k,E) exist for large k and A > 3,
due to the lack of an effective procedure to calculate the N > 2 nucleon wave function for the continuum.) The
straightforward generalization of this analysis will also be of use in the discussion of the properties of the light-cone
spectral function in section 8 8.4.

For potentials singular for r → 0 the dominant contribution to nA(k) at large k is evidently given by the two-nucleon
correlations, i.e., by configurations where the momentum of the fast nucleon is balanced by one nucleon (see fig. 8.6),
i.e.

nA(k) ∼
k→∞

ψ2
2N(k) ∼ ψ2

D(k). (8.33)

Here ψ2N(k) (ψD(k)) is the high-momentum component of the two-nucleon (deuteron) wave function. In the current
calculations of nA(k) for different nuclei (3He, 4He, 16O) eq. (8.33) is approximately satisfied for k ! (0.3−0.4) GeV/c.
In principle the high-momentum behaviour of ψ2

2N(k) depends on the quantum numbers of the two-nucleon system;
spin, isospin, orbital momentum, and it could be different from ψ2

D(k).
Provided that the internucleon potential V (k) is local and

V (k)
∣∣
k→∞∼ k−n, (8.34)

with n > 1, the behaviour of nA(k) for k → ∞ is controlled by the Born diagram of fig. 8.7 and therefore [466, 467]

nA(k)
∣∣
k→∞∼ V 2(k)

k4
. (8.35)

It follows from the above discussion (eqs. 8.34 and 8.35) and the relation between nA(k) and PA(k,E) (eq. 8.26)
that at large k the dominant contribution to

∫
PA(k,E)dE arises from the region of large E:

E(k) + ER(k) ∼ k2/2m. (8.36)

Note that on average the interaction between the remaining nucleon of the two-nucleon correlation and the rest of
the residual nucleus tends to reduce E(k) but by a small amount (% k2/2m for large k). Equation (8.36) reasonably
agrees with the trend observed in a numerical calculation of P3He(k,E) [468].

An immediate consequence of eqs. (8.36) and (8.27) – which in fact follows from the kinematical analysis of section
8 8.2 8.2.1 – is that the states with E(k) satisfying eq. (8.36) do not give a contribution to the cross section of
reactions (8.1) and (8.2) for x > 2. Consequently, for large negative y such that x(y,Q2 → ∞) < 2, the right-hand
side of eq. (8.34) should considerably increase with Q2 until Emax in eq. (8.31) reaches the value given by eq. (8.36)
(i.e., until x(y,Q2) becomes smaller than 2; for y = −0.4 GeV/c and A & 1 this corresponds to Q2 > 2 GeV2).
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2N(k) depends on the quantum numbers of the two-nucleon system;
spin, isospin, orbital momentum, and it could be different from ψ2
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Provided that the internucleon potential V (k) is local and

V (k)
∣∣
k→∞∼ k−n, (8.34)

with n > 1, the behaviour of nA(k) for k → ∞ is controlled by the Born diagram of fig. 8.7 and therefore [466, 467]

nA(k)
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k4
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8.3.1. “y”-scaling

In the impulse approximation (corrections to this approximation due to the final state interaction will be briefly
discussed below) the process is described by the diagram in fig. 8.4, where the virtual photon is absorbed by a nucleon
with momentum k. In the kinematic region described in eq. (8.3) the difference between the invariant mass of the
produced system, W , and MA is small as compared to Q2 and |q|. To produce such a state the momentum k of
the struck nucleon in the wave function of the nucleus should be large (in the rest frame of the nucleus), roughly
k ∼ −q/2 (for γ∗ scattering of the two-nucleon correlation), cf. eq. (8.29) below.

Another characteristic feature of the reaction discussed is that the intrinsic energy E of the residual system X is
comparable with W −MA. (By definition E = MX −MA−1, where MX and MA−1 are the invariant masses of X and
of a nucleus consisting of A − 1 nucleons.) For example, in the two-nucleon correlation approximation E # q2/8m.
As a result the closure approximation is inapplicable here and therefore the cross section of reaction (8.1) could not
be expressed through the ground state wave function of nucleus A. One should use instead the spectral function of
the nucleus, PA(k,E), which accounts for the probability of removing a nucleon with momentum k from the target
nucleus A, leaving the final nuclear system X with excitation energy E. By definition102 (see, e.g., ref. [458])

PA(k,E) = 〈ψA|a+
N(k)δ(E + ER − EfX)aN(k)|ψA〉, (8.25)

where ER # k2/2m2
X is the recoil energy of the residual system X. a+

N(k) and aN(k) are the creation and annihilation
operators of a nucleon with momentum k. It follows from the definition (8.25) that PA(k,E) and the single-nucleon
momentum distribution nA(k) are related as

nA(k) =
∞∫

0

PA(k,E)dE. (8.26)

In the plane wave impulse approximation the cross section of the (e, e′) reaction is given by

σA(ν, q) ≡ dσ

dE′
e′ dΩe′

=
∫

d3k dE σeNPA(k,E)

× δ(ν + (mA − mA−1 − mN) − E(kN) − E(k) − ER(k))δ(kN − k − q). (8.27)

Here ν = q0 = Ee−E′
e′ is the photon energy and σeN = 1

2 (σep +σen) denotes the cross section for the scattering of the
electron from a nucleon with momentum k times the flux factor (1 + k3/mN) [458]. To avoid difficulties with gauge
invariance (due to off-energy-shell effects) the component j3 of the electromagnetic current is usually reconstructed
from the j0 component using the gauge invariance of the whole amplitude. (The 3-axis is chosen in the direction of
the photon momentum.)

Digression. This approach enables us to illustrate many of the basic qualitative features of the process, avoiding
a more cumbersome light-cone quantum mechanical formulation. However, to obtain quantitative results in the
kinematic region considered in this section (Q2 ≥ 1 GeV2, k > 0.3 GeV/c) it is necessary to take into account
relativistic effects resulting from the relativistic space-time development of the scattering process characteristic for
a quantum field theory, QCD. This requirement is naturally fulfilled in light-cone quantum mechanics but not in
approaches which use the Schrödinger wave functions of nuclei and therefore arbitrarily neglect the production of NN̄
pairs from the vacuum by γ∗. This is not a small effect even at q2 = 0 [459, 460] and this is more true for processes
due to the high-momentum nucleon component in the wave function of the nucleus.

102 To simplify the discussion spin and isospin labels are omitted here.
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Can one check whether indeed the tail is due to SRCs?

Consider distribution over the residual energies, ER, for A-1 nucleon system 
after a  nucleon with momentum k was instantaneously removed -  

PA(k, Er), nA(k) =
∫

dERPA(k, Er)

nuclear spectral function

for 2N SRC: 〈ER(k)〉 = k2/2mN
FS81-88

Confirmed by numerical calculations
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k=1.5 fm-1

k=2.2 fm-1

k=3.0 fm-1

k=3.5 fm-1

Points  are numerical calculation of the 
spectral functions of 3He and nuclear 
matter - curves two nucleon 
approximation from CSFS 91

Numerical calculations in NR quantum mechanics confirm dominance of two 
nucleon correlations in the spectral functions of nuclei at k> 300 MeV/c - could 
be fitted by a motion of a pair in a mean field   (Ciofi, Simula,Frankfurt,  MS - 
91).  However  numerical calculations ignored three nucleon correlations - 3p3h 

excitations. Relativistic effects maybe important rather early as the 
recoil modeling does involve k2/mN2 effects.
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In addition to 2N correlations higher order correlations
120

FIG. 8.8:

FIG. 8.9:

This phenomenon was observed numerically in the behaviour of P3He(k,E) and F3He(y,Q2) calculated using realistic
two-nucleon potentials [462].

To illustrate that nucleon configurations are important at x > 2 − 2.5 and large Q2 (i.e. large k) let us consider
the case of a three-nucleon system. It follows from the kinematical analysis of section 8 8.2 8.2.1 that in the case of
γ∗ scattering from a three-nucleon system at x > 2 and sufficiently large Q2 the momenta of both spectator nucleons
should be large. Thus, similar to the above analysis of nA(k) we can use as a guide for the behaviour of P3(k,E) at
large k the perturbation expansion in V (k).

The first obvious contribution is due to configurations in the ground state wave functions of the nucleus where the
momenta of all three nucleons are large. The leading diagrams for the ground state wave function of the nucleus for
such configurations are presented in fig. 8.8. Their contribution is proportional to (e.g. for fig. 8.8b)

PA(k,E)
∣∣
E<const., k→∞∼

(
V (k/2)
(k/2)2

)4

∼ n2
A(k/2). (8.37)

A comparable contribution to PA(k,E) is due to the overlap integral between the configuration of two nucleons in
the initial wave function with momenta p1 ∼ 0, −k and the final state wave function of the two-nucleon system with
momenta k1 ≈ k2 (see fig. 8.9). The final answer has the same form as in eq. (8.37). [We use here eqs. (8.33) and
(8.35) to estimate ψNN(k/2).]

The diagram in fig. 8.8 is typical for three-nucleon correlations, i.e., for configurations in the wave function of the
nucleus where three nucleons are at small relative distances. The contribution of diagrams like that in fig. 8.9 to
PA(k,E) in the kinematic region discussed is determined by configurations in the nuclear wave function where nucleons
3 and 2 belong to a two-nucleon correlation and thus are close to each other. Since the contribution of diagrams like
that in fig. 8.9 is proportional to

∫
ψ3(k,−k−p1, p1)d3p1, the relative coordinate between the two-nucleon correlation

and the spectator nucleon (1), r32,1 = (r3 + r2)/2 − r1, is also small. Thus, we conclude that for x > 2 − 2.5 and
large Q2 the cross section of the (e, e′) reaction from a three-nucleon system seems to be determined by the term in
P3(k,E) arising from the configuration of three nucleons when all internucleon distances are smaller than average.
The k dependence of this contribution at large k is qualitatively different from that of nA(k).

Digression. Suggestions for future calculations of PA(k,E). Realistic two-nucleon potentials correspond to a rather
complicated behaviour of V (k) at large k; so it would be quite instructive to compare numerical calculations of
P3(k,E) and nA=3, 4,...(k) with the above analysis. These calculations will be of much use for the applications of
light-cone quantum mechanics to high-energy processes as well. For convenience of practitioners of such calculations
we summarise here the quantities of interest.

(1) nA(k) at k > 0.3− 0.4 GeV/c for realistic two-body NN potentials, possibly with account of three-body forces.
(2) Check of the validity of the two-nucleon approximation eq. (8.33) by studying how large a nucleon momentum

k is balanced in ψA.
(3) Analysis of the range of applicability of eq. (8.37).
(4) Study of the relative importance of the contributions to P3(k,E) of terms like the diagrams in figs. 8.8 and 8.9,
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we summarise here the quantities of interest.

(1) nA(k) at k > 0.3− 0.4 GeV/c for realistic two-body NN potentials, possibly with account of three-body forces.
(2) Check of the validity of the two-nucleon approximation eq. (8.33) by studying how large a nucleon momentum

k is balanced in ψA.
(3) Analysis of the range of applicability of eq. (8.37).
(4) Study of the relative importance of the contributions to P3(k,E) of terms like the diagrams in figs. 8.8 and 8.9,

PA(k, ER(k))|k>kF
=

A∑

j=2

Pj(k, ER(k))

A new quantity to provide even cleaner test of the structure of SRCs- nuclear 
decay function (FS 77-88) - probability to emit a nucleon after removal 
of a fast nucleon. For 2N SRC  can model decay function as decay of a 
NN pair moving in mean field (like for PA)                 Piasetzky et al 06

Studies of the spectral and decay function of 3He reveal both two 
nucleon and three nucleon correlations - Sargsian et al 2004
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Evidence for the Strong Dominance of Proton-Neutron Correlations in Nuclei

E. Piasetzky,1 M. Sargsian,2 L. Frankfurt,1 M. Strikman,3 and J. W. Watson4

1School of Physics and Astronomy, Sackler Faculty of Exact Science, Tel Aviv University, Tel Aviv 69978, Israel
2Department of Physics, Florida International University, Miami, FL 33199, U.S.A

3Department of Physics, The Pennsylvania State University, University Park, PA, U.S.A
4Department of Physics, Kent State University,Kent, OH 44242,U.S.A

(Dated: September 6, 2006)

Abstract: We analyze recent data from high-momentum-transfer (p, pp) and (p, ppn) reactions
on Carbon. For this analysis, the two-nucleon short-range correlation (NN-SRC) model for backward
nucleon emission is extended to include the motion of the NN-pair in the mean field. The model is
found to describe major characteristics of the data. Our analysis demonstrates that the removal of a
proton from the nucleus with initial momentum 275−550 MeV/c is 92+8

−18% of the time accompanied
by the emission of a correlated neutron that carries momentum roughly equal and opposite to the
initial proton momentum. Within the NN-SRC dominance assumption the data indicate that the
probabilities of pp or nn SRCs in the nucleus are at least a factor of six smaller than that of pn
SRCs. Our result is the first estimate of the isospin structure of NN-SRCs in nuclei, and may have
important implication for modeling the equation of state of asymmetric nuclear matter.

PACS numbers: 21.60.-n, 24.10.-i, 25.40.Ep

Studies of short-range nucleon correlations (SRCs)
in nuclei are important for understanding the short-
distance and large-momentum properties of nuclear
ground state wave functions. The relevant distances in
two-nucleon (NN)-SRCs are expected to be comparable
to that in neutron stars corresponding to 4-10 times the
central density of nuclei [1]. Thus SRC studies are essen-
tial in understanding the structure of cold dense nuclear
matter. In this context the isospin content of SRCs (i.e.
pn vs. pp and nn pairs) is important for understanding
the structure of nuclear matter made of either protons or
neutrons. Studies of SRCs also give the best hope of un-
derstanding the nature of the short-range NN repulsion.

SRCs in nuclei have been actively investigated for
over three decades (see e.g.[2]). However, experimen-
tal studies of the microscopic structure of SRCs were
largely restricted due to moderate momentum-transfer
kinematics in which it is difficult to resolve SRCs. Re-
cently, several experiments [3, 4, 5, 6, 7] made noticeable
progress in understanding dynamical aspects of SRCs.
For Q2 > 1 GeV2, Refs [4, 5] observed Bjorken xB scal-
ing for ratios of inclusive (e, e′) cross sections of nuclei
A to the 3He nucleus when xB ≥ 1.4. This confirms
the earlier observation of scaling for nucleus-to-deuteron
cross section ratios[8, 9], and indicates directly that the
electrons probe high-momentum bound nucleons coming
from local sources in nuclei (i.e. SRCs) with properties
generally independent of the non-correlated residual nu-
cleus.

Based on the NN-SRC picture, which is expected to
dominate the internal momentum range of ∼ 250 −
600 MeV/c, one predicts a strong directional (back-
to-back) correlation between the struck nucleon and
its spectator in the SRC. Experiments[3, 6, 7] mea-
sured triple-coincidence events for the 3He(e, e′pp)X and
12C(p, ppn)X reactions, and clearly demonstrated the ex-
istence of such directional correlations. They also re-

vealed a noticeable momentum distribution of the center
of mass (c.m.) of the NN-SRCs.

In this work we extend the NN-SRC model used in
the analyses of A(p, pp)X data[10], to incorporate the
effects of the c.m. motion of SRCs. This allows us to
estimate the probability for correlated neutron emission
following removal of a fast proton from the nucleus in
(p, ppn) reactions. Based on this model we extract from
the data an upper limit to the relative probabilities of pp
and nn vs pn SRCs in 12C.

The measurements of 12C(p, ppn)X reactions[6, 7]
were performed with the EVA spectrometer at the AGS
accelerator at Brookhaven National Laboratory [11, 12].
EVA consists of a 0.8 T superconducting solenoid, 3.3 m
long and 2 m in diameter. The 5.9 − 9.0 GeV/c pro-
ton beam was incident along the central axis. Coinci-
dent pairs of high transverse-momentum protons were de-
tected with four concentric cylinders of straw tube cham-
bers. The experimental kinematics are discussed in more
details later. Neutrons were detected in coincidence with
the quasi-elastic knockout of protons from 12C. The large
momentum transfers −t ≥ 6 GeV 2 in these processes
greatly improve the resolving power of the probe and
validate the instantaneous approximation for description
of the removal of fast bound proton in the pp → pp sub-
process. For each (p, pp) event, the momentum of the
struck proton !p2 before the reaction was reconstructed
and compared (event by event) with the measured coin-
cident neutron momentum !pn. Due to the ∼ s−10 depen-
dence of the underlying hard pp → pp cross section, the
scattering takes place preferentially off a bound proton
with large |p2| in the direction of the beam (minimiz-
ing s)[13], and hence should lead to a significant rate of
emission of backward correlated nucleons due to scatter-
ing off NN-SRCs. Data confirming these characteristics
of A(p, ppn)X reactions are shown in Fig. 1 for 12C. The
data show no directional correlation for neutrons with

~100 % correlation! - Confirms our prediction  - Farrar et al PRL 89 & 
indicates a much stronger dominance of pn correlations than according to 

our initial naive SU(4) symmetry estimate: n/p ~2
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What is a naive expectation for Pnp/X+np?
Wigner SU(4) symmetry - probabilities of pp, pn, nn pairs are related as :

Ppp:Ppn:Pnn=1: 1 : 4
In coincidence  rate pp pairs enter with a factor of 2

Pnp/X+np=2/3

However tensor correlations  are strongly enhanced according to nonrel. 
calculations of n(k).  Scalar ones contribute fraction λ~ 10-20% to n(k) for 
discussed momentum range. Assuming that tensor correlations are predominantly 
pn correlations (likely but not proven), and scalar SRC are isotriplet

➔➠ Data indicate Enhancement of pn SRC

Ppp/pp+np=
2
3

λ

1 + λ
= .06÷ .11

Studies of pp/pn yields will allow to discriminate between different models of nuclei/ NN 
interaction at high nucleon densities.
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Consistency between (p,ppn) and (e,e’pN) data is highly nontrivial as in 
the first case forward moving nucleon is removed and in the second - 
backward moving.



ΣΣ E850 provided the first direct observation of 2N SRC in nuclei

Established strong dominance of pn SRC correlations

Large pn/pp qualitatively consistent with dominance of tensor 
forces in the high momentum component
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Jlab Preliminary result for Ppp/pp+Xp= 8±2%
Confirms dominance of pn correlations

Direct measurement of R=σ(e,e’pp)/σ(e,e’ pn) finds R << 1

Proton with momentum 600> p> 300 MeV/c

belongs to a pn correlation with probability  94%≥Ppn ≥74%
belongs to a pp correlation with probability  8%≥Ppp ≥6%

5.4%>”# of pp pairs”/”# of pn pairs” >3.2%

Future detailed comparisons of (p,2pn) and (e,e’pn) data - 
important test of universality of the decay function, understanding 
of interaction mechanism

Compare to SU(4) expectation of 25%
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My last conversation with Kim in July:

From the very beginning when I was doing electron 
scattering experiments in Kharkov,  I tried to find a way to 
observe short-range correlations in nuclei. I am happy that I 
finally observed them.   



Summary

Recent experiments confirmed expectations of large 
practically universal SRC in nuclei - 25% probability for two 
nucleon SRC in heavy enough nuclei with dominant 
contribution due to pn correlations.

First extensive evidence  for presence of 3N short range 
correlations in nuclei

Dominance of nucleonic degrees of freedom in SRC
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 Further studies are necessary, preferably using both leptonic and hadronic probes:

Studies of forward - backward correlations for a range of light nuclei 3He/4He(e,e’)
pp/pn at Jlab at Q2=2 ÷4 GeV2.  A-dependence of the pp/pn ratio, its dependence on 
momentum of hit nucleon. Looking for effects of 3N correlations in A(e,e’ p +2 
backward nucleons). Reminder: for the neutron star dynamics mostly isotriplet nn, 
nnn,..   SRC are relevant.

Tagged structure functions:  e +2H→ e + “backward nucleon + X 

e+A →e +forward p + Backward isobars, N*’s  +X,...

Calculation of the nuclear LC wave functions, spectral functions and 
decay functions  for A>2 
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Use of the hadronic facilities - J-PARC, GSI, FNAL (?)
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FIG. 6.1: Prediction of eq. (6.2) for F (N)
2C (x ≥ 1, Q2) for several nuclear wave functions.

arise from some kind of superdense configurations either consisting of few nearby nucleons with large momenta or a
more complicated multiquark configuration. Consequently, the dependence of F2A(x,Q2) for x > 1 on the average
nuclear density 〈ρ〉 should be more pronounced F2A(x,Q2)

∣∣
x>1

∝ 〈ρ〉n, n > 1, see below] than for the kinematical
region of the EMC effect (x ∼ 0.3−0.7), where the small deviation of F2A/F2N from unity is proportional to 〈ρ〉. Thus,
it may provide important information on the equation of state at large densities. Evidently, by measuring F2A(x,Q2)
at x > 1 one can demonstrate the presence of correlations, but cannot determine their quark-gluon structure. For
this purpose a comparison of F2A(x,Q2) with the data on near-threshold (e, e′) reactions and related processes is
necessary. Note also that knowledge of F2A(x,Q2) at x > 1 is necessary for the accurate extraction of ΛQCD from
the measurements on nuclear targets on the basis of the evolution equation. It is easy to demonstrate [321] that the
existing procedure, like, e.g., in ref. [322], where it is assumed that F2A(x,Q2) → 0 for x → 1, underestimates ΛQCD

(Λtrue
QCD − ΛQCD may be as 20 − 30 MeV cf. ref. [323]).
In the pre EMC effect era the value of F2A(x,Q2) at x > 1 has been predicted in ref. [324–326] on the basis of

the few-nucleon correlation model (FNCM) for the single-nucleon light-cone density matrix ρN
A(α, pt) (see summary

in Appendix B). The presence of a large tail of superfast quarks was suggested for deuterons [327]] and nuclei [328]
by assuming that for fast backward pion production58

GA/π
h (xF, pt) ≡

dσ(h + A → π + X)
(dxF/xF) d2pt

∝ F2A(xF, Q2). (6.1)

The calculation of ref. [324–326] neglects possible nonnucleon degrees of freedom and uses the convolution equation
whose derivation was briefly discussed in section 5 5.1 (for a detailed discussion see ref. [320]):

F2A(x,Q2) =
∑

N=p,n

∫
F2N(x/α, Q2)ρN

A(α, kt)
dα

α
d2kt. (6.2)

Since ρN
A(α, kt) at α > 1 rapidly decreases with α (∼ exp−7α), the prediction of eq. (6.2) for the shape of the

x-distribution is rather insensitive to uncertainties in the value of F2N(x,Q2) at x > 0.8 (cf. eq. (5.15) in ref. [320]).
We want to draw attention to the fact that practically the same shape of F2A(x,Q2) is expected in models where the

58 The phenomenological observation that for x ! 0.8, G
p/π+

h (x) ∝ u(x), G
p/π−

h (x) ∝ d(x), was first made in ref. [329]. At x > 0.8, where

the triple-Regge limit contribution dominates, these relations underestimate G
N/π
h (x), e.g. G

p/π+

h (x) ∝ (1− x)2 for x > 0.8 [330]. Note
also that with increasing number of quarks in the system the difference between the behaviour of the pion spectrum for xF → A and
the quark distribution for x → A is expected to become more and more pronounced, e.g. for the deuteron perturbative QCD predicts

[320] G
D/π
h (xF) ∝ (2 − xF)5 for xF → 2, while F2D(x) ∝ (2 − x)10 for x → 2.
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FIG. 6.1: Prediction of eq. (6.2) for F (N)
2C (x ≥ 1, Q2) for several nuclear wave functions.
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region of the EMC effect (x ∼ 0.3−0.7), where the small deviation of F2A/F2N from unity is proportional to 〈ρ〉. Thus,
it may provide important information on the equation of state at large densities. Evidently, by measuring F2A(x,Q2)
at x > 1 one can demonstrate the presence of correlations, but cannot determine their quark-gluon structure. For
this purpose a comparison of F2A(x,Q2) with the data on near-threshold (e, e′) reactions and related processes is
necessary. Note also that knowledge of F2A(x,Q2) at x > 1 is necessary for the accurate extraction of ΛQCD from
the measurements on nuclear targets on the basis of the evolution equation. It is easy to demonstrate [321] that the
existing procedure, like, e.g., in ref. [322], where it is assumed that F2A(x,Q2) → 0 for x → 1, underestimates ΛQCD

(Λtrue
QCD − ΛQCD may be as 20 − 30 MeV cf. ref. [323]).
In the pre EMC effect era the value of F2A(x,Q2) at x > 1 has been predicted in ref. [324–326] on the basis of

the few-nucleon correlation model (FNCM) for the single-nucleon light-cone density matrix ρN
A(α, pt) (see summary

in Appendix B). The presence of a large tail of superfast quarks was suggested for deuterons [327]] and nuclei [328]
by assuming that for fast backward pion production58

GA/π
h (xF, pt) ≡

dσ(h + A → π + X)
(dxF/xF) d2pt

∝ F2A(xF, Q2). (6.1)

The calculation of ref. [324–326] neglects possible nonnucleon degrees of freedom and uses the convolution equation
whose derivation was briefly discussed in section 5 5.1 (for a detailed discussion see ref. [320]):

F2A(x,Q2) =
∑

N=p,n

∫
F2N(x/α, Q2)ρN

A(α, kt)
dα

α
d2kt. (6.2)

Since ρN
A(α, kt) at α > 1 rapidly decreases with α (∼ exp−7α), the prediction of eq. (6.2) for the shape of the

x-distribution is rather insensitive to uncertainties in the value of F2N(x,Q2) at x > 0.8 (cf. eq. (5.15) in ref. [320]).
We want to draw attention to the fact that practically the same shape of F2A(x,Q2) is expected in models where the

58 The phenomenological observation that for x ! 0.8, G
p/π+

h (x) ∝ u(x), G
p/π−

h (x) ∝ d(x), was first made in ref. [329]. At x > 0.8, where

the triple-Regge limit contribution dominates, these relations underestimate G
N/π
h (x), e.g. G

p/π+

h (x) ∝ (1− x)2 for x > 0.8 [330]. Note
also that with increasing number of quarks in the system the difference between the behaviour of the pion spectrum for xF → A and
the quark distribution for x → A is expected to become more and more pronounced, e.g. for the deuteron perturbative QCD predicts

[320] G
D/π
h (xF) ∝ (2 − xF)5 for xF → 2, while F2D(x) ∝ (2 − x)10 for x → 2.

F2A(x, Q2 > 10 GeV 2)| x>1 ∝ exp(−bx), b ∼ 8 ÷ 9

Neutrino DIS CCFR 1999: b = 8.3± 0.7 (stat) ± 0.7 (syst)
83

FIG. 6.3: Comparison of predictions of the FNC model, the pair correlation model and the flucton model for the ratio
(2/A)F2A/F2D. The tread expected in the rescaling model [337, 338] is also shown.

becomes important even at x ∼ 1.64 In particular for the realistic density ρA(α) ∝ exp(−Bα) for α > 1 with B = 7
one can obtain the relation between 〈α〉 essential in eq. (6.2) and x (see p. 289 of ref. [320]):

〈α〉 = x +
3
7
− 1

4
/(1 + x), for x > 1. (6.7)

As a result, the FNCM predicts a large value for the (2/A)F2A(x)/F2D(x) for x > 1, which sharply increases with x
(fig. 6.3), while for A1 > A2 ≥ 4 the ratio F2A1(x)/F2A2(x) is expected to increase with x rather slowly. For 1 < x < 2
and A > 12 this A-dependence can be roughly fitted as (using the FNCM for ρN

A(α, pt) described in Appendix B)

12
A

qA(x,Q2)
q12C(x,Q2)

∣∣∣∣
1<x<2, A≥12

' (A/12)0.17+0.13(x−1). (6.8)

An educated guess for the theoretical uncertainty in the value of the power is ∼ 20%. On the contrary, in the flucton
model [333–335]

1
6

F2 12C(x)
F2D(x)

∣∣∣∣
1<x<1.5

∼ 2,

which is markedly different from the prediction of the FNCM (see fig. 6.3).65 The increase of aA(x) for x > 1 with
A is a common feature of all models where qA(x > 1) is determined by the short-range nucleon correlations in nuclei.
An opposite trend was discussed in the model of dynamical reseating [337, 338] (sections 5 5.4 5.4.3 and 5 5.4 5.4.4).
An extreme prediction, 1

6q12C(1.5)/qD(1.5) = 1/300, was made in the average field model [341] (see fig. 6.3).

6.1.3. What Q2 are needed to reach the scaling limit for F2A(x ≥ 1, Q2)?

In the previous two subsections we considered theoretical predictions for superfast quark distributions in nuclei.
The crucial question for planning experiments and for confronting these predictions with the data is what minimal
Q2 are needed to reach the kinematic region where the leading-twist contribution dominates at x ≥ 1.

64 This is in marked contrast to the situation at intermediate Q2 where at x ∼ 1 quasielastic scattering off low-momentum nucleons
dominates, leading to a decrease of σeA(x ∼ 1) with increasing A (see sections 6 6.1 6.1.3 and 8 8.2).

65 This prediction of the flucton model is noticeably smaller than the experimentally measured ratio of inclusive cross sections of fast
backward pion production off 12C (and) D (per nucleon), which is ∼ (5 − 6) at a light-cone fraction of momentum of the nucleus
απ ≥ 1 and increases with απ . A small value of the ratio F2C(x)/F2D(x) of ∼ 2 was obtained in ref. [339] on the basis of eq. (6.1) by
fitting fast backward pion production off carbon [340], using as a scaling variable the so-called cumulative number. This approach is in
contradiction with precocious limiting fragmentation characteristic for the parton model and in particular with the data on the reaction
pp → π+ + X (see the discussion in ref. [320], pp. 268, 269).

Expectations for the A 
dependence at x>1 in different 

models
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FIG. 6.2: (a) Comparison of the prediction of the FNC model combined with the minidelocalization model for F2Al(x, Q2)

(solid line) with SLAC data [331]. (b) The FNC + minidelocalization model prediction for F (N)
2C (x ≥ 1, 100 GeV2) and the 6q

model predictions neglecting the scaling violation effects.

EMC effect is due to enhancement of the pion field in nuclei, since pions carry a rather small fraction of the nucleus
momentum.59 The result of a calculation using eq. (6.2) with F2N(x,Q2) from ref. [322] is presented in fig. 6.1.
It can be seen from this figure that the predicted tail is quite large and that a significant contribution to this tail
comes from the scattering off three- and four-nucleon correlations. The normalization of the two-nucleon correlation
contribution to ρZ

A (see Appendix B),

ρZ
A(α, pt) = Zλρp

D(α, pt) + · · · ,

is chosen as λ = 4 − 6, which is consistent with existing information from other phenomena (see the summary of
information on λ(A) in section 8 8.2 8.2.3). The result of calculations based on eq. (6.2), which only takes into
account the contribution of two-nucleon correlations with λ = 4 − 6, is presented in fig. 6.1. A considerably larger
effect is expected in the FNC model. Its prediction, shown in fig. 6.1, corresponds to a quite large high-momentum
component in carbon,

∫
nA(k)θ(k − 0.4 GeV/c) ∼ 0.15, (6.3)

with a substantial contribution both from two-nucleon and three-nucleon correlations. The opposite option of coherent
nucleus recoil (which is at variance with current experience in nonrelativistic nuclear physics) where α = 1 + k3/mN,
can reproduce the FNCM result if one chooses nA(k) ∝ exp(−bk) for k > kF, with b ∼ 5.5 (GeV/c)−1 with the
probability of the high-momentum tail a factor of ∼ 1.5 smaller.

A comparison of eq. (6.2) with preliminary data for F2C(x,Q2) at x > 1 and Q2 ∼ 50− 100 GeV2 [319] (the status
of these data is described below) shows that the slope of the spectrum,

F2A(x) ∝ exp(−ax), a = 10.6+1.3
−2.6, (6.4)

is close to the FNCM prediction a ≈ 8 − 9. (Neglecting j ≥ 3 correlations would lead to a significant increase of the
slope, see fig. 6.1). At present the large experimental uncertainties in the absolute value of F2C(x,Q2) preclude a
more detailed quantitative comparison. Note also that the FNCM prediction is consistent with unpublished SLAC
data [331] at x < 1.1 and Q2 = (8 − 10) GeV2, where the leading twist seems to dominate in F2A(x,Q2) (see fig. 6.2
a).

59 It is worth noting that in !A scattering at x > 1 the contribution of lepton scattering off configurations containing mesons is suppressed.
The origin of this suppression is the same as that of the smallness of the contribution of |3qg〉 and |4qq̄〉 configurations to F2N(x → 1).

(a) Comparison of the prediction of the FNC model combined with the 
minidelocalization model of the EMC effect for F2Al (x, Q2 ) (solid line) 
with SLAC data  (b) The FNC + minidelocalization model prediction for  
F2C (x>1, Q2=100 GeV2) and the 6q  model predictions neglecting the 
scaling violation effects. 
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