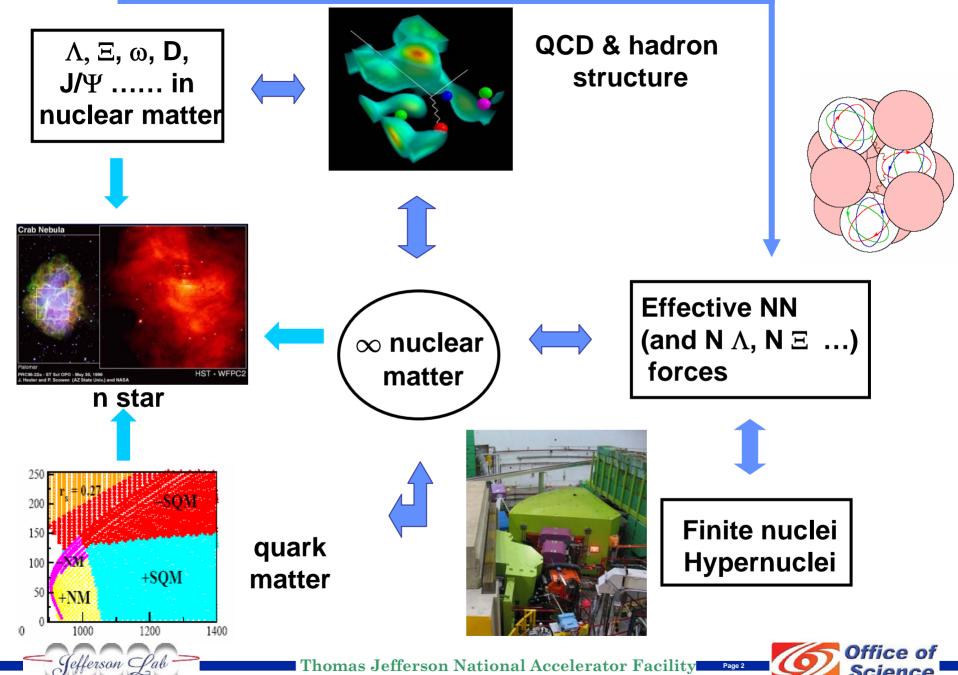

Origin of the Nuclear EOS in Hadronic Physics and QCD


Anthony W. Thomas

Workshop on SRC

in Honor of Kim Egiyan: JLab October 20th, 2006

U.S. DEPARTMENT OF ENERGY

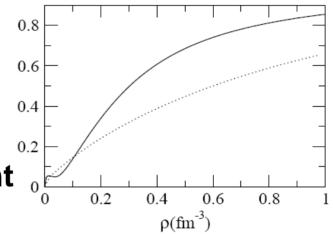
Where to find more information

- Two major, recent papers:
 - I. Guichon, Matevosyan, Sandulescu, Thomas, Nucl. Phys. A772 (2006) 1.
 - II. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502
- Built on earlier work on QMC: e.g.
 - III. Guichon, Phys. Lett. B200 (1988) 235
 - IV. Guichon, Saito, Rodionov, Thomas, Nucl. Phys. A601 (1996) 349
- Major review of applications of QMC to many nuclear systems:
 - V. Saito, Tsushima, Thomas, Prog. Part. Nucl. Phys. (in press) hep-ph/0506314

Model Independent Features of NN Force

- Intermediate Range attraction is Lorentz scalar-isoscalar (since 70's, dispersion relations, Paris potential...)
- Lorentz scalar force is strong!
- Short distance repulsion is Lorentz vector (not so model independent BUT lots of support)
- At high density MFA gets to be accurate
- Classical implementation is Walecka model

$$m_N^*$$
 / $m_N \sim 0.5$ at ρ_0



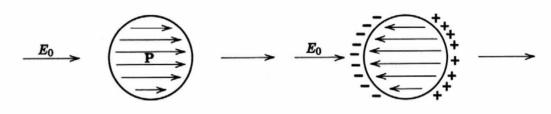
Relativity Matters in Dense Matter

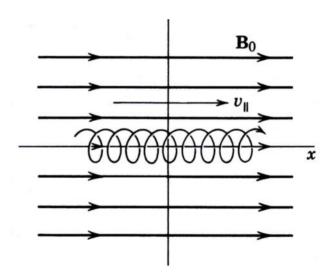
• Non-relativistic expansion in powers of k_F unlikely to be successful.....

e.g.
$$v_{sound} = c / 2$$
 at $\rho = 2 \rho_0$ and exceeds c at higher density;

 whereas v_{sound} = 0.3 c and never exceeds c in relativistic treatment

- BUT what is missing in Walecka model (QHD)?
 - π : but easily added and irrelevant in MFA
 - Effect of $m_N^* = m_N / 2$ on internal structure of nucleon; this is a huge external field!

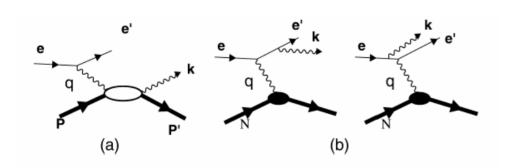


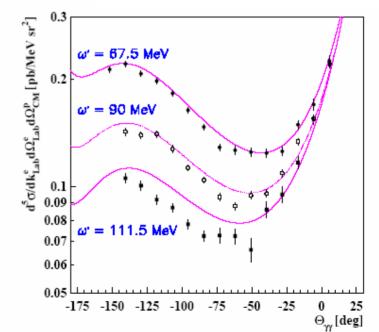

What happens if we put an atom in a strong electric field?

Jackson ⇒

i.e. atom has a polarizability: its internal structure is rearranged in response to applied field

///'ly in applied magnetic field (indeed, in super strong field -e.g. n-star surface atoms & molecules essentially linear!)


Electric & Magnetic Polarizabilities of Nucleon are Measured

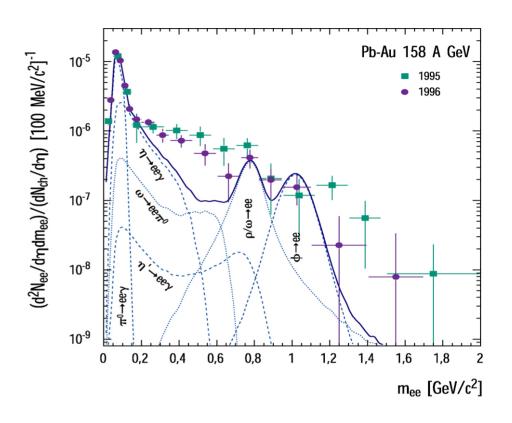

e.g. Compton scattering:

$$4\pi \ \alpha_E = 2 \sum_{I \neq N} \frac{|\langle I | d_z | N \rangle|^2}{E_I - E_N}$$

$$\alpha_E^p = (12.1 \pm 1.3) \cdot 10^{-4} \text{ fm}^3,$$

 $\beta_M^p = (2.1 \mp 1.3) \cdot 10^{-4} \text{ fm}^3.$

Also Virtual Compton Scattering ⇒ **GPs**



So what?

Atoms respond to external E and B fields

- Nucleons respond to external E and B fields
- It is clear that nucleons must respond to large scalar fields known to exist in-medium

 This leads to a mass shift that is non-linear in mean scalar field ⇒ scalar polarizability

Fundamental Question: "What is the Scalar Polarizability of the Nucleon?"

Nucleon response to a chiral invariant scalar field is then a nucleon property of great interest...

$$M*(\vec{R}) = M - g_{\sigma}\sigma(\vec{R}) + \frac{d}{2}(g_{\sigma}\sigma(\vec{R}))^{2}$$

Non-linear dependence \equiv scalar polarizability $d \approx 0.22 R$ in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.

ORIGIN in QMC Model

$$[i\gamma^{\mu}\partial_{\mu} - (m_q - g_{\sigma}{}^q\bar{\sigma}) - \gamma^{0}g_{\omega}{}^q\bar{\omega}]\psi = 0$$

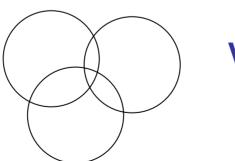
Source of σ changes: $\int_{Bag} d\vec{r} \bar{\psi}(\vec{r}) \psi(\vec{r})$

SELF-CONSISTENCY

and hence mean scalar field changes...

and hence quark wave function changes....

THIS PROVIDES A NATURAL SATURATION MECHANISM (VERY EFFICIENT BECAUSE QUARKS ARE ALMOST MASSLESS)


source is suppressed as mean scalar field increases (i.e. as density increases)

Summary: Scalar Polarizability

- Can always rewrite non-linear coupling as linear coupling plus non-linear scalar self-coupling – likely physical origin of non-linear versions of QHD
- In nuclear matter this is the only place the internal structure of the nucleon enters in MFA
- Consequence of polarizability in atomic physics is many-body forces:

$$V = V_{12} + V_{23} + V_{13} + V_{123}$$

Linking QMC to Familiar Nuclear Theory

Since early 70's tremendous amount of work in nuclear theory is based upon effective forces

- Used for everything from nuclear astrophysics to collective excitations of nuclei
- Skyrme Force: Vautherin and Brink

In Paper I: Guichon and Thomas, Phys. Rev. Lett. 93, 132502 (2004)

we explicitly obtained effective force, 2- plus 3- body, of Skyrme type

- equivalent to QMC model (required expansion around $\sigma = 0$)

Comparison Between Skyrme III and QMC

	QMC	QMC	SkIII	QMC(N=3)
$m_{\sigma}(MeV)$	500	600		600
$t_0 (MeV fm^3)$	-1071	-1082	-1129	-1047
\mathcal{X}_0	0.89	0.59	0.45	0.61
$t_3(MeV fm^6)$	16620	14926	14000	12996
$M_{\it eff}/M$.915	.814	.763	.821
$5t_2 - 9t_1 (MeV fm^5)$	-7622	-4330	-4030	-4036
$W_0(MeV fm^5)$	118	97	120	91

Three-body force, arising from scalar polarizability, agrees naturally with force (t₃) found phenomenologically - origin is same as that in atomic and molecular physics!

Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

P.A.M. Guichon¹, H.H. Matevosyan^{2,3}, N. Sandulescu^{1,4,5} and A.W. Thomas²

Paper II: N P A772 (2006) 1 (nucl-th/0603044)

No longer need to expand around $< \sigma > = 0$

$m_{\sigma}(\text{MeV})$	$t_0(\mathrm{fm}^2)$	$t_1(\mathrm{fm}^4)$	$t_2(\mathrm{fm}^4)$	$t_3({\rm fm}^{5/2})$	x_0	$W_0(\mathrm{fm}^4)$	Deviation
600	-12.72	2.64	-1.12	74.25	0.17	0.6	33%
650	-12.48	2.21	-0.77	71.73	0.13	0.56	18%
700	-12.31	1.88	-0.49	69.8	0.1	0.53	18%
750	-12.18	1.62	-0.28	68.28	0.08	0.51	38%
SkM^*	-13.4	2.08	-0.68	79	0.09	0.66	0%

Table 2: Comparison of the SkM* parameters with the QMC predictions for several values of m_{σ}

BUT density functional not exactly the same QMC yields rational forms

Check directly vs data

 That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

	E_B (MeV, exp)	E_B (MeV, QMC)	r_c (fm, exp)	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485	3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + d \rho G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + d \rho G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] + (\rho_{n} - \rho_{p})^{2} \left[\frac{5 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + d \rho G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$$

Check directly vs data

 That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)

	E_B (MeV, exp)	E_B (MeV, QMC)	$r_c \text{ (fm, exp)}$	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551 ~ 4	% 8.213	3.485 ~	% 3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

• Where analytic form of (e.g. $H_0 + H_3$) piece of energy functional derived from QMC is:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3 G_{\rho}}{32} + \frac{G_{\sigma}}{8 (1 + O G_{\sigma})^{3}} - \frac{G_{\sigma}}{2 (1 + O G_{\sigma})} + \frac{3 G_{\omega}}{8} \right] +$$

) highlights
$$\left(\rho_n-\rho_p\right)^2\left[\frac{5\,G_\rho}{32}+\frac{G_\sigma}{8\left(1+O\rho\,G_\sigma\right)^3}-\frac{G_\omega}{8}\right],$$
 scalar polarizability

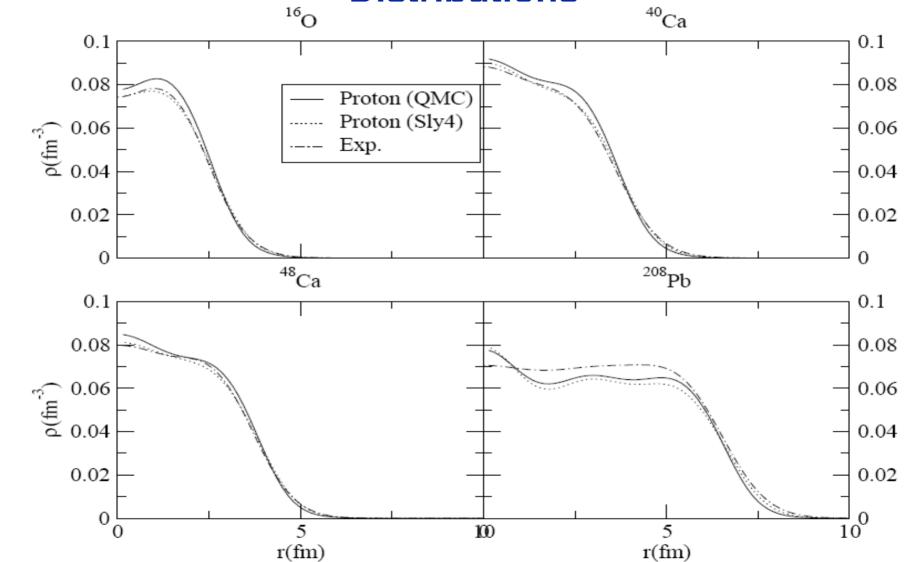
Check directly vs data

 That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force) – for example:

	E_B (MeV, exp)	E_B (MeV, QMC)	r_c (fm, exp)	r_c (fm, QMC)
^{16}O	7.976	7.618	2.73	2.702
^{40}Ca	8.551	8.213	3.485	3.415
^{48}Ca	8.666	8.343	3.484	3.468
^{208}Pb	7.867	7.515	5.5	5.42

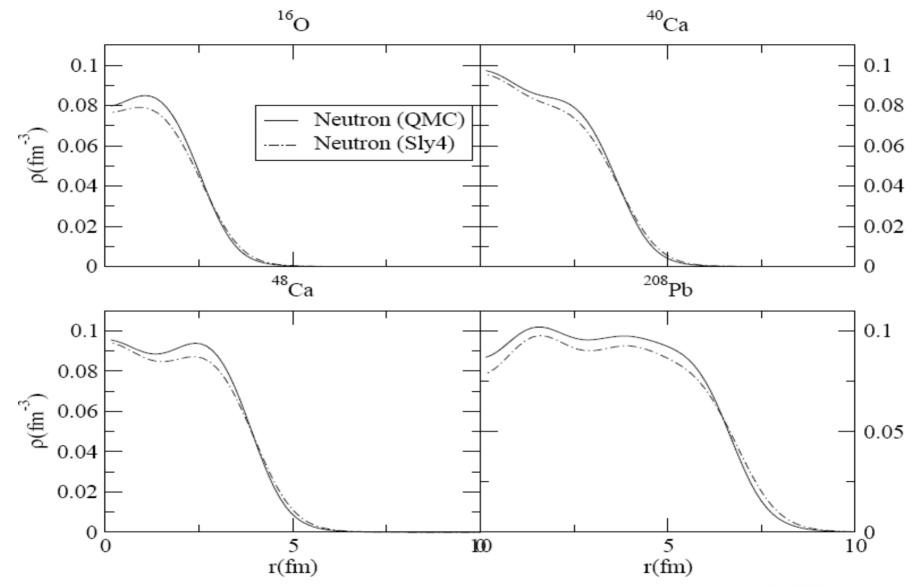
In comparison with the SkM force:

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \frac{\rho^{\frac{1}{6}} t_{3} \left(2 \rho^{2} - \rho_{n}^{2} - \rho_{p}^{2}\right)}{24} + \frac{t_{0} \left(\rho^{2} \left(2 + x_{0}\right) - \left(1 + 2 x_{0}\right) \left(\rho_{n}^{2} + \rho_{p}^{2}\right)\right)}{4}$$


and full energy functional in both cases is:

$$\langle H(\vec{r}) \rangle = \rho M + \frac{\tau}{2M} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so}$$

Excellent Agreement with Sly4 for Charge Distributions



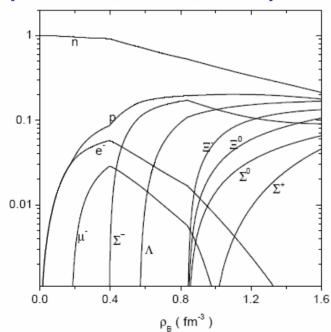
Neutron Densities vs Sly4 – also excellent

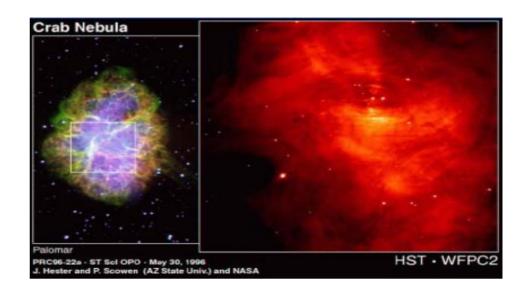
Spin-Orbit Splitting

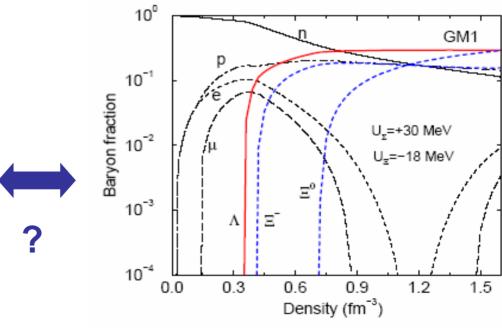
	Neutrons (Expt)	Neutrons (QMC)	Protons (Expt)	Protons (QMC)
¹⁶ O	6.10	6.01	6.3	5.9
1p _{1/2} -1p _{3/2}				
⁴⁰ Ca	6.15	6.41	6.0	6.2
1d _{3/2} -1d _{5/2}				
⁴⁸ Ca	6.05	5.64	6.06	5.59
1d _{3/2} -1d _{5/2}	(Sly4)		(Sly4)	
²⁰⁸ Pb	2.15	2.04	1.87	1.74
2d _{3/2} -2d _{5/2}	(Sly4)		(Sly4)	

Agreement generally very satisfactory – NO parameter adjusted to fit

Great Start: What's Next


Remove small σ field approximation

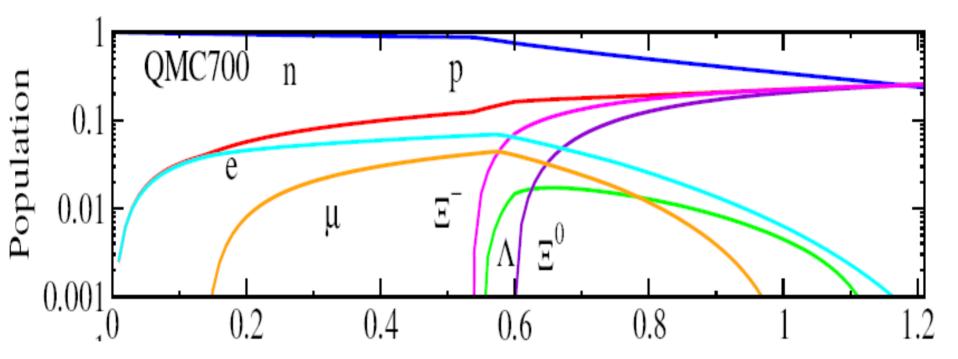

- Derive density-dependent forms
- Add the pion
- Derive Λ N, Σ N, Λ Λ ... effective forces in-medium with no additional free parameters
- Hence attack dense hadronic matter, n-stars, transition from NM to QM or SQM with more confidence



- Hyperons enter at just 2-3 ρ_0
- Hence need effective Σ -N and Λ -N forces in this density region!
- Hypernuclear data is important input (J-PARC, FAIR, JLab)

From Schaffner-Bielich (2005)
Thomas Jefferson National Accelerator Facility

Finite Hypernuclei with New QMC


	$^{16}_{\Lambda}{\rm O~(Expt.)}$	$^{17}_{\Lambda}{ m O}$	$^{17}_{\Sigma^{-}}\mathrm{O}$	$_{\Sigma^0}^{17}\mathrm{O}$	$_{\Sigma^{+}}^{17}\mathrm{O}$	¹⁷ O ≡	$_{\Xi^{0}}^{17}{ m O}$
$1s_{1/2}$	-12.5	-16.4	-6.3	-1.4		-11.2	-5.2
$1p_{3/2}$		-6.4				-3.7	
$1p_{1/2}$	-2.5 (1p)	-6.2				-3.9	
	$^{40}_{\Lambda}\mathrm{Ca}\ (\mathrm{Expt.})$	$^{41}_{\Lambda}\mathrm{Ca}$	$_{\Sigma^{-}}^{41}\mathrm{Ca}$	$_{\Sigma^0}^{41}\mathrm{Ca}$	$^{41}_{\Sigma^{+}}\mathrm{Ca}$	$^{41}_{\Xi^{-}}\mathrm{Ca}$	$_{\Xi^{0}}^{41}\mathrm{Ca}$
$1s_{1/2}$	-20.0	-21.1	-2.2	-2.3		-17.9	-8.7
$1p_{3/2}$		-13.8	-7.4			-12.0	-3.7
$1p_{1/2}$	-12.0 (1p)	-13.7	-6.6			-12.1	-3.9
$1d_{5/2}$		57	-1.1			-5.8	
$-\alpha_{5/2}$		-5.7	-1.1			-5.0	
$2s_{1/2}$		-3.3	-1.1 -0.9		_	-5.3	_

- Relativistic Hartree only: Λ still well described
- ∑ unbound or barely bound big improvement

Consequences for Neutron Star

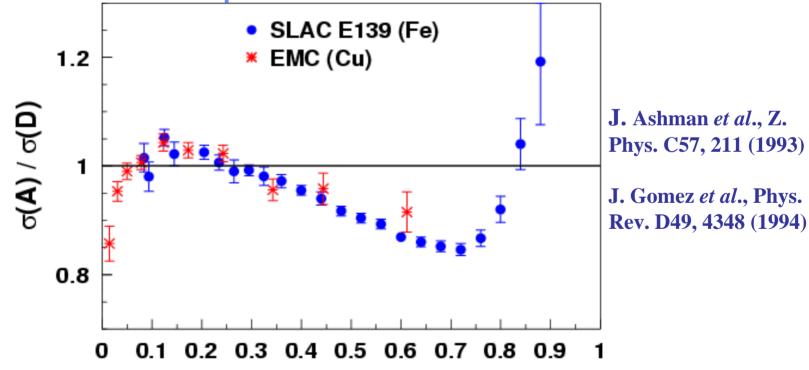
New QMC model, fully relativistic, Hartree-Fock treatment

Stone, Guichon, Matevosyan, Thomas, to appear

Recently Developed Covariant Model Built on the Same Physical Ideas

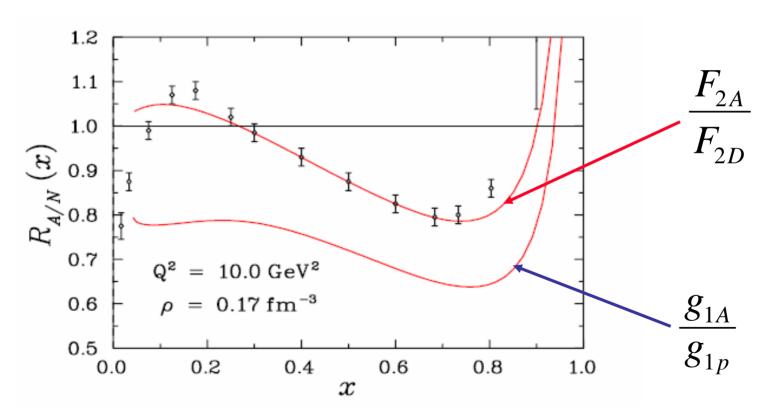
- Use NJL model (χ'al symmetry)
- Ensure confinement through proper time regularization (following the Tübingen group)
- Self-consistently solve Faddeev Eqn. in mean scalar field
- This solves chiral collapse problem common for NJL (because of scalar polarizability again)
- Can test against experiment
 - e.g. spin-dependent EMC effect
- Also apply same model to NM, NQM and SQM hence n-star

Covariant Quark Model for Nuclear Structure


- Basic Model:
- •Bentz & Thomas, Nucl. Phys. A696 (2001) 138
- Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95
- Applications to DIS:
- Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302
- Applications to neutron stars including SQM:
- Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495
- Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667

The EMC Effect: Nuclear PDFs

- Observation stunned and electrified the HEP and Nuclear communities 20 years ago
- Nearly 1,000 papers have been generated.....
- What is it that alters the quark momentum in the nucleus?



g₁(A) – "Polarized EMC Effect"

- Calculations described here ⇒ larger effect for polarized structure than unpolarized: mean scalar field modifies lower components of the confined quark's Dirac wave function
- Spin-dependent parton distribution functions for nuclei unmeasured

(Cloet, Bentz, AWT, PRL 95 (2005) 0502302)

(efferson ⊂

Recent Calculations for Finite Nuclei

Spin dependent EMC effect TWICE as large as unpolarized

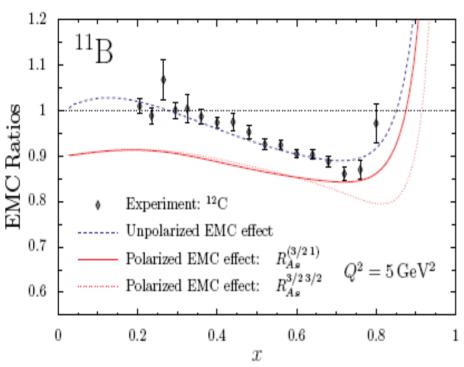
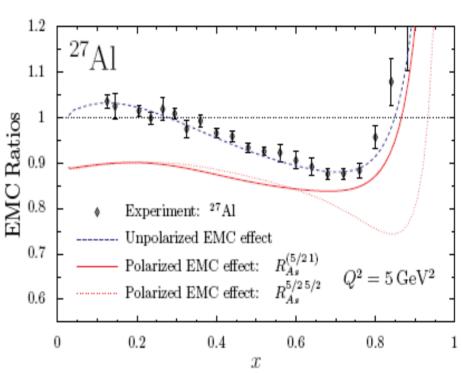
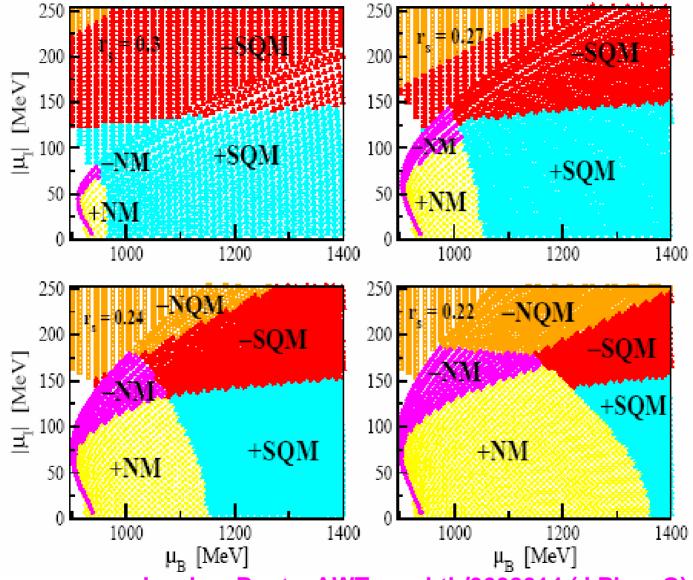


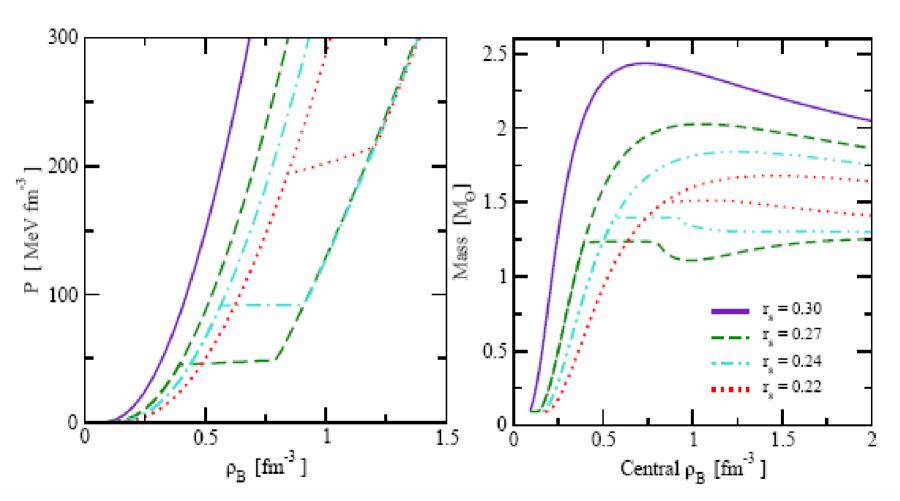
FIG. 7: The EMC and polarized EMC effect in ¹¹B. The empirical data is from Ref. [31].




FIG. 9: The EMC and polarized EMC effect in 27 Al. The empirical data is from Ref. [31].

Cloet, Bentz, Thomas, Phys. Lett., to appear 2006 (nucl-th/0605061)

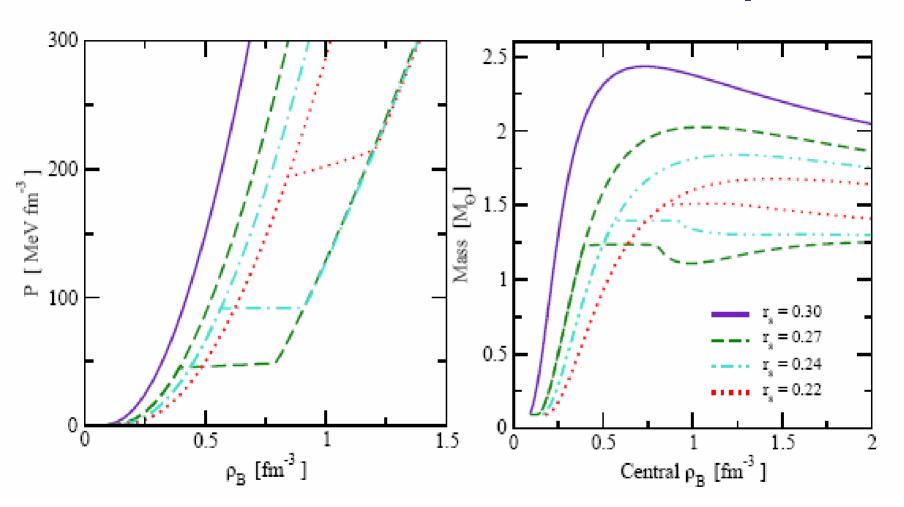
Phases of Dense Matter : NM (\rightarrow NQM) \rightarrow SQM



Lawley, Bentz, AWT, nucl-th/0602014 (J Phys G)

(efferson C

EOS of Dense Matter – n Star Properties



Naturally leads to $\underline{\text{low mass}}$, hybrid n stars with masses \sim independent of the central density

EOS of Dense Matter – n Star Properties

N.B. Hyperons in NM phase would tend to raise transition density a little - still need to include these....

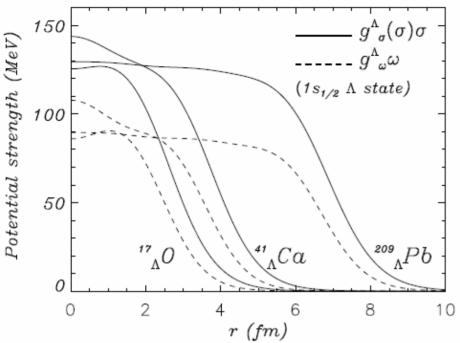
Summary-1

- For dense matter relativity matters
- Intermediate attraction in NN force is STRONG scalar
- This modifies the intrinsic structure of the bound nucleon ⇒ profound change in shell model what occupies shell model states are NOT free nucleons
- Change of intrinsic structure
 = "scalar polarizability"
- This is a natural source of three-body force clear physical interpretation
- Resulting, equivalent effective force is remarkably close to successful Skyrme forces

Summary -2

- Derived, density-dependent effective force gives results remarkably close to SkM and Sly4 for finite nuclei – with MANY less parameters
- Encourage community to use it...
- Same model also yields effective, density dependent Λ N, Σ N, Ξ N forces (not yet published)
- Availability of realistic, density dependent Hyperon-N forces is essential for ρ > 2-3 ρ_0
- Covariant version can be tested experimentally Jlab
- Already remarkable results for NM, NQM, SQM in n stars

Special Mentions.....


Finally: Apply to Shell Structure as N − Z ↓

- Use Hartree Fock Bogoliubov calculation
- Calculated variation of two-neutron removal energy at N = 28 as Z varies from Z = 32 (proton drip-line region) to Z = 18 (neutron drip-line region)
- S_{2n} changes by 8 MeV at Z=32 S_{2n} changes by 2–3 MeV at Z = 18
- This strong shell quenching is very similar to Skyrme – HFB calculations of Chabanat et al., Nucl. Phys. A635 (1998) 231
- 2n drip lines appear at about N = 60 for Ni and N = 82 for Zr
 - (/// to predictions for Sly4 c.f. Chabanat et al.)

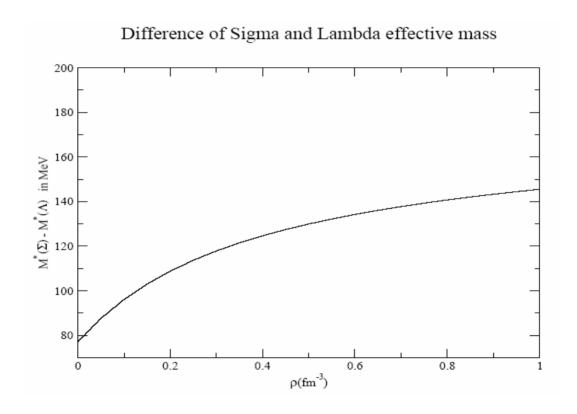
 Thomas Jefferson National Accelerator Facility

 Page 37

Finite Hypernuclei in original QMC Model

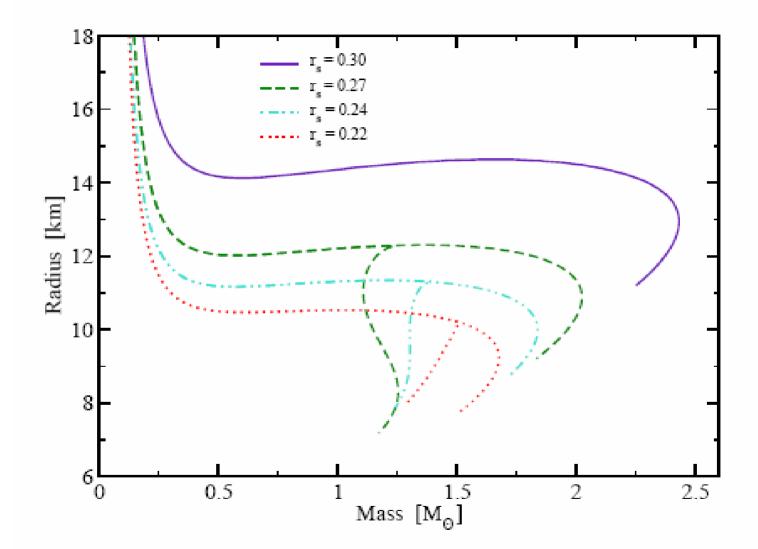
Λ energy levels good; spin-orbit force naturally suppressed;

	$^{208}_{\Lambda} \mathrm{Pb} \; (\mathrm{Expt.})$	²⁰⁹ РЬ
$1s_{1/2}$	-27.0	-27.0**
$1p_{3/2}$		-23.4
$1p_{1/2}$	-22.0 (1p)	-23.4
$1d_{5/2}$		-19.1
$2s_{1/2}$		-17.6
$1d_{3/2}$	-17.0 (1d)	-19.1
$1f_{7/2}$		-14.4
$2p_{3/2}$		-12.4
$1f_{5/2}$	-12.0 (1f)	-14.3
$2p_{1/2}$		-12.4
$1g_{9/2}$		-9.3
$1g_{7/2}$	-7.0 (1g)	-9.2
$1h_{11/2}$		-3.9
$2d_{5/2}$		-7.0
$2d_{3/2}$		-7.0
$1h_{\alpha/\alpha}$		-3.8

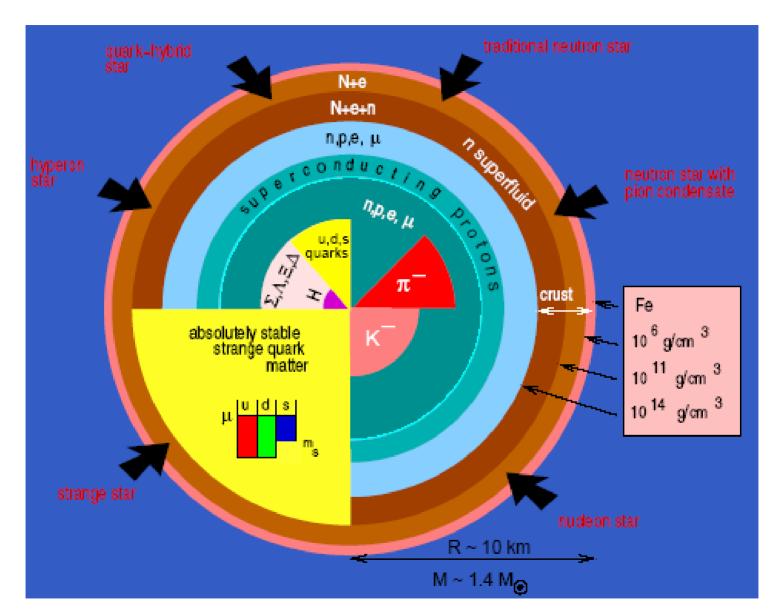

BUT Σ hypernuclei were also bound – estimate of Σ - Λ conversion reduces binding in Pb by \sim 7 MeV

Latest QMC: Includes Medium Modification of Hyperfine Interaction

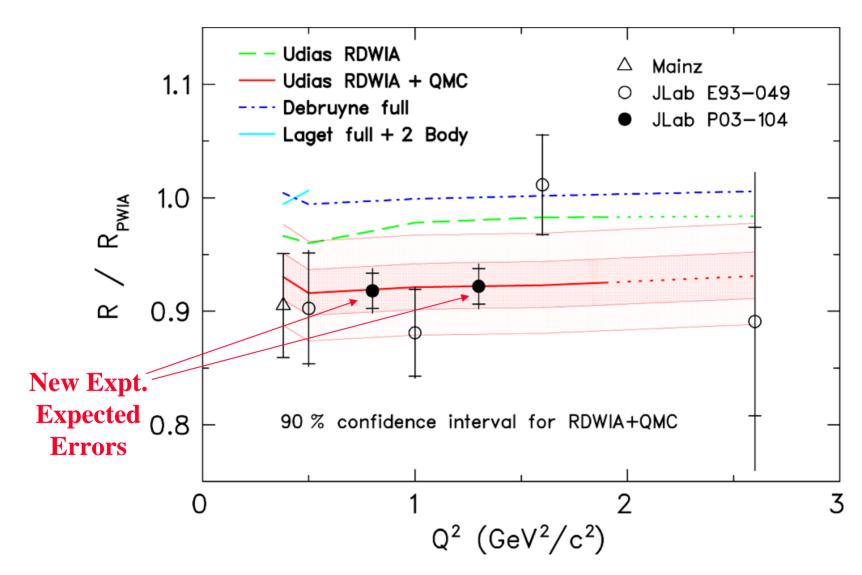
N - Δ and Σ - Λ splitting arise from one-gluon-exchange in MIT Bag Model : as $\sigma \uparrow$ so does this splitting...

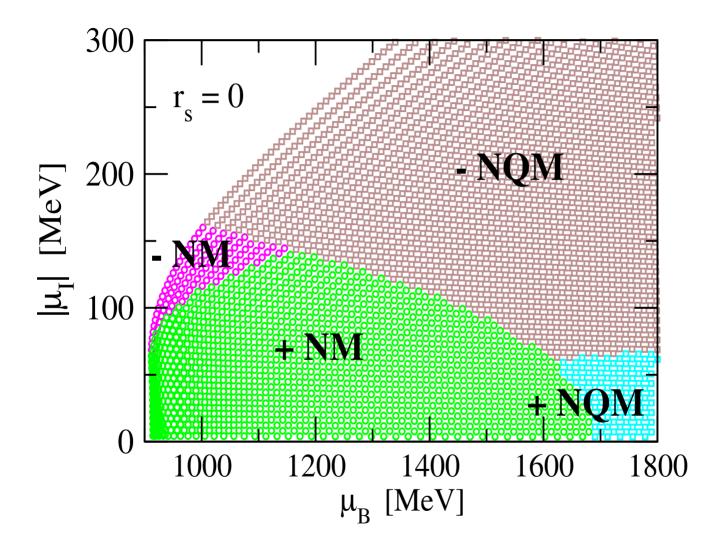


Guichon, Stone, Thomas, Tsushima: to appear

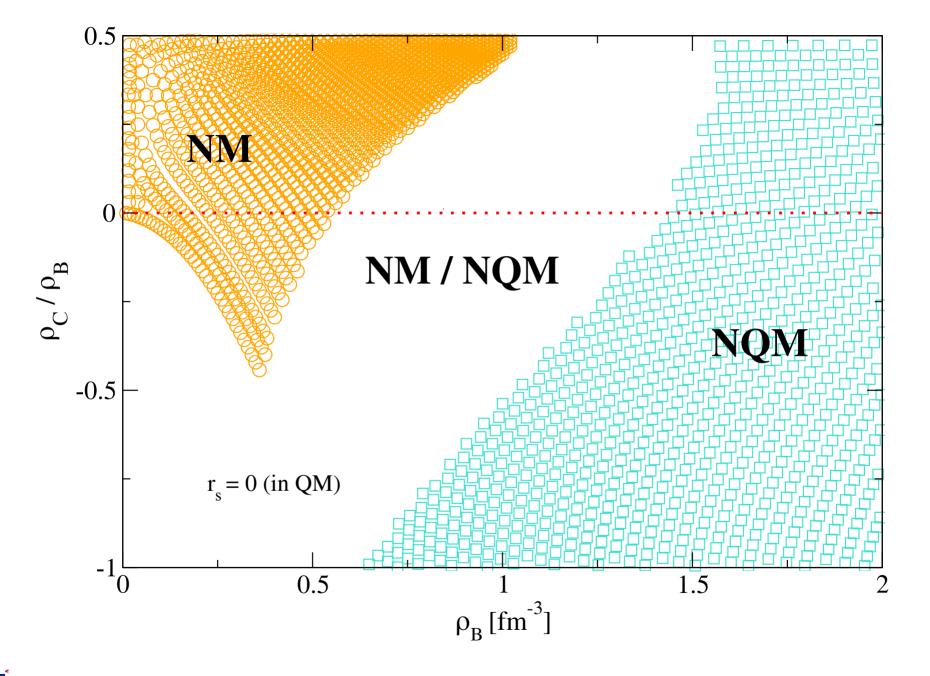


Mass vs Radius with Consistent Treatment of Hadron Structure and Quark Matter





Jefferson Lab & Mainz



Lawley, Bentz, AWT, nucl-th/0504020 (Phys Lett)

Cefferson Sab

Can we Measure Scalar Polarizability in Lattice QCD?

- IF we can, then in a real sense we would be linking nuclear structure to QCD itself, because scalar polarizability is sufficient in simplest, relativistic mean field theory to produce saturation
- Initial ideas on this published recently:
 the trick is to apply a <u>chiral invariant</u> scalar field

18th Nishinomiya Symposium: nucl-th/0411014 Prog. Theor. Phys.

Desperate need for data...

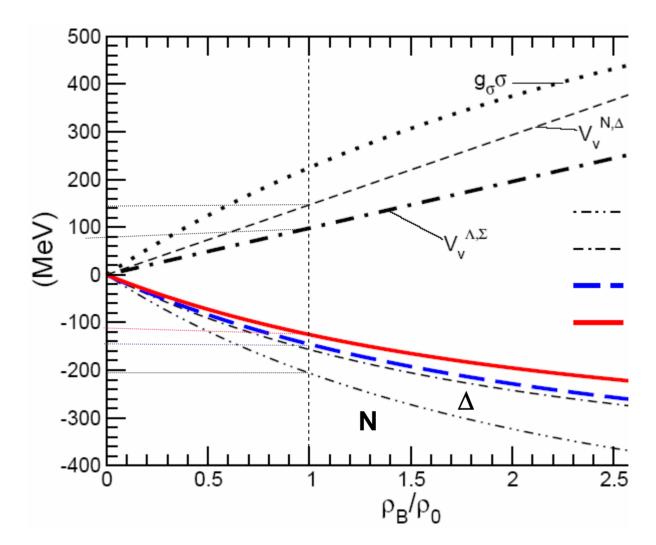
Only one Σ hypernucleus known to be bound

BUT for doubly strange hypernuclei world has

only 6 events (most controversial)

 Would be tremendous help in attempting to understand EOS for dense matter to have real data for Σ and Ξ hypernuclei!

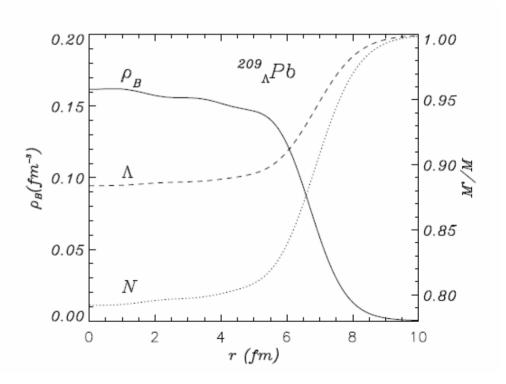
• If JLab can contribute it would be a major step forward



HKS Hall C - JLab

Nuclear Matter: New QMC including Hyperfine Intⁿ

Resolves issue of Σ binding!



Back to Hyperons in Matter: Original QMC Model

In Pb ~ 2: 1

Nuclear Matter: δ M_H N: Λ : $\Xi \sim 3:2:1$

Tsushima et al., N P A630 (1998) 691

