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The N-N Interaction, the Shell Model and SRC

Virl
i
| repulsion

N=N interaction

[]
—— aftraction

Maria Mayer
Nuclear Shell Model (~ 1950) ¢ J.H.D. Jensen

Nobel Prize in 1963

The attractive part of the N-N interaction in combination with
Pauli principle produces an average attractive potential with well

defined quantum states.
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Short-range repulsion — saturation of nuclear densities, etc.
However, the short-range repulsive part must also manifest itself in
the wavefunctions of nucleons in the nucleus. Because it is short
range, high-momentum components will be affected. Typically we
might expect N-N interactions of short range to produce pairs of

nucleons with large, ~ equal, and opposite momenta.
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Muclear Fermi Momenta from Quasielastic Eleciron Scattering
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FHYSICAL REVIEW C VOLUME 43, NUMBER 3 MARCH 1991

y-scaling analysis of quasielastic electron scattering and nucleon momentum distributions
in few-body systems, complex nuclei, and nuclear matter

C. Ciofi degli A, E. Pace,!"M and G. Salme'!

4nn(k) (c/GeV)3

| |

0 700200 300 400 500
k (MeV/c)

Memorial Workshop Oct. 2006 S




For quasi-elastic scattering, we can apply the
impulse approximation (1A) to the interaction of the
projectile with a proton in a correlated pair.

y detected
Incident proton e protons
P =6 GeVic ; ;
L i
p
.' I-"-, ™~ o
n,/ ~
I‘I:
P2

detected

neutron

We reconstruct the momentum gy of the struck
proton:

We then ask is there a neutron in coincidence, and are
pn and py “Correlated”
l.e. roughly t fl.'n'm" and nlra!ru;m'fr ?
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For energies of several GeV and up,
For p-p elastic scattering near 90° c.m.,

do
dt

g~ (Mm+nz2+ny+ny—2)

(Y, k.,

" 10
where the Mandelstam variable s = (P, + Pr)? is the
square of the total c.m. energy.

So for quasi-elastic p-p scattering near 90° c.m., we
have a very strong preference for reacting with nuclear
protons with their Fermi motion in the beam direction.

This minimizes s

Preferentially
selects high

momentum

components
Target

Nucleus
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Figure 1: A schematic side view of the EVA spectrometer.
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Proton Solenoid (a) (b)
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Array 1: total area 0.6 x1.0 m?, 12 counters, 2 layers 0.125 m each.
Array 2: total area 0.8x1.0 m®, 16 counters, 2 lavers 0.125 m each.
Array 3: total area 2x1.0 m?, 8 counters, 1 layers 0.1 m each.

Figure D: A schematic side view (a) and a head-on view (b) of the EVA spectrometer
and the neutron counter arrays.

Memorial Workshop Oct. 2006 d




Bunch Formation:
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Figure 11: An example of a straw-tube bunch. The outer cir-
cles represent the walls of the tube. The radius of the inner red
circles is the drift distance. The blue line is the local derivative
to a trajectory and the green line is the global particle track.

Track Fit:

y(z) = bx + cz*
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Quasi-elastic analysis:

w Track Reconstruction:
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Figure 10: wzoff event display in RZ plane.
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w (Calculation of Kinematic Variables:

=00 'r.if::.:'-. Hf. | [1e \.L rieXx.
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Figure 12: Distribution of Zyerter fOr reconstructed events
at 5.9 GeV/c beam momentum. The length of each target is 6
cm and the arrows show the three target central positions.

Cuts to identifying the targets:

dz < 15 cm
-45 < Zyertex < -25 — target at -35 cm
-20 < Zyerter < 0 — target at -10 cm
0 < Zyerter < 20 — target at 12 cm
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w (Calculation of Physical Quantities:

H[i*«r«i‘l*_'k |':‘,;|-j'-_:'-._
Erm':is = ko+m—E, - E;

where Ej is the beam energy, m is the mass of
proton, E; and E5 are the energies of the two
outgoing protons.

Events
cndaBRERES

Events

o 1 2 3
.10y (GEV)
Figure 14: Missing energy spectra for (p,2p) events at 5.9

GeV/c beam momentum on CHg targets (top panel) and on C
targets (bottom panel).
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Measurement of quasi-elastic "~ Clp,2p) scattering
at high momentum transfer '

Y. Mardor *, J. Aclander *, J. Alster *, D. Barton *, G. Bunce ®, A. Carroll °,
M. Christensen *', H. Courant %, 5. Durrant **, 5. Gushue ®, 5. Heppelmann ©,
E. Kosonovsky 2, I. Mardor *, M. Marshak ¢, Y. Makdisi ®, E.D. Minor %,
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Fig- 3. The upper part of the figure shows the ratio of the two
distributions measured at & and 7.5 GeV /¢ (the last two highest
momentum points were measured at 6 GeV /¢ only). pp. is the
lengitudinal ground state momentum distribution, obtained from
the ¢ distributions for 6 and 7.5 GeV /c combined, after correc-
tion for the s dependence induced by the clementary free cross
section. The |pge,| is the transverse distribution extracted from
several o regions (see text). HO is 2 harmonic oscillator indepen-
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Light Cone Description of the (p,2p+n) Reaction:

The momentum of a nucleon is described in light-cone
space by (p¢, ), where p; is the transverse momentum
and o defined as:

represents the fraction of the nuclear momentum car-
ried by the target nucleon in the light-cone reference
frame.

w Mandelstam variable s:
s = (Py+ Pr)°
= m?+ml1? + 2P Pr
= m?+ml1?+ (Ey— P)(Er + p%) + am(Ey + Pp)

o |

~ m°+ml° + 2ampg

where a = FF—;-‘- is the light cone variable for
target nucleon and for large incident momenta, the
approximation: Ey — pg =~ 0 and Ey + pg =~ 2py was
used.
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Longitudinal Fermi Momentum and o

From the momentum conservation:
Pt1 P2

z = —
Ps tanfl;  tanfs F0
From light cone variable a:
E e = (1N
a=—1 )z Pz ml—'u'i
m m
pfz=m-(1—a).
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Figure 16: Light-cone variable a distribution for CHs and C
targets at 5.9 GeV /c beam momentum.
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Neutron Analysis:

w [nverse Velocity:

v TOP TOF
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Figure 17: Inverse velocity spectra for charged and neutral
particles detected in neutron counter array 3 at 5.9 GeV/c beam
momentum.
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Results and Conclusions

List of Cuts Applied For Triple Coincident Events

Cuts on protons:

Cerenkov cut:
Number of tracks:

Target Positions:

Missing Energy:

¢ (for arrays 1 and 2):

¢ (for array 3):

Cuts on neutrons:

select protons

2 tracks

|Ztarget + 10| < 10

| Ztarget + 35| < 10

21 — 29| < 12

| Emiss — 0.32| < 0.5 GeV
45° < ¢1 < 135°, or

225° < ¢ < 315°

0° < ¢ < 90°, or

180° < ¢ < 270°

Neutron Momentum: 0.05 < p, < 0.55 GeV/c
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[dentification of Correlated Events

One-Dimensional Correlations:

1 ™% - »
4

0.8 L
06 - 1 ' |

| 1 f 1Tk i

[ & * ‘1 I
ﬂ,ﬂ: l 1 | *‘l |

[ . ‘ A T i

pur(GeV/c)
=]
[=] L5 ]
T
[
e s =
_-I:__’,.._.,r_
—u-:-.: 2
I

[ 1 ‘1 F‘.- [
0.2 L ‘P .I'i Tl
I L]
P! ! * 5.9 GeVic, 98
Z 11 t i 8.0 GeVie, 98
0.6 - = 9.0 GeVie, 98
3 . . 5.9 GeVic, 94
-:Lﬂ: . . & 7.5 GeVie, 94

005 01 015 02 025 03 035 0.4 045 05 055
p.(GeVic)

Fig‘l.ll‘E 19: p;P vs. pn for **C(p,2p+n) events. Data labelled
“08" (solid symbols) are for 98 runs (this experiment). Data
labelled “94" are from Aclander, et al. The vertical line at 0.22
GeV/c corresponds to kg, the Fermi momentum for '*C.
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Transverse Correlations:

The angle between the transverse momenta of
proton and neutron is defined as:

.B - (_:05_1 ( Pnt - pft ) .

|ﬁnt||ﬁﬁ|
14, S—
12 a)
ww}_
T 8
g m Pn > Ke
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Figure 20: Plots of 3, the angle in the transverse plane be-
tween py and pn. Panel (a) is for events with p, > 0.22 GeV/c,
and panel (b) is for events with p, < 0.22 GeV /c, where 0.22
GeV/c = kr, the Fermi momentum for o)
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Full Correlations:

We then construct the directional correlation
between py and p, as

cosy = D5 Pn_
| D7 || Pn |
14 -
12 a)
@ 10 -
E ol ”
“ 4E— LT ]_[ pn> F
2r
!:IE'-" el .L|_|..J.|_|__L|.
1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1
cosy
w—
25" b)
2 20
@ 15°
m -

mg ___J _|_|_ 1| pn<kF

I g
0 07505025 0 0.25 0.5 0.75 1

CosY

Figure 21: Plots of cosy, where v is the angle between p,
and py. Panel (a) is for events with p, > 0.22 GeV/c, and
panel (b) is for events with p, < 0.22 GeV/c; 0.22 GeV/c =
kg, the Fermi momentum for 30,

Memorial Workshop Oct. 2006

22



=
o
ot
.

. ) 5.9 GeVic, 98
E ., . s 8.0GeVie, 98
06- " , . » 9.0 GeVie, 98
R o 5.9GeVie, 94
0 ST s 7.5GeVie, 94
02f ~
e I I'I"‘.‘I.I 'lu'l &
uu! 0 . '_ -
Q [ ’
02 2 4 - .
-ﬂ4— * " . R .'
08f . s oetie ] |
o8 e, , ° ¢ v e v
005 01 015 02 025 03 035 0.4 045 05 055
p,(GeVic)

Figure 22: cosy vs. pn for 1C(p,2p+n) events. The vertical
line at 0.22 GeV /c corresponds to kg, the Fermi momentum for
IQC
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The Correlated Fraction of (p,2p) Events:

For the 6 GeV 1998 data set we estimated the
fraction of (p,2p) events with py > 0.22 GeV/c,

which have a correlated backwards neutrons with
Prn > 0.22 GeV/e.

_ corrected # of (p,2p+n) events A

# of (p,2p) events B

The quantity A was obtained from the sample
of all 18 (p,2p+n) events with p, > kp = 0.22
GeV /c, where a correction for flux attenuation and
detection efficiency was applied event-by-event,
and then corrected for the solid-angle coverage:

F

m e 1 1

A=2_3S"2.- =1090.
&Qi=1 €; fi e

The average value of (1/e;t;) was 8.2+0.82 and
2w /A = 7.42. We can then calculate

A 1090
B 205 0.49 £ 0.13.

—_—
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w The Center of Mass Motion of the n — p Pair:

CTTE

P; =DPnzt+ Prf=
We can express this in terms of « as

By —p?
Qp + Qn = L Lo
m m

PHH
—
m

= (1— )+1—

p HI. ¥
p. 2m(1

L

= The Relative Motion of the Correlated Nucleons:

]

sz) _ (1 _ pn.,}

-« = 1-—
p — Qn ( -

{pnz ._ Pfz )
m

P Pfz — Pn:

T f}]., o Il':llll
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The Relative and c¢.m. Motion ot Correlated n-p
Pairs:
+ Oy

; 8
™ = 2m(1 - EF—=

2 )

p.> = mlap — apl.

o Centroid = -0.013 + 0.027 GeV/c
| = [ c = 0.143+0.017 GeVic
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Figure 23: Plots of (a) pi™ and (b) p:“! for correlated n-
p pairs in 2C, for 120[p,‘2p+n} events. Each event has been
“s-weighted”.
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Sumimary

1. For quasielastic (p,2p) events we reconstructed
P¢ the momentum of the knocked-out proton before
the reaction; py was then compared with 7, the
measured, coincident neutron momentum. For
1P| > kp = 0.220 GeV/c (the Fermi momentum)
a strong back-to-back directional correlation
between py and p, was observed, indicative of
short-range n-p correlations.

2. We determined that 49 + 13 % of events with
1Pf| > kr had directionally correlated neutrons
with |p,| > kp. Thus 2N SRCs are a major source
of high-momentum nucleons in nuclei.

3. We also measured the c.m. and relative
momenta of correlated n-p pairs in the longitudinal
direction.

4. And . ..
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John Watson, Kent State
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|_atest Development

Evidence for the Strong Dominance
of Proton-Neutron Correlations in Nuclel
by
E. Piasetzky, M Sargsian, L. Frankfurt, M Strikman
and J. W. Watson
Phys. Rev. Lett., 20 October 2006

s Analysis of the EVA Data

s Assumes 100% SRC above 275 MeV/c

¢ Includes the motion of the pair

s Includes absorption of entering and
exiting nucleons in the nuclear medium

Conclusion: “Within the NN-SRC dominance assumption the data
indicate that the probabilities of pp or nn SRCs in the nucleus are
at least a factor of six smaller than that of pn SRCs. Our result is
the first estimate of the isospin structure of NN-SRCs in nuclei.”
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