Correlations in Nuclei

Larry Weinstein Old Dominion University For the CLAS Collaboration

- Comprehensive Theory Overview
- What are Correlations
- The CLAS Detector
- How to Measure Correlations
- Summary

L. Weinstein, Egiyan Memorial Workshop 2006

Comprehensive Theory Overview

Nuclear Theory, circa 1980

Nuclear Theory - today

What are Correlations?

Average Two Nucleon Properties in the Nuclear Ground State Responsible for the high momentum part of of the Nuclear WF

Two-body currents are not Correlations

Two body currents strongly enhance the effects of correlations

What are Correlations?

Average Two Nucleon Properties in the Nuclear Ground State Not Two-Body Currents

An Experimentalist's Definition:

- A high momentum nucleon whose momentum is balanced by **one** other nucleon
 - NN Pair with
 - Large Relative Momentum
 - Small Total Momentum
- Whatever a theorist says it is

Why are Correlations Interesting? Responsible for high momentum part of Nuclear WF

Correlations are Universal

J. Arrington, 2004

each un verse LHC quark-gluon RHIC plasma temperature T (MeV) 250 200 SPS chemical freeze-out 150 deconfinement 100 chiral restoration Average nuclear density is thermal freeze-out SIS a few times smaller than 50 hadron gas atomic the critical density neutron stars nuclei 0.3 Low temperature NET BARYON DENSITY (0.17 GeV/fm³) high density

A nucleus is a dynamic system, with local fluctuations in density

These fluctuations provide a small high-density component (short-range correlations)

- * This may be origin of EMC effect, medium modifications
- * We can try to isolate SRCs to probe high density matter

If SRCs are the source of the EMC effect, why probe nuclei? Probe SRCs instead!

J. Arrington, 2004

High Density Configurations 1.5 1.7 fm separation Nucleons are already closely packed in nuclei [₈- Щ] d Ave. separation ~1.7 fm in heavy nuclei nucleon charge radius ~ 0.86 fm 0.5 Average nuclear Nucleon separation is limited by density 0.0 0.0 0.5 1.0 1.5 2.0 2.5 the short range repulsive core r [fm] 1.5 V(r) Potential between 1.2 fm separation two nucleons 1.0 [- سياً م 3x nuclear matter 0 0.5 r [fm] 0.0 ~1 fm 1.0 1.5 2.0 0.0 0.5 2.5 r [fm] 1.5 0.6 fm separation For a 1 fm separation (typical for SRCs), the central density is $\sim 4x$ nuclear matter. [₈- Щ] d >5 times Comparable to neutron star densities! nuclear matter 0.5 densities Warning: portions of the person seated next to you are at neutron star densities and may collapse without warning 0.0 1.0

0.5

0.0

1.5

r [fm]

2.0

2.5

CEBAF Site

north linac

south linac

injector

Hall C Hall B

Hall A

CLAS in Maintenance Position

³He(e,e'pp)

Detect 2 protons, reconstruct the neutron

Huge electron acceptance

Be vewy, vewy quiet, I'm still hunting correlations...

I don't want to get involved: spectator correlated pairs

Theory Comparison

4.7 GeV Results (Golak)

Total cross-sections: data = 1-body!

Same Q² dependence!

Data: H. Baghdasaryan

4.7 GeV Results (Misak)

Misak calculations

(Laget)

Laget calculations

PWIA' = 1-body F = FSIM = MEC

3He(e,e'pp)n Summary

•Analysis - follow the peaks:

• $p_{\rm N} > 250 {\rm ~MeV/c}$

•Corners of Dalitz plots (T1, T2 < 0.2*nu)

•P_{leading}(perp) < 300 MeV/c (reduce leading N FSI) •Results:

•NN pair is back-to-back

•Small p_{total} along q

•isotropic

•Sigma pp/pn same as PWIA

•Well described by Golak PWIA + pair distortion

•Magnitude

•Q² dependence

•FSI and MEC not needed

•We have measured distorted correlated pairs!

How to study correlated pairs:

- Should we hit the correlated pair?
 - No! Need to understand
 - MEC (interferes VERY constructively w/SRC)
 - FSI of struck nucleon
 - Yes! Misak, Laget, Claudio ...
- Should we study spectator pairs?
 - No! Need to understand
 - Pair distortion (a factor of 10)
 - Yes! Golak
- CLAS has both sets of data!