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Lattice Gauge Theory enables an ab initio study of the low-energy properties of
Quantum Chromodynamics, the theory of the strong interaction. I begin these
lectures by presenting the lattice formulation of QCD, and then outline the bench-
mark calculation of lattice QCD, the light-hadron spectrum. I then proceed to
explore the predictive power of lattice QCD, in particular as it pertains to hadronic
physics. I will discuss the spectrum of glueballs, exotics and excited states, before
investigating the study of form factors and structure functions. I will conclude
by showing how lattice QCD can be used to study multi-hadron systems, and in
particular provide insight into the nucleon-nucleon interaction.

1 Lattice QCD: the Basics

1.1 Introduction

The fundamental forces of nature can by characterised by the strength of the
interaction: gravity, the weak interaction, responsible for β-decay, the electro-
magnetic interaction, and finally the strong nuclear force. All but the weakest
of these, gravity, are incorporated in the Standard Model of particle interac-
tions.

The Standard Model describes interactions through gauge theories, char-
acterised by a local symmetry, or gauge invariance. The simplest is the electro-
magnetic interaction, with the Abelian symmetry of the gauge group U(1). The
model of Glashow, Weinberg and Salam unified the electromagnetic and weak
interactions through the a broken symmetry group SU(2)⊗U(1). The strong in-
teraction is associated with the unbroken non-Abelian symmetry group SU(3),
and is accorded the name Quantum Chromodynamics (QCD).

The strength of the electromagnetic interaction is characterised by the
dimensionless fine-structure constant αe ' 1/137. A very powerful calcula-
tional technique is to expand as a series in αe - perturbation theory. QCD
aLectures given at the 14th. Annual Hampton University Graduate Studies at CEBAF, 1st.
to 18th. June, 1999
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is characterised by a strong coupling constant αs ' O(1). QCD, however,
is asymptotically free, with an effective running coupling αs(Q2) decreasing
logarithmically with increasing Q2. Thus processes with an energy scale large
compared with the natural scale of the strong interaction, of the order of the
proton mass, are often amenable to the techniques of perturbation theory.

At energy scales of the order of the proton mass, perturbation theory fails.
Yet a quantitative understanding of QCD is crucial both for the study of the
strong interaction, and for the study of the other forces which are masked
by the strong interaction. In this energy regime, we can either employ low-
energy effective models of QCD, or seek some way of performing a quantitative
calculation directly within QCD. Lattice QCD is the only means we have of
performing such an ab initio calculation.

Before proceeding to a description of lattice QCD, it is useful to make a
comparison between the properties of QCD and of QED:

QED vs. QCD

Gauge particle Photon, γ Gluon, G
Coupling to Electric charge, Q Colour charge

Charged particles e, µ, u, d, s . . . Quarks, u, d, s..., G
Photon is neutral Gluon has colour charge

The gluon self-coupling reflects the non-Abelian, and highly non-linear, nature
of QCD. Where are the quarks? They are bound into the colour-singlet hadrons
we observe in nature. Lattice gauge theory provides the means to relate the
quark degrees of freedom with the observed hadronic degrees of freedom.

1.2 Lattice Gauge Theory

Lattice gauge theory was proposed by Ken Wilson in 1974.1 Because of the
gluon self-coupling, we have a sensible pure-gauge theory of interacting gluons,
even without quark, or matter, fields. We will consider this theory first.

We begin by formulating QCD in Euclidean space, which we accomplish
by a Wick rotation from Minkowski space,

t→ τ ≡ it. (1)

The gauge fields are defined through

Aµ(x) = Aaµ(x)T a, (2)

where the T a, a = 1, . . . , 8 are the generators of SU(3), satisfying

[T a, T b] = ifabc T c (3)
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Figure 1: A schematic of a lattice showing the association of the SU(3) matrices Uµ(x) with
the links of the lattice.

TrT aT b =
1
2
δab. (4)

We now introduce the field-strength tensor

F aµν ≡ ∂µAaν − ∂νAaµ + gfabcAbµA
c
ν , (5)

in terms of which the Euclidean continuum action is

S =
1
4

∫
d4x sF aµνF

a
µν . (6)

As we will see later, the crucial property of Euclidean space QCD for the
formulation of lattice gauge theories is that the action is real. Gauge invariance
is manifest through invariance under the transformation

Aµ(x)→ Λ(x)Aµ(x)Λ−1(x) − 1
ig

(∂µΛ(x))Λ−1(x). (7)

We proceed to the lattice formulation of QCD by replacing a finite region
of continuum space-time by a discrete four-dimensional lattice, or grid, of
points. The gluon degrees of freedom are represented by SU(3) matrices Uµ(x)
associated with the links connecting the grid points, as shown in Figure 1.
We work with the elements of the group, rather than elements of the algebra,
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and the SU(3) matrices Uµ(x) are related to the usual continuum gauge fields
through

Uµ(x) = exp ig a
∫ 1

0

dtAµ(x+ taµ̂), (8)

where g is the coupling constant, and a the lattice spacing. Under a gauge
transformation Λ(x), the link variables transform as

Uµ(x)→ Λ(x)Uµ(x+ µ̂)Λ−1(x), (9)

in analogy with Eq. 7. Wilson’s form of the lattice gauge action is constructed
from the elementary plaquettes 1

U2µν (x) = Uµ(x)Uν(x+ µ̂)U†µ(x+ ν̂)U†ν (x). (10)

The plaquettes are clearly gauge invariant, and the action is then written

SG =
2Nc
g2

∑
x

∑
µ>ν

[
1− 1

Nc
<TrU2µν (x)

]
≡ − β

Nc

∑
x

∑
µ>ν

<TrU2µν , (11)

where we have ignored the constant term, and introduced

β =
2Nc
g2

with, for QCD, Nc = 3. It is straightforward to show that the Wilson lattice
gauge action is related to the continuum counterpart, Eq. (6), by

SG =
1
4

∫
d4xF aµνF

a
µν +O(a2), (12)

so that the lattice gauge action has O(a2) discretisation errors.

1.3 Observables and Lattice Gauge Simulations

Within lattice gauge theory, the expectation value of an observable O is given
by the path integral

〈O〉 =
1
Z

∫
DU O(U)e−SG(U) (13)

where
DU =

∏
x,µ

dUµ(x) (14)
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and Z is the generating functional

Z =
∫
DU e−SG(U); DU =

∏
x,µ

dUµ(x). (15)

Before proceeding further, we need to define what we mean by the integration
over a group variable dU . We do this through the Haar measure, which for a
compact group is the unique measure having the following properties:

1. ∫
G

dU f(U) =
∫
G

dU f(V U) =
∫
G

dU f(UV ) ∀V ∈ G.

2. ∫
G

dU = 1.

This choice of measure respects gauge invariance. Note that, because we are
employing the compact variables, Uµ(x), rather than the elements of the alge-
bra, we do not need to fix the gauge, and indeed in most circumstances we do
not do so. However, there are cases where working in a fixed gauge is useful,
most notably in lattice perturbation theory, where gauge fixing is essential, in
the definition of hadronic wave functions, where it is often useful to work in
Coulomb gauge, and most directly in the study of the fundamental gluon and
quark Green functions of the theory.

On a finite lattice, the calculation of observables is equivalent to the evalu-
ation of a very high, though finite, dimensional integral. In principle, we could
estimate this integral by evaluating the integrand at uniformly distributed
points. This, however, would be hopelessly inefficient; the exponential be-
haviour ensures that the integral is dominated by regions where the action is
small. Instead we use importance sampling, and generate gauge fields with a
probability distribution

e−SG(U). (16)

The interpretation of this exponential in terms of a probability distribution
requires that the action be real, and hence the need to work in Euclidean
space. The formulation follows that of many systems in statistical physics.

1.4 Statistical and Systematic Uncertainties

Statistical Uncertainties

Observables in lattice QCD calculations arise from a Monte Carlo procedure,
and thus have statistical uncertainties. Once we have reached thermalisation,
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these uncertainties decrease as the square root of the number of configura-
tions, providing successive configurations are sufficiently widely separated to
be statistically independent.

Systematic Uncertainties

Of even greater delicacy than the statistical uncertainties are the system-
atic uncertainties that enter our computations. These arise from a variety
of sources, including:

• Finite Volume: Our box must be sufficiently large that finite volume
effects are under control. For light hadron spectroscopy, box sizes of at
least 2 fm are necessary to ensure that the hadron is not “squeezed”, but
for excited states even larger volumes may be required. In addition, the
requirement that the spatial extent of the lattice be large compared with
the correlation length, set by the pseudoscalar mass, sets a still more
stringent constraint at the physical pion mass.

• Discretisation Effects: Increasing the inverse coupling β corresponds to
progressing to weaker coupling, and hence smaller lattice spacing a. We
must ensure that β is sufficiently large that the scale-breaking discreti-
sation errors are under control, and in practice we perform calculations
at several values of a and extrapolate to the limit a = 0.

We will encounter several other potential sources of systematic errors when we
discuss the inclusion of the quarks.

1.5 Including the Quarks

The full generating functional for lattice QCD with a single flavour of quark is

Z =
∫
DU DψDψe−SG(U)+

∑
x,y

ψ(x)M(x,y,U)ψ(y)
, (17)

where M(x, y, U) is the fermion matrix which, in its “näive” form, is

M(x, y, U) = mδx,y +
1
2

∑
µ

γµ
(
Uµ(x)δy,x+µ̂ − U†µ(x− µ̂)δy,x−µ̂

)
(18)

with m the quark mass. Because the fermion fields are represented by Grass-
man variables, we can integrate out the fermion degrees of freedom, to obtain

Z =
∫
DU detM(U) e−SG(U). (19)
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The determinant fluctuates rapidly between configurations. Thus it is not suf-
ficient for a Monte-Carlo procedure to generate configurations with probability
e−SG(U), and only include the determinant in the calculation of observables;
detM(U) must be included in the measure. Furthermore, whilst multiplica-
tion by the fermion matrix M involves only nearest neighbour communication,
the evaluation of detM(U) is essentially a global operation. Thus detM(U)
must be re-evaluated every time we update even a single value link variable
Uµ(x). The most efficient algorithms for the simulation of QCD with dynam-
ical quarks, such as the Hybrid Monte Carlo algorithm,2 involve a non-local
updating procedure. Nevertheless, calculations with dynamical quarks are at
least 1000 times as expensive as pure gauge calculations.

The computational overhead of completely including the quark degrees of
freedom has encouraged many calculations to be performed in the quenched
approximation to QCD, in which we set

detM ≡ 1,

in Eq. (19). This corresponds to suppressing the contribution of closed quark
loops in the path integral. There are two justifications for this seemly radical
approximation. Firstly, the phenomenological observation that the neglect
of the quark loops corresponds to the neglect of OZI-suppressed processes.
Secondly, the quenched approximation emerges in the large Nc limit of QCD,
where Nc is the number of colours.

1.6 Fermion doubling and chiral symmetry

Unfortunately, the lattice formulation of fermions presents a further challenge.
To illustrate how this arises, let us consider the momentum-space fermion
propagator

M−1
xy =

∫ π
a

0

d4p

(2π)4

eip·(x−y)

m+ i
∑
µ γµ sin apµ

. (20)

In the massless limit, the propagator has a pole not only at pµ = 0, but also
at the edges of the Brillouin zone pµ = π/a. Thus in four dimensions, we
have a theory with 24 non-interacting, equal mass fermions. This situation is
a consequence of the Dirac equation being first order. Historically, there have
been two solutions to this problem.
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Wilson Fermions

Wilson proposed the addition of a second derivative term, or momentum-
dependent mass term, to the action:

SWF =
∑
x

{
(m+ 4r)ψ̄(x)ψ(x)−

1
2

∑
µ

[
ψ̄(x)(r − γµ)Uµ(x)ψ(x+ µ̂) + ψ̄(x+ µ̂)(r + γµ)U†µ(x)ψ(x)

]}
.(21)

In the continuum limit, we find

SWF =
∫
d4x ψ̄(x)(D +m− arD2

2
)ψ(x) +O(a2). (22)

The addition of the second derivatives lifts the mass of the unwanted doublers,
but at a price. We have added O(a) discretisation errors to the fermion matrix,
and furthermore the additional term explicitly breaks chiral symmetry at any
non-zero value of the lattice spacing, though it is important to remember that
chiral symmetry is restored in the continuum limit. The breaking of chiral
symmetry has the unfortunate consequence that the fermion masses are sub-
ject to an additive mass renormalisation. In simulations, it is conventional to
reparameterise the fermion matrix as

Mx,y = (m+ 4r) {δx,y1− κ× “hopping term”} (23)

where the hopping parameter

κ ≡ 1
2(4r +m)

(24)

is now a tunable parameter, reflecting the additive quark-mass renormalisation.
The critical value of the hopping parameter, κcrit, is that value for which the
pion mass vanishes.

Kogut-Susskind Fermions

The second approach, due to Kogut and Susskind, regards the complete loss
of chiral symmetry at finite a as too great a sacrifice, and therefore aims to
preserve a remnant of chiral symmetry whilst reducing the flavour-doubling
problem. This formulation leads to four flavours of quark, but the different
flavour and spin components are assembled from fields at the sixteen corners of
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a 24 hypercube. While the Kogut-Susskind formulation has been extensively
employed in the calculation of quantities where chiral symmetry is crucial, the
problematic flavour identification means that I will concentrate on the results
using the Wilson formulation in these lectures.

Chiral Fermions and the Ginsparg-Wilson Relation

Is it possible to construct a formulation that does indeed possess a symmetry
analogous to chiral symmetry at a finite lattice spacing, whilst admitting the
correct spectrum of quark states? Let us list four properties desired of the free
fermion action, which we write in the form

SF = a4
∑
x

ψ̄(x)D(x, y)ψ(y)

1. D(x, y) is local

2. Far below the cut-off, D(p) ' iγµpµ +O(p2).

3. D(p) is invertible at all non-zero momenta.

4. γ5D +Dγ5 = 0.

The last two requirements require explanation; 3 demands that the only poles
occur at zero momentum, and hence that there be no doublers, whilst 4 is
just a statement of chiral symmetry. The famous Nielsen-Ninomiya “no-go”
theorem 3 states that it is not possible to find a Dirac operator that allows
all four requirements to be satisfied simultaneously, and since the first two
requirements were deemed sacrosanct either chiral symmetry had to be broken,
or flavour-doubling had to be accepted.

The recent revolution in our understanding of chiral fermions are related
to the rediscovery of the Ginsparg-Wilson relation 4

γ5D+Dγ5 = aDγ5D, (25)

as a replacement for requirement 4. At non-zero distances, the Dirac operator
does indeed commute with γ5, and a symmetry, reducing to chiral symmetry in
the continuum limit, is preserved even at non-zero values of the lattice spacing.
The problem is finding a formulation of the Dirac operator that does indeed
satisfy the relation of Eq. 25.

Recently, two formulations satisfying this relation have been discovered.
In the case of Domain Wall fermions 5,6 (DWF), an auxiliary fifth dimension,
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Figure 2: The residual pion mass m2
π as a function of the extent Ls of the fifth dimension

in the DWF formulation.7 The calculation is performed in the quenched approximation to
QCD, and Wilson and Iwasaki refer to the standard Wilson gauge action, and an improved
gauge action respectively.

with coordinate s and extent Ns, is introduced. The action is essentially a
five-dimensional Wilson fermion action

SDWF
F =

∑
x,y,s,s′

ψ̄(x)
(
D(x, y)δs,s′ +D5(s, s′)δx,y

)
ψ(y), (26)

where D(x, y) is the usual Wilson-Dirac operator introduced in Eq. 21, but
with a negative mass term M . The operator in the fifth dimension, D5(s, s′),
couples the boundaries through a parameter −m, which is proportional to the
usual four-dimensional quark mass; note that no gauge links are introduced in
the fifth dimension. The chiral limit corresponds to Ls →∞, and then m→ 0;
following the former of these limits, the quark mass is only multiplicatively
renormalised.

A crucial issue is how small a value of Ls is sufficient to maintain good
chiral properties whilst minimising the computational cost. For the case of
hadronic physics, perhaps more important than having good chiral properties
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is being able to perform simulations at sufficiently small quark mass for the
pion cloud to emerge. Fig. 2 shows the residual pion mass in the chiral limit
as a function of function of Ls.7

The second approach is the Overlap formalism, introduced by Narayanan
and Neuberger.8,9 Here the overlap-Dirac operator satisfying the property 4 is

DN =
1
2

(1 + µ+ (1 − µ)γ5
H(m)√

H(m)H(m)
(27)

where H(m) is the Hermitian Wilson-Dirac fermion operator, with negative
mass m, defined by H = γ5D where D is the usual Wilson-Dirac operator.
The parameter µ is related to the physical quark mass. In this case, the extra
computational cost comes not from computing in five dimensions, but rather
from evaluating the step function

ε(H) =
H√
HH

. (28)

The relative computational overheads of the two implementations is the sub-
ject of intense investigation,10 but in any case the overhead compared to the
standard Wilson fermion action is considerable. Whilst this overhead is justi-
fied for chiral gauge theories, the situation in the case of hadronic physics is
less clear; perhaps there are more efficient ways of approaching physical values
of the light-quark masses.

1.7 Improvement

The addition of the Wilson term to the fermion action has introduced O(a)
discretisation errors; in contrast the gauge action has only O(a2) discretisation
errors. Thus there has been an emphasis on reducing the errors in the fermion
sector through the addition of higher dimensional terms to the action, the
improvement programme of Symanzik.11 In the case of the Wilson fermion
action, the leading O(a) errors can be removed through the addition of a
single dimension-five operator, the magnetic moment, or clover term, proposed
by Sheikholeslami and Wohlert 12

SF = SWF − i
cswκ

2

∑
x,µ,ν

ψ̄(x)Fµν(x)σµνψ(x). (29)

The name “clover” is clear from the natural lattice discretisation of Fµν illus-
trated in Figure 3.
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x
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Figure 3: The lattice discretisation of the field-strength Fµν (x) in terms of the plaquettes
with corners at x

Using tree-level perturbation theory, the clover coefficient csw is unity, and
the discretisation errors on hadron masses and, with an appropriate discreti-
sation of operators, on-shell matrix elements are formally O(ag2). 13 UKQCD
performed an extensive investigation of the hadron spectrum and hadronic ma-
trix elements using this value of csw, and the discretisation errors, particularly
for systems containing heavy quarks, can be substantial. 14

More recently, two prescriptions for determining csw have been proposed
with the aim of reducing discretisation errors still further. In the first, the
clover coefficient is constrained to its mean-field-improved, or tadpole, value15

csw = TAD =
1
u3

0

(30)

where
u0 = 〈1

3
TrU2〉 (31)

is an estimate of the mean-value of the link variable Uµ. Though formally
the discretisation errors remain O(ag2), this prescription recognises the poor
behaviour of naive lattice perturbation theory arising from the “tadpole” con-
tributions, and attempts to resum the dominant higher-order contributions
through the use of a more physical expansion parameter.

The second prescription 16,17 determines csw non-perturbatively in such a
way as to remove all calO(a) discretisation errors from hadron masses, and,
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with an appropriate choice of operators, from all on-shell matrix elements 18

csw = NP =
1− 0.656g2

0 − 0.152g4
0 − 0.054g6

0

1− 0.922g2
0

, g2
0 ≤ 1, (32)

where g2
0 = 6/β.

We end this section by remarking that the chiral-fermion formulations are
already O(a)-improved; the O(a) discretisation are introduced through the
chiral-symmetry-breaking Wilson term.

2 The light-hadron spectrum

The calculation of the spectrum of hadrons containing the light quarks (u,d,s)
is the benchmark calculation of lattice QCD; we know many of the results! It
also provides a useful theatre for discussion of some of the issues I raised in
the introduction. However, let us begin with one of the simplest observations
we can make in lattice QCD, that of the linear confining potential.

2.1 The Static Quark Potential and Quark Confinement

The simplest observable we can obtain from a lattice simulation is the potential
between two (infinitely heavy) static quarks. We construct the Wilson loops

W (R, T ) = 〈TrU(C(R, T ))〉 (33)

where U(C(R, T )) is the product of gauge links around a R × T space-time
loop. At large times, we can extract the potential V (R) between two static
quarks Q at separation R, using

W (R, T ) T→∞∼ e−T V (R). (34)

An area-law decay of the large Wilson loops is characteristic of a linear, confin-
ing potential in QCD, giving rise to a constant force with increasing separations
r. We parameterise this force F (r) by

F (r)r2
0 = 1.65 +

π

12

(
r2

0

r2
− 1
)

(35)

where r0 ' 0.5 fm is a phenomenological parameter 19 which we use to deter-
mine the scale. We show this force for the pure-gauge theory, corresponding
to the quenched approximation, in Figure 5. At large separations we see the
constant force indicative of confinement. But there is a further important ob-
servation. The results from all three calculations lie on a single curve, even
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T

R

C(R,T)

Figure 4: The construction of the R × T wilson loop in a space-time plane.

though the calculations span a factor of two in lattice spacing a, from about
0.05 fm to 0.1 fm.

Do we expect the same picture of a rising, linear static-quark potential in
full QCD, with dynamical quarks? As the two heavy quarks are separated,
the energy stored in the string increases. Eventually, the string can “break” to
form a quark-antiquark pair, a process that does not occur in the pure-gauge
theory. This should lead to a flattening of the potential at some distance
corresponding to an energy in the flux tube of 2MB , twice the binding energy
of static-heavy-light meson. In practice, there has been no clear observation
of such a feature at zero temperature from the simple Wilson loop operator;
the behaviour of the potential in full QCD from a calculation using an O(a)-
improved fermion action 21 is shown in Figure 6.

As the string breaks, the QQ̄ system crosses to a system of two heavy-
light Q̄q mesons. The lack of observation of the string breaking from the
Wilson loop is ascribed to the poor overlap of the Wilson loop operator with
two such heavy-light mesons. The mixing between these two states has been
successfully investigated in simpler systems 22,23,24, and recently a study has
been made within QCD.25 Both the ground state and first excited state energies
are extracted by a variational calculation using the Wilson loop and Qq̄Q̄q
operators, as shown in Figure 7. We will study a related problem when we
discuss the nucleon-nucleon interaction in Section 4.
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Figure 5: The force between two static quarks, in units of Sommer’s r0 parameter,19 is shown
at three values of the lattice spacing, corresponding to β = 6.0,6.2 and 6.4.20
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Figure 6: The scaled and normalised potential as a function of r/r0, where r0 is the Sommer
scale discussed earlier, as obtained on a 123 × 24 lattice, using O(a)-improved dynamical
fermions.21 The expected region of string breaking is shown by the horizontal lines.
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Figure 7: The ground and excited state energies obtained from a variational calculation
including the QQ̄ and Qq̄Q̄q operators.25 The horizontal line is 2MB, the static binding
energy shown also in Figure 6
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2.2 Spectrum recipe

The elemental building blocks of a spectrum calculation are the quark propa-
gators

Gijαβ(x, y) = 〈0|ψiα(x)ψ̄jβ(y)|0〉. (36)

The quark propagator to every point x on the lattice from a fixed source point
y, or linear combination of source points, is obtained by inverting the fermion
matrix for a fixed source vector. There are a variety of linear-solver methods
used to accomplish this.

In principle, the recipe for determining the mass of a ground-state hadron
P is straightforward:

1. Choose an interpolating operator O that has a good overlap with P

〈0 | O | P 〉 6= 0,

and ideally a small overlap with other states having the same quantum
numbers.

2. Form the time-sliced correlation function

C(t) =
∑
~x

〈O(~x, t)O†(~0, 0).

This is expressed using a Wick expansion in terms of the quark propa-
gators of Eq. 36

3. Insert a complete set of states between O and O†. The time-sliced sum
puts the intermediate states at rest, and we find

C(t) =
∑
~x

∑
P

∫
d3k

(2π)32E(~k)
〈0|O(~x, t)|P (~k)〉〈P (~k)|O†(~0, 0)|0〉

=
∑
P

| 〈0 | O | P 〉 |2
2MP

eiMP t.

4. Continue to Euclidean space t→ it, and we find

C(t) =
∑
P

| 〈0 | O | P 〉 |2
2MP

e−MP t. (37)
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At large times, the lightest state dominates the spectral sum in Eq. (37), and
we can extract the ground state mass.

However there are many considerations that complicate this picture. Firstly,
the temporal separation between the hadrons must be sufficiently large that
the ground state can be identified in Eq. (37); we aim to accomplish this by
choosing an operator having a large overlap with the ground state relative to
the excited states, and by fitting to several interpolating operators. Secondly,
the correlation lengths in our calculation must be small compared with the
size of the box in which we are working. This correlation length is simply
the inverse of the pion mass, and we require mπL ' 5, where L is the spatial
extent of the lattice. Most, though not all, simulations to date have restricted
consideration to quark masses in the region of the strange-quark mass.

The benchmark calculation of the quenched light-hadron spectrum us-
ing the unimproved fermion action has been performed by the CP-PACS
collaboration.26 They perform their calculation on a variety of lattice sizes,
to control finite size effects, and at a variety of lattice spacings, to enable an
extrapolation to the continuum limit.

Recently, there has been a similar calculation using the non-perturbatively
improved clover fermion action by the UKQCD Collaboration.27 They also per-
form an extrapolation to the continuum limit, but in their case the discretisa-
tion uncertainties are O(a) rather than O(a2), and I will describe some of the
details of this calculation.

UKQCD generated 163×32 lattices at β = 5.7, 163×48 lattices at β = 6.0
and 243 × 48 lattices at β = 6.2, corresponding to approximately a factor
two span of lattice spacings but at roughly the same spatial volumes. In
addition, a calculation was performed on a larger 323 × 64 lattice at β = 6.0
to enable a study of finite-volume effects. Quark propagators were computed
with the clover coefficient having both its tadpole-improved value csw = TAD
(β = 5.7, 6.0, 6.2), and its non-perturbatively determined value csw = NP
(β = 6.0, 6.2).

Since the quark propagators were computed at values of the quark mass
in the region of the strange quark mass, it is necessary to extrapolate in the
quark mass to obtain results at the u- and d-quark masses, and interpolate to
obtain results at the s-quark mass. The bare, or unrenormalised quark mass,
is related to the hopping parameter κ through

mq =
1
2a

(
1
κ
− 1
κcrit

)
. (38)

The bare quark mass must be rescaled in the O(a)-improved theory so that
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spectral quantities approach the continuum limit with O(a2),17

m̃q = m1(1 + bmamq), (39)

where the perturbative one-loop value of bm is used.28 To extrapolate the results
to the physical quark masses, the following ansatz is employed:

m2
PS = B(m̃q,1 + m̃q,2 (40)
mV = AV + CV(m̃q,1 + m̃q,2) (41)

mOct = AOct +COct(m̃q,1 + m̃q,2 + m̃q,3) (42)
mDec = ADec +CDec(m̃q,1 + m̃q,2 + m̃q,3), (43)

where the subscripts PS, V, Oct and Dec refer to the pseudoscalar meson,
vector meson, octet baryons (Σ- and Λ-like) and decuplet baryons (∆-like)
respectively. The critical hopping parameter corresponds to the value of κ for
which mPS vanishes. The quality of the chiral extrapolations of the vector, Σ
and Λ masses for the csw = NP data is shown in Figure 8.

The csw = TAD data has in principle a remnant O(a) discretisation error,
whilst the csw = NP data is fully O(a2)-improved. In the continuum extrap-
olations, UKQCD performs a simultaneous fit to both the NP and TAD data.
In order to investigate the approach to the continuum limit, it is not neces-
sary to study the chirally extrapolated values. Indeed, a clear demonstration
of the efficacy of improvement can be seen by looking at the lattice-spacing
dependence of hadron masses at a fixed mπ/mρ ratio,29 shown in Figure 9.

The final UKQCD results for the quenched light-hadron spectrum, to-
gether with the CP-PACS results using the standard Wilson fermion action,
are shown in Figure 10. The different UKQCD plotting symbols correspond
to determining the lattice spacing by requiring that either K∗ or N have its
physical value. Both calculations support the assertion that the quenched
light-hadron spectrum agrees with experiment at the 10% level. Now that we
have established the reliability with which we can compute the known hadron
masses, it is time to investigate the predictive power of lattice QCD. We begin
by considering the glueball spectrum.

2.3 Glueball Spectrum

The gluon self-coupling that distinguishes QCD from the Abelian QED admits
the existence of purely gluonic bound states, or glueballs. Indeed, glueballs are
the only true states in quenched QCD! The good agreement of the quenched
light-hadron spectrum with the experimental value was perhaps not surprising;
Zweig’s rule tells us that hadronic decays involving the annihilation of the
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Figure 8: Data 27 for (a): vector mesons, (b): Σ-like baryons and (c): ∆-like baryons is
plotted against the average value of the masses of the component quarks m̄q = (m̃q,1 +
m̃q,2)/2 (vector meson) and m̄q = (m̃q,1 + m̃q,2 + m̃q,3)/3 (baryons). Squares and circles
denote the NP data at β = 6.2 and β = 6.0 respectively, and the lines correspond to the fits
of Eqs. (41)-(43)

.

21



Figure 9: The hadron spectrum using the Wilson and non-perturbatively improved fermion
actions is shown against a2 at fixed mPS/mV.29 The scale is set from the string tension.
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Figure 10: The quenched light hadron spectrum computed in the O(a)-improved theory27

and the comparison to results obtained using the unimproved Wilson action (full circles).26

The levels of the experimental points are denoted by solid lines
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Operator

Glueball

Sites

Figure 11: Construction of improved glueball operators, with the aim of increasing the
overlap with the ground state.

initial quarks are highly suppressed. Zweig’s rule also suggests that glueball
mixing with quark states should be similarly suppressed. Thus a quenched
calculation of the glueball spectrum is very important, and can yield crucial
information to guide experiment.

The calculation of the glueball spectrum has been plagued by two inter-
related problems. Firstly, the glueballs are relatively heavy and thus the cor-
relation functions die rapidly at increasing temporal separations. Secondly the
glueball correlators are subject to large fluctuations independent of separation.
In consequence, the signal-to-noise ratio for glueball correlators is very poor.

Calculations of the spectrum using the standard Wilson gluon action,
Eq. (11), have emphasised the construction of improved gluonic operators
which more correctly describe the ground-state glueball wave function, as il-
lustrated in Figure 11. In the case of the determination of the spectrum of
states at rest, the rotation group used in the construction of the continuum
glueball operators is reduced to the cubic group of the lattice. The different
components of, for example, the JPC = 2++ glueball lie in the E++ and T++

2

representations of the cubic group. As the continuum limit is approached, the
masses obtained from the different representations of the cubic group should
become degenerate, signifying the restoration of rotation symmetry. Despite
the discretisation errors of the standard Wilson gauge action being O(a2), the
lightest glueball state is subject to much larger O(a2) discretisation errors than
the spectrum for quark states, as shown in Figure 12.30

To improve upon these calculations, Morningstar and Peardon 31 chose
to employ an O(a2)-improved gluon action, having discretisation errors of
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Figure 12: The continuum extrapolation of the masses of the JPC = 0++ and 2++ states.30

The different plotting symbols for the 2++ states correspond to the lattice operators T2

(octagons) and E (diamonds). The lines represent linear continuum extrapolations in a2.
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O(a4);note that it is only necessary to consider operators of even dimension in
the construction of the gluonic part of the action. Unfortunately, the relatively
large mass of the glueball states in lattice units allows only a couple of time
slices to be used in extracting the glueball masses. They then observed that
one could employ a relatively coarse lattice in the spatial directions to produce
a reasonable approximation to the glueball wave function, whilst employing
a finer lattice in the temporal direction to enable the isolation of the ground
state and excited state masses in each channel.32

The anisotropic lattice is implemented through the choice of different cou-
pling constants for the space-space and space-time plaquettes in the gluonic
action Eq. 11; this involves a non-trivial tuning, since the bare couplings are
renormalised. The resulting glueball spectrum,33 after extrapolation to the
continuum limit, is shown in Figure 13.

2.4 Exotic Hadrons

The search for hadrons with excited glue is one of the primary goals of the
N∗ programme at CEBAF. There has been a flurry of recent activity looking
for exotic states, and in particular exotic mesons, in the lattice community;
lattice gauge theory aficionados generally try to comprehensively understand
the mesonic sector before venturing into the realm of baryons.

Exotics and Hybrids

Within the quark model, the charge conjugation C and parity P of a meson
are related to the spin S and orbital angular momentum L through

P = (−1)L+1 ;C = (−1)L+S .

States not conforming to these relations are called exotics, and examples are
the states with

JPC = 1−+, 0+−, 2+−.

An exotic can be formed in two ways. Firstly, as a quark-antiquark-glue state,
which we call a hybrid. Secondly as a bound state of two quarks and two
antiquarks. In this section I will discuss lattice studies of hybrid states. These
studies have been given increased impetus by experimental observations of 1−+

resonance states in the region of 1.4 GeV.34,35

Hybrid interpolating operators

The usual interpolating operator for the pion is

Oπ(~x, t) = ψ̄(~x, t)γ5ψ(~x, t). (44)
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In the case of the hybrid state 1−+, a possible interpolating operator would be

O1−+(~x, t) = ψ̄(~x, t)γiFij(~x, t)ψ(~x, t) (45)

where Fij is a lattice discretisation of the field-strength tensor constructed in
Figure 3. In practice to get any sort of signal for hybrid mesons, it is necessary
to use interpolating operators in which the quark and antiquark are separated
in space. The signals are inevitably much noisier than for the pseudoscalar and
vector meson states. To see why, we note that the hybrid correlator Chyb(t)
decays exponentially with the mass of the hybrid,

Chyb(t) ' e−mhybt. (46)

In contrast, the correlator for the variance is that of the square of the interpo-
lating operator

Cσ2(t) =
∑
~x

〈|Ohyb(~x, t)|2|Ohyb(~0, 0)|2〉. (47)

Typically, |Ohyb|2 is an interpolating operator for two pions, and therefore the
signal-to-noise ratio with increasing temporal separations increases as

signal
noise

' e−(mhyb−mπ)t. (48)

Since the masses of the hybrids are relatively large, the signal quickly is lost
in the noise. In the case of the glueball calculations, the situation is particu-
larly severe since the square of the glueball operator has a non-zero vacuum
expectation value, leading to the constant noise alluded to earlier.

There have been recent calculations of the light-quark hybrid spectrum,
and in particular of the 1−+ state, in both the quenched approximation,36,37

and in full QCD.38,39 These calculations all find a 1−+ mass around 2 GeV,
far larger than that of the experimental candidates. A possible resolution
is that this resonance is actually a four-quark state; we will return to this
interpretation in Section 4.

2.5 The N∗ Spectrum

The measurement of the excited nucleon spectrum reveals the full SU(3) na-
ture of QCD, and is a critical part of the experimental programme at CEBAF.
The observed N∗ spectrum is shown schematically in Figure 14. The nu-
cleon N(938) has positive parity; its parity partner, with negative parity, is
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Figure 14: Schematic showing the observed N∗ spectrum, labelled by JP .

the N(1535). The usual nucleon interpolating operators employed in lattice
calculations are

Nα = εijk(uiCγ5d
j)ukα. (49)

On forming the time-sliced correlator, both positive and negative parity states
can contribute to the correlation function. However, we can perform a parity
projection

C(t) =
∑
~x

〈0 | Nα(~x, t)(1± γ0)αβN̄β(0) | 0〉 (50)

to project out the forward-propagating positive (+ sign) or negative (- sign)
parity states, with states of the opposite parity propagating in the negative
direction. On a periodic lattice, our correlator contains both the forward-
and backward-propagating states, and we rely on a sufficiently long temporal
extent to our lattice to delineate the two parities.

Recently, there have been two lattice calculation of this mass splitting. The
first 40 employs a highly improved fermion action, the Dχ34 action of Hamber
and Wu.41 Not only do the authors extract the mass of the J = 1/2− state, but
also find a signal for the J = 3/2− state. The second calculation 42 employs
domain-wall fermions; here the authors argue that, since the J = 1/2+ and
J = 1/2− state are degenerate in an unbroken chirally symmetric theory, the
use of an action having a possessing exact chiral symmetry, even at non-zero
lattice spacing, is crucial in correctly extracting the splitting.
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30



Both calculations find mass splittings between the positive- and negative-
parity states in accord with experiment, though with still substantial system-
atic and statistical uncertainties. The masses of the J = 1/2+ (nucleon) and
J = 1/2− states using DWF at a fixed value of the lattice spacing are shown
in Figure 15.

3 Hadron Structure

As well as enabling the calculation of the hadron spectrum, lattice QCD en-
ables the study of the distribution of the quarks and gluons within hadrons.
Information about these is contained in the form factors, and in the quark and
gluon structure functions. These calculations have in common the determina-
tion of some (local) hadronic matrix element, so we will begin this section with
a discussion of the lattice technology of determining matrix elements.

3.1 Hadronic Matrix Elements

The paradigm calculation is that of fπ, the pion decay constant defined through

〈0 | Aµ | π〉 = ipµfπ, (51)

where Aµ ≡ ψ̄γµγ5ψ is the axial vector current. This matrix element we can
obtain as a by-product of the determination of mπ , and our analysis will follow
that of Section 2.2. We construct the correlator

C(t) =
∑
~x

〈0 | Alat
4 (~x, t)Alat

4 (0) | 0.〉, (52)

where Alat is a lattice discretisation of the continuum axial-vector current.
Inserting a complete set of states between the two interpolating operators, we
obtain

C(t) =
∑
~x

∑
P

1
(2π)3

∫
d3 ~p

2E(~p)
〈0|Alat

4 (~x, t)|P (~p)〉〈P (~p)|Alat
4

†
(0)|0〉

=
∑
~x

∑
P

1
(2π)3

∫
d3 ~p

2E(~p)
e−iEt+i~p·~x〈0|Alat

4 (0)|P (~p)〉〈P (~p)|Alat
4

†
(0)|0〉

=
∑
P

∫
d3 ~p

2E(~p)
e−iEt δ(3)(~p) 〈0|Alat

4 |P (~p)〉〈P (~p)|Alat
4

†|0〉

t→∞−→ 1
2
mπf

lat
π

2
e−mπ t + excited states (53)
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The lattice discretisation has provided both a cut-off, and a renormalisation
scheme. We, of course, want fπ is some familiar continuum scheme, such as
MS. To provide us with that, we need to compute the matching coefficient ZA
for the axial vector current, such that

ARµ = ZAA
lat. (54)

The determination of the matching coefficient Z is one of the most delicate,
and generally onerous, tasks of any calculation of hadronic matrix elements.
The lattice formulation reproduces continuum QCD as the lattice spacing ap-
proaches zero, and thus the anomalous dimensions of the operators in the
lattice formulation matches those of the continuum operators. However, the
replacement of the continuum Lorentz symmetry by the hypercubic symmetry
of the lattice, and the lack of chiral symmetry in most fermion formulations,
complicates the calculation of the matching coefficients enormously, even for
such a simple operator as the axial vector current. In particular, the lattice
allows mixing with higher dimension operators, combined with appropriate
powers of the lattice spacing a. An important element of the improvement
programme is finding a combination of lattice operators such that matrix ele-
ments are free of O(a), or higher, discretisation errors.

In principle, we can compute Z in perturbation theory. Perturbation the-
ory using the bare lattice coupling g as an expansion parameter apparently
fails, resulting in very large perturbative corrections. The bulk of these large
corrections can be identified as lattice artifacts, the “tadpole” contributions
arising from the O(g2) term in the expansion of the link variable, Eq. 8. These
terms can effectively be resummed through the expansion in terms of a renor-
malised coupling constant.15 This prescription is precisely that used in the
specification of the tadpole-improved clover coefficient of Eq. 30.

An alternative route is to attempt to determine the matching coefficients,
and improvement coefficients, non-perturbatively through the imposition of
chiral Ward identities.16 Indeed, this prescription enables, in principle, the
elimination of all O(a) discretisation effects from on-shell quantities, providing
appropriate renormalisation conditions can be found.

Both these routes require considerable effort, and uncertainty in the calcu-
lation of matching and improvement coefficients is a major uncertainty in the
calculation of hadronic matrix elements. Let me conclude this subsection by
noting that the chiral fermion actions of Section 1.6 are automatically O(a)-
improved, and admit a smaller degree of operator mixing. This may be prove
a substantial advantage for these formulations.
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3.2 Nucleon Form Factors

The electric and magnetic form factors of the nucleon are among the simplest
quantities that contain information about the structure of the nucleon, and
are measured in electron proton scattering. They are related to the matrix
elements of the vector current Jµ through

〈p′, s′ | Jµ(q) | p, s〉 = ū(p′, s′)
[
γµF1(q2) + iσµν

qν

2mN
F2(q2)

]
up(p, s), (55)

where q = p− p′ is the momentum of the photon probe. Note that F1 and F2

satisfy
F1(0) = 1; F2(0) = µ− 1

where the former result expresses current conservation, and µ is the magnetic
moment of the nucleon. For point-like particles, both quantities would be
constant, and therefore they are a measure of the spatial extent of the nucleon.
Rather than quoting these quantities directly, it is usual to form the Sach’s
form factors

GE(q2) = F1(q2) +
q2

4m2
N

F2(q2) (56)

GM (q2) = F1(q2) + F2(q2), (57)

where we note that q2 is space-like.
Phenomenologically, it is usual to parameterise the form factors through

the vector dominance model by a dipole fit

GpE(q2) ∼ GpM(q2)/µ2 ∼ GNM (q2) ∼ 1

(1− q2/m2
V )2

GnE(q2) ∼ 0. (58)

A recent lattice determination of the proton electromagnetic form factors 43 is
shown in Figure 3.2, together with the experimental data.44 The lines are fits
to the data using the dipole forms of Eq. 58.

3.3 Hadronic Structure Functions

The hadronic structure functions, describing the distribution of quarks and
gluons inside, say, a nucleon in inclusive processes, are related to the hadronic
tensor

Wµν =
1

4π

∫
d4xeiq·x〈N(p, s)|Jµ(x)Jν(0)|N(p, s)〉, (59)

33



0.0 0.5 1.0 1.5 2.0 2.5
−q

2
 [GeV

2
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
p

e(−q
2
)

G
p

m(−q
2
)

Figure 16: The solid points are lattice determinations of the electric and magnetic form
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where Jµ is the electroweak current, and p, s are the nucleon momentum and
spin respectively. Decomposing Wµν according to the possible Lorentz struc-
tures yields four structure functions, two spin-averaged, F1,2(x,Q2) and two
spin-dependent, g1,2(x,Q2), where x is the Bjorken variable, and Q2 = −q2.
Phenomenologically, these are determined in Deep Inelastic Scattering, and
parameterised at some reference energy scale.

Near the light cone, x2 ∼ 0, the structure functions can be expanded using
the operator product expansion (OPE) in terms of the matrix elements of
certain local operators, of twist (dimension - spin) two, together with Wilson
coefficients calculable in perturbation theory. Historically, it is these matrix
elements that are computed in lattice simulations, since the non-zero lattice
spacing in our calculations precludes the measurement of the currents in Eq. 59
at sufficiently small separations, and more fundamentally it is unclear how to
extract this quantity at light-like separations in Euclidean space.

The local matrix elements are related to the x-moments of the structure
functions. In principle, we can recover the full x-dependence of the structure
functions by measuring increasing moments. The simplest operators are the
non-singlet operators for both the unpolarised and polarised structure func-
tions,

Oµ0...µn = ψ̄γµ0 iDµ1 . . . iDµnτψ

O5
µ0...µn = ψ̄γ5γµ0 iDµ1 . . . iDµn τψ, (60)

where symmetrisation of indices and removal of traces is understood, and the
τ is an SU(2) flavour matrix. The first few moments moments for the nucleon
have been measured by several groups.46,47,49,50

The lowest moment of the unpolarised quark distribution has a particularly
simple interpretation in terms of the momentum fraction carried by the quarks.
Figure 17 shows the first moment of the u and d quark distributions in the
quenched approximation;51 both distributions are somewhat higher than phe-
nomenological expectations. Unfortunately, it is unclear the extent to which
the calculation of the first few moments of the structure functions enables a
useful picture of the x-dependence of the structure functions, and a means
of performing a direct computation of the hadronic tensor, Eq. 59, would be
invaluable.

The study of the flavour-singlet sector involves consideration of both the
quark and gluon distributions, which mix. Computationally, these studies are
much more demanding, but of tremendous interest since they venture beyond
the simple valence picture of the nucleon. More recently, there have been
attempts to investigate the rôle of higher-twist contributions,52 to which up-
coming experiments at JLAB should be particularly sensitive.
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Figure 17: The first moment of the unpolarised u and d quark distributions in the nucleon
as a function of the quark mass at β = 6.0.51 The circles and crosses denote results with the
Wilson and clover fermion actions respectively. The bursts denote the CTEQ results.48
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4 The Nucleon-Nucleon Interaction

In the preceding, we have used lattice gauge theory to acquire a fundamen-
tal understanding of the internal structure of an isolated hadron from first
principles. It is natural to aim at a similar understanding of the interactions
between hadrons, and in particular of the nucleon-nucleon interaction, the very
foundation of nuclear physics.

Understanding the strong interaction in multi-hadron systems from lat-
tice QCD is a notoriously difficult problem. Multi-hadron states involve the
computation of a four-point function and are relatively massive, and therefore
the corresponding correlation functions quickly vanish into noise at increas-
ing temporal separations. Furthermore, multi-hadron systems are large, and
therefore the spatial extent of the lattice needs to be correspondingly larger
than that used in hadronic spectroscopy. Finally, the use of a Euclidean lat-
tice obscures the the extraction of the phase information of the full scattering
matrix.45 Despite these difficulties, the problem is fundamental and compelling.

Historically, there have been two approaches to this problem within lattice
QCD. The first aimed to extract certain quantitative parameters of the hadron-
hadron interaction by direct lattice simulation. Lüscher53,54,55 exploited the
finite-size dependence to extract a discrete set of s-wave scattering lengths. The
was thoroughly tested within an O(4)-symmetric φ4 model 56, and scattering
lengths have been computed within QCD for pions,57,58 and for nucleons.57

Fiebig et al. 59 explored the I = 2 π − π system by extracting a residual
interaction potential, and then proceeded to compute the scattering phase
shifts which were compared with experiment.

The extraction of the s-wave scattering lengths of the π−π interaction has
been encouraging, as illustrated in Figure 18 where the s-wave scattering length
for the isospin I = 2 pion-pion interaction is shown.58 The investigation of the
N −N system is more problematical. Here the scattering lengths are of the
order of 10 fm, rather than less than 1 fm as is the case for the π−π interaction.
Therefore, while lattice calculations do indeed find scattering lengths for the
N − N interaction considerably larger than those for the π − π and π − N
interaction,57 this approach is limited by our present inability to simulate on
lattice sizes of the order of 10−20 fm, and at physical values of the pseudoscalar
mass.

The second approach is motivated by the realisation that important insight
into the nucleon-nucleon interaction can be gleaned by studying the interac-
tions of a much simpler system, that of two heavy-light mesons, with static
heavy quarks.60,61 Such a system exhibits most of the salient features of the
nucleon-nucleon system, namely quark exchange, flavour exchange and colour
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polarization. The interaction between the mesons can be understood by the
study of the four-point functions, shown in Figure 19:

C(4)(x, r; y, s) = 〈O1(y)O2(s)Õ†1(x)Õ†2(r)〉. (61)

Here each operator can either be that for a pseudoscalar (P ) or for a vector
(V ). The range of the interaction can be assessed by forming the z- and t-sliced
sum,

C̃(R, T ) =
∑

t1,t2,~a⊥

C(x, r; y, s), (62)

where

x = (~0, t1), y = (~0, t1 + T )
r = (~a⊥, R, t2), s = (~a⊥, R, t2 + T ).

At large distances R and times T , the correlation function is dominated by the
lightest state | n〉, of mass Mn, that can be exchanged between the mesons,
with

C̃(R, T ) ∼ e−MnR〈0|O1(~0, T )Õ†1(~0, 0)|n〉 × 〈n|O2(~0, T )Õ†2(~0, 0)|0〉. (63)

Can these correlation functions be constructed from the elemental quark prop-
agators of Eq. 36? The connected diagram of Figure 19 requires the evaluation
of the propagator from one point on every time slice to every point on the
lattice; this is manageable. Unfortunately, the computation of the discon-
nected diagram requires the evaluation of all-to-all propagators. Nonetheless,
the study of the connected diagram alone is valuable. It describes the flavour-
exchange interaction, and lattice simulations have shown that the interaction
is indeed mediated by meson exchange at large distances, and furthermore
that the quantum numbers of the exchanged particle are in accord with naive
expectations; for the process PP → PP a vector meson is exchanged, whilst
for the process PV → V P a pseudoscalar particle is exchanged.61

The especially attractive feature of heavy-light systems is that the heavy
quarks admit the definition of a relative coordinate, and thereby a local adia-
batic potential. Recently, exploratory studies have been made of this potential,62,63

and evidence for nuclear binding sought, as illustrated in Figure 20. The inves-
tigation of this potential is important and more feasible than the measurements
of the scattering lengths, because the large scattering lengths for the N − N
system come from a short-range potential. Furthermore, by exploring the po-
tential, we can discover the relative importance of gluon and meson exchange
contributions at various distances. Understanding the nature of this poten-
tial is also crucial to spectroscopy; are exotic mesons predominantly quark-
antiquark-glue hybrid states, or four-quark states?
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Figure 20: Adiabatic potential between two heavy-light mesons, with the light quarks in an
isospin I = 0 and spin S = 0 configuration, from reference63. Measurements are obtained in
the quenched approximation to QCD, on lattices at β = 5.7. The separations are measured
in units of R0 = 0.53 fm, and the different plotting symbols correspond to different lattice
sizes.
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5 Conclusions

In these lectures I have tried to convey the power of lattice gauge calculations
as a means of understanding hadronic physics. There are very many areas that
I have not addressed - topology and the role of instantons, finite-temperature
and finite-density phase transitions, and, reaching beyond hadronic physics, the
calculation of weak-interaction matrix elements and even supersymmetry and
gravity. I trust that I have convinced you that lattice gauge theory provides
not only an ab initio tool for obtaining quantitative results (the spectrum,
form factors etc.), but also provides a means of increasing our conceptual
understanding of the strong interaction, for example through the study of the
nuclear-nuclear force.
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(Suppl.) 10 (1999) 467.

60. D.G. Richards, Nucl. Phys. (Proc. Suppl.) B9 (1989) 181.
61. D.G. Richards, D.K. Sinclair, and D. Sivers, Phys. Rev. D42 (1990)

3191.
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