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Abstract

There are two sources of the factorial large-order behavior of a typical perturbative

series. First, the number of the different Feynman diagrams may be large; second, there

are abnormally large diagrams known as renormalons. It is well known that the large

combinatorial number of diagrams is described by instanton-type solutions of the classical

equations. We demonstrate that from the functional-integral viewpoint the renormalons do

not correspond to a particular configuration but manifest themselves as dilatation modes in

the functional space.
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I. INTRODUCTION

It is well known that the perturbative series in a typical quantum field theory is at best

asymptotic: the coefficients in front of a typical perturbative expansion grow like n! where

n is the order of the perturbation series (see e.g. the book [1]). There are two sources of

the n! behavior which correspond to two different situations. In the first case all Feynman

diagrams are ∼ 1 but their number is large (∼ n!) [2]. In the second case, we have just one

diagram but it is abnormally big – ∼ n! (the famous ‘t Hooft renormalon [3]). The first type

of factorial behavior is not specific to a field theory; for example, it can be studied in the

anharmonic-oscillator quantum mechanics. On the contrary, renormalon singularities can

occur only in field theories with running coupling constant (for the review of the renormalons,

see ref. [4] and references therein).

It is convenient to visualize the large-order behavior of perturbative series using the

’t Hooft picture of singularities [3]. Consider Adler’s function related to the polarization

operator in QCD

D(q2) = 4π2q2 d

dq2

1

3q2
Π(q2), (1)

Π(q2) =
∫
dxeiqx

∫
Dψ̄DψDAjµ(x)jµ(0)e−SQCD

Suppose we write down D(q2) as a Borel integral

D(αs(q)) =
∫ ∞

0
dtD(t)e−

4π
αs(q)

t (2)

The divergent behavior of the original series D(αs(q) is encoded in the singularities of its

Borel transform shown in Fig.1. In QCD, we have two types of singularities: renormalons

UV renormalons

IR renormalons
x

II pair

1

t

FIG. 1. ’t Hooft picture of singularities in the Borel plane for QCD.
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(ultraviolet or infrared) and instanton-induced singularities ∗. The ultraviolet (UV) renor-

malons are located at t = −1
b
, 2
b
, 3
b
... (b = 11 − 2

3
nf ). In terms of Feynman diagrams they

come from the regions of hard momenta in renormalon bubble chain, see Fig. 2. The infrared

FIG. 2. Typical renormalon bubble chain diagrams for the polarization operator in QCD.

(IR) renormalons placed at t = 2
b
, 3
b
... come from the region of soft momenta in the bubble

chain diagrams. The instanton singularities are located at t = 1, 2, 3, ... and they correspond

to the large number of graphs which are summed up to the contribution of IĪ configurations

in the functional space. The main result of this paper is that unlike the instanton-type

singularities, the renormalons do not correspond to a particular configuration but manifest

themselves as dilatation modes in the functional space.

The paper is organized as follows. In Section 2 we relate Borel representation to the

functional integral along the instanton-antiinstanton valley in the double-well quantum me-

chanics. In Section 3 we describe the conformal valley in QCD and discuss the relation

between valleys and Borel representation in the field theories with running coupling con-

stant. Sect. 4 and 5 are devoted to the interpretation of IR and UV renormalons as dilatation

modes of the valley. In the last section we discuss general aspects of our approach and outline

the direction of the future work.

∗ Actually, the instanton itself is not related to the divergence of perturbative series since it

belongs to a different topological sector. The first topologically trivial classical configuration, which

contributes to the divergence of perturbation theory, is a weakly coupled instanton-antiinstanton

pair [5].
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II. VALLEYS AND BOREL PLANE IN QUANTUM MECHANICS

The interpretation of renormalons as dilatation modes is based upon the similarity of the

functional integral in the vicinity of a valley in the functional space [6] to the Borel represen-

tation (2). At first, we will consider the quantum mechanical example without renormalons

and then demonstrate that in a field theory the same integral along the valley leads to renor-

malon singularities. With QCD in view, we consider the double-well anharmonic oscillator

described by the functional integral

Z =
∫
Dφe

−S(φ)

g2 (3)

where

S(φ) =
∫
dt

(
φ̇2

2
+
φ2(1− φ)2)

2

)
(4)

The large-order behavior in this model is determined by the instanton-antiinstanton (IĪ)

configuration. The IĪ valley for the double-well system may be chosen as

fα(t− τ ) =
1

2
tanh

t− τ + α

2
− 1

2
tanh

t− τ − α
2

(5)

It satisfies the valley equation [8] [9]

12

ξ2
wα(t)f ′α(t) = Lα(t) (6)

where ξ ≡ eα, f ′α ≡ ∂
∂α
fα, and Lα(t) = δS

δφ

∣∣∣
φ=fα(t)

. Here wα(t) = ξ
4

sinhα(coshα cosh t+ 1)−1

is the measure in the functional space so (f, g) ≡
∫
dtwα(t)f(t)g(t). The valley (5) connects

two classical solutions: the perturbative vacuum at α = 0 and the infinitely separated

IĪ pair at α → ∞. The IĪ separation α and the position of the IĪ pair τ are the two

collective coordinates of the valley. In order to integrate over the small fluctuations near the

configuration (5), we introduce two δ-functions δ(φ(t)− fα(t − τ ), ḟα(t − τ )) and δ(φ(t)−

fα(t−τ ), f ′α(t−τ )) restricting the integration along the two collective coordinates. Following

the standard procedure (Faddeev-Popov trick), we insert
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1 =
∫
dα

[
(f ′α, f

′
α) + (φ− fα, f ′α +

w′

w
fα)

]
δ(φ− fα, f ′α) (7)

and

1 =
∫
dτ
[
(ḟα, ḟα) + (φ− fα, ḟα +

ẇ

w
fα)

]
δ(φ− fα, ḟα) (8)

in the functional integral (3). Next steps are the shift φ(t) → φ(t) + fα(t − τ ), expansion

in quantum deviations φ(t) and the gaussian integration in the first nontrivial order in

perturbation theory. After the shift, the the linear term in the exponent
∫
dtφ(t)Lα(t) is

disabled due to the valley equation (6) (recall δ(φ, f ′α) in the integrand coming from eq. (7))

so the functional integral (3) for the vacuum energy in the leading order in g2 reduces to

T
∫
dα
∫
Dφ(f ′α, f

′
α)(ḟα, ḟα)δ(φ, f ′α)δ(φ, ḟα)e

− 1
g2

[Sα+1
2

∫
dtφ(t)2αφ(t)] +O(g2). (9)

Here T (the total ”volume” in one space-time dimension) is the result of trivial integration

over τ , 2α = −∂2 + 1− 6fα(1− fα) is the operator of second derivative of the action and

Sα ≡ S(ξ) =
6ξ4 − 14ξ2

(ξ2 − 1)2
− 17

3
+

12ξ2 + 4

(ξ2 − 1)3
ln ξ (10)

is the action of IĪ valley. Performing Gaussian integrations we get

T
1

g2

∫ ∞
0
dαe

− 1
g2
SαF (α), (11)

F (α) =
(det2α)−1/2(f ′α, f

′
α)(ḟα, ḟα)

(f ′α,2
−1
α wαf ′α)1/2

(
ḟα,2−1

α wαḟα
)1/2

. (12)

At α → ∞ we have the widely separated I and Ī . In this case, the determinant of the

IĪ configuration factorizes into a product of two one-instanton determinants (with zero

modes excluded) so that F (α)→ const at α→ ∞. The divergent part of the integral (11)

corresponds to the second iteration of the one-instanton contribution to the vacuum energy,

therefore it must be subtracted from the IĪ contribution to Evac:

g2Evac(g
2) =

∫
dα
(
e
− 1
g2
SαF (α)− e−

1
g2

2SIF (∞)
)

(13)

where SI is the one-instanton action. Since Sα is a monotonous function of α one can invert

Eq. (10) and obtain
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g2Evac(g
2) =

∫ 2SI

0
dSe

− 1
g2
S
F (S)

(
1

S − 2SI

)
+

(14)

which has the desired form of the Borel integral (1) for the vacuum energy. Thus the leading

singularity for Evac(S) is F (2SI)/(S−2SI). Note that our semiclassical calculation does not

give the whole answer for the Borel transform of vacuum energy (F (S) 6= Evac(S) in general)

since we threw away the higher quantum fluctuations around the IĪ pair in Eq. (9) yet it

determines the the leading singularity in the Borel plane.

III. IĪ VALLEY AND BOREL INTEGRAL IN QCD

The situation with the instanton-induced asymptotics of perturbative series in a field

theory such as QCD is pretty much similar to the case of quantum mechanics with one

notable exception: in QCD there is an additional dimensional parameter – the overall size

of the IĪ configuration ρ. The classical IĪ action does not depend on this parameter but

the quantum determinant does, leading to the replacement

e
− 1
g2
S → e

− 1
g2(ρ)

S
(15)

so the Borel integrand have the following generic form

F (S) ∼
∫
dρe

− 1
g2(ρ)

SF(ρ) (16)

The divergence of this integral at either large or small ρ determines the position of singu-

larities of F (s). We will demonstrate (by purely dimensional analysis) that F(ρ) ∼ ρ−5 at

ρ → ∞ and F(ρ) ∼ ρ at ρ → 0 leading to the IR renormalon at S = 32π2

b
and the UV

renormalon at S = −16π2

b
, respectively †.

†In its present form, our analysis of renormalons is applicable to the “off-shell” processes which

can be related to the Euclidean correlation functions of two (or more) currents. An example of a

different type is the IR renormalon in the pole mass of a heavy quark located at S = 16π2

b [7]
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The IĪ valley in QCD [8] can be chosen as a conformal transformation of the spherical

configuration

Aµ(x) = −i σ̄µx− xµ
x2

fα(t) (17)

with t = lnx2/d2 where d is an arbitrary scale. (We use the notations x ≡ xµσµ, x̄ ≡ xµσ̄µ

where σµ = (1,−i~σ), σ̄µ = (1, i~σ)). To obtain the IĪ configuration with arbitrary sizes

ρ1, ρ2 and separation R one performs shift x → x − a, inversion x → d2

x2x and second shift

x→ x−x0 (see Fig. 3). The resulting valley is the sum of the I and Ī in the singular gauge

R

I

ρ

ρ
1

2a

I

I

I

x 0

FIG. 3. Conformal IĪ valley in QCD.

in the maximum attractive orientation plus the additional term (which is small at large IĪ

separations)

Av
µ(x) = AI

µ(x− x0) +AĪ
µ(x− x0) +Bµ(x− x0) (18)

where

AI
µ(x) = −iρ2

1

σµx̄− xµ
x2(x2 + ρ2

1)
(19)

AĪ
µ(x) = −iρ2

2

Rσ̄µ(x−R)R̄ − (x−R)µ
R2(x−R)2((x−R)2 + ρ2

2)
.

The explicit expression for Bµ can be found in [9]. The action of the IĪ valley (18) is equal

to the action of the spherical configuration (17) given by (10):

Sv(z) = 48π2S(ξ), ξ = z +
√
z2 − 1, (20)
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where the ”conformal parameter” z is given by

z = (ρ2
1 + ρ2

2 +R2)/(2ρ1ρ2). (21)

Let us now calculate the polarization operator (1) in the valley background. The col-

lective coordinates are the sizes of instantons ρi, separation R, overall position x0 and the

orientation in the color space (the valley of a general color orientation has the form OabAv
b

where O is an arbitrary SU(3) matrix). The structure of Gaussian result for the polarization

operator in the valley background is∫ ∞
0

dρ1dρ2

ρ5
1ρ

5
2

d4Rd4x0dOΠv(q)
1

g17
e
−S

v(z)

g2 ∆(ρi, R) (22)

where 17 is a number of the collective coordinates ‡. Here Πv(q) is a Fourier transform of

Πv(x) = (
∑

e2
q)TrγµG(x, 0)γµG(0, x)

where G(x, y) is the Green function in the valley background. The factor ∆(ρi, R) in Eq.

(22) is the quantum determinant - the result of Gaussian integrations near the valley (18)

with the additional factors due to the restricted integrations along the collective coordinates

(cf. eq. (12)). For our purposes, it is convenient to introduce the conformal parameter z

and the average size ρ =
√
ρ1ρ2 as the collective coordinates in place of ρ1 and ρ2. We have∫

dz
dρ

ρ9
d4Rd4x0Π

v(q)
1

g17(ρ)
F (z, R2/ρ2)e

−S
v(z)

g2(ρ) (23)

where F (z, R2/ρ2) contains θ(z− 1− R2

2ρ2 ) (see Eq. (21)). We have included in F the trivial

integral over color orientation which gives the volume of SU(3) group.

The main effect of the quantum determinant ∆ is the replacement of the bare coupling

constant g2 in Eq. (22) by the effective coupling constant g2(ρ) so the remaining function F is

‡At z → ∞ (for weakly interacting I and Ī) the mode corresponding to relative orientation in

the color space becomes non-gaussian so one should introduce an additional collective coordinate

corresponding to this quasizero mode. We are interested, however, in z ∼ 1 where this mode is

still Gaussian so it is taken into account in quantum determinant ∆.
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the (dimensionless) function of the ratio R2/ρ2 and the conformal parameter. This is almost

evident from the renormalizability of the theory since the only dimensional parameters are

ρ and R. Formally, one can prove that rescaling of the configuration by factor λ (so that

ρ→ λρ and R→ λR) leads at the one-loop level to multiplication of the determinant by a

factor λbS
v(z)/8π2

due to conformal anomaly (see Appendix).

IV. IR RENORMALON FROM THE DILATATION MODE OF THE IĪ VALLEY

Consider the singularities of the integral (23). The function F (z, R2/ρ2) is non-singular

since the singularity in Φ (≡ singularity in ∆) would mean a non-existing zero mode in

quantum determinant. Moreover, the integration over R is finite due to θ(z − 1 − R2

2ρ2 )

indicating that the only source of singularity at finite z is the divergence of the ρ integral at

either large or small ρ. (At z →∞, in a way similar to the derivation of Eq. (14) we obtain

the first instanton-type singularity located at t = 1 [10]).

Let us demonstrate that the singularity of the integral (23) at large ρ� 1
q

corresponds

to the IR renormalon. The polarization operator Π(q) in the background of the large-scale

vacuum fluctuation reduces to [11] (see Fig. 3)

Π(q) =
∫
d4xeiqx〈jµ(x)jµ(0)〉A → −

∑
e2
q

16π2

(G2(0)

q2
+ cαs

G3(0)

q4
+ ...

)
(24)

where G2 ≡ 2TrGξηGξη , G3 ≡ 2TrGξηGησGσξ, and c is an (unknown) constant. (The

coefficient in front of G3 vanishes at the tree level [13]). Consider the leading term in this

0

0x
0+ +...

FIG. 4. Expansion of the polarization operator in large-scale external fields.

expansion; since the field strength for the valley configuration (18) depends only on x− x0
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∫
d4x0TrGv

ξη(0)Gv
ξη(0) = 4Sv(z), (25)

the intergal (23) takes the form

1

q2

∫ ∞
1

dz
∫ ∞

0

dρ

ρ9
d4R

1

g17(ρ)
F (z, R2/ρ2)e

−S
v(z)

g2(ρ) (26)

where we have included the factor 1
4π2

∑
e2
qS

v(z) in F . The (finite) integration over R can

be performed resulting in an additional dimensional factor ρ4:

∫
d4RF (ρ, z, R) = ρ4Φ(z)

where the function Φ is dimensionless so it can depend only on z. Finally, we get

1

q2

∫ ∞
1

dz
∫ ∞

0

dρ

ρ5

1

g17(ρ)
Φ(z)e

− 1
g2(ρ)

Sv(z)
. (27)

Inverting Eq. (10), we can write the corresponding contribution to Adler’s function as an

integral over the valley action (t ≡ S
16π2 ):

D(q2) ' 1

3q4

∫ 1

0
dt
∫ ∞

0

dρ

ρ5

1

g17(ρ)
Φ(t)e−

4π
αs(ρ)

t. (28)

Note that extra 1
g2(ρ)

in the numerator can be eliminated using integration by parts:

16π2

g2(ρ)

∫ 1

0
dte−

4π
αs(ρ)

tΦ(t) =
∫ 1

0
dtΦ′(t)e−

4π
αs(ρ)

t −Φ(1)e−
4π

αs(ρ) + Φ(0). (29)

The last two terms are irrelevant for the would-be renormalon singularity at t = 2
b

(the

term ∼ e−
4π

αs(ρ) corresponds to the IĪ singularity and the term ∼ Φ(0) does not depend on

coupling constant). Likewise, extra g(ρ) can be absorbed by Laplace transformation

g(ρ)
∫ 1

0
dtΦ(t)e−

4π
αs(ρ)

t = 4
√
π
∫ 1

0
dte−

4π
αs(ρ)

t
∫ t

0
dt′(t− t′)−1/2Φ(t′) (30)

leading to

D(q2) =
1

q4

∫ 1

0
dt
∫ ∞

0

dρ

ρ5
e−

4π
αs(ρ)

tΨ(t) (31)

where Ψ(t) = 1
3
√
π(4π)17

∫ t
0 dt

′(t− t′)−1/2Φ(9)(t′) after nine integrations by parts and a Laplace

transformation. Using the two-loop formula for αs we get
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D(t) ' Ψ(t)
∫ ∞

0

dρ

q4ρ5
(q2ρ2)bt (αs(ρ)/αs(q))

2b′t
b (32)

where b′ = 51 − 19
3
nf . It is clear now that the integral over ρ diverges in the IR region

starting from t = 2
b
§ leading to in a singularity in D(t) at t = 2

b
. This singularity is the

first IR renormalon. At the one-loop level we can drop the ratio (αs(ρ)/αs(q))
2b′t
b so the

renormalon is a simple pole 1
t−2/b

. To get he character of this singularity at the two-loop

level, we recall that an extra α(ρ) factor does not affect the singularity while an extra 1
α(q)

factor changes it from (t − 2
b
)λ to (t − 2

b
)λ−1, as one can easily see from the integration by

parts ∗∗:

16π2

g2(q)

∫ 1

0
dte−

4π
αs(q)

t
(
t− 2

b

)λ
=
∫ 1

0
dtλ

(
t− 2

b

)λ−1

e−
4π

αs(q)
t + ... (33)

Therefore, the extra factor (αs(ρ)/αs(q))
2b′t
b will convert the simple pole 1

t−2/b
into a branch-

ing point singularity (t− 2
b
)−1−4 b

′
b2 [12].

It is easy to see that the second term in the expansion (24) gives the second renormalon

singularity located at t = 3
b
. Higher terms of the expansion of the polarization operator (24)

will give the subsequent IR renormalons located at t = 4
b
, 5
b
, 6
b

etc.

V. UV RENORMALON AS A DILATATION MODE

Next we demonstrate that the divergence of the integral (23) at small ρ leads to the UV

renormalon. In order to find the polarization operator in the background of a very small

§ Strictly speaking, at finite q we cannot get to the singularity since our semiclassical approach

is valid up to ρ < ΛQCD which translates to 2
b − t >

1
ln qΛQCD

; therefore we must take the limit

q2 →∞ as well.

∗∗ To avoid confusion, note that in proving that extra 1
αs(ρ)

does not change the singularity, we

used the fact that before the ρ integration the function Φ(t), which is constructed from valley

determinants, can be singular only at t→ 1 where these determinants acquire zero modes.
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vacuum fluctuation (18) we recall that this fluctuation is an inversion ††

Av
µ(x− x0) =

ρ2

(x− x0)2

(
δµα − 2

(x− x0)µ(x− x0)α
y2

)
As
α

( ρ2

(x− x0)2
(x− x0)

)
(34)

of the spherical configuration (17) (gauge rotated by x/
√
x2)

As
α(x) =

− i[σα(x̄− ā)− (x− a)α]

(
1

(x− a)2 + ρ2ξ
+

ρ2/ξ

(x− a)2((x− a)2 + ρ2/ξ

)
, (35)

where a = R(ξ− 1/ξ) (we chose d = ρ for the inversion). The corresponding transformation

of the polarization operator has the form

Πv(x) =

(
δµα − 2

yµyα
y2

)
〈jα(

ρ2

y2
y)jβ(− ρ2

x2
0

x0)〉As
(
δβµ − 2

x0βx0µ

x2
0

)
(36)

where we use the notation y ≡ x− x0. In the limit ρ→ 0 we need the polarization operator

in the background of As at small distances (see Fig. 4), so we can use the expansion (24)

x

x 0

0

a

FIG. 5. Inversion of the polarization operator in the valley background.

(in the coordinate space)

〈jµ(x)jν(0)〉A → −
∑
e2
q

384π4

[2xµxν + x2δµν
x4

G2(0) + cαsG
3(0)(2

xµxν
x2
− 3δµν lnx2) + ...

]
(37)

and obtain

††To get the Eq. (18) literally, this inversion must be accompanied by the gauge rotation with the

matrix x(x−R)R/
√
x2(x− R)2R2, see ref. [9].
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Πv(x)→∑
e2
q

192π4

[
ρ8G2

s(0)

y4x4
0x

2

{
1− 4(x0y)2

x2
0y

2

}
+ cαs

ρ12G3
s(0)

y6x6
0

{(
3 ln

ρ2x2

y2x2
0

− 1

)
2(x0y)2

x2
0y

2
+ 1

}]
(38)

where Gs
µν(0) is the field strength of the spherical configuration (35) calculated at at the

origin. After the integration over x and x0 the first term ∼ G2
s vanishes and the second gives

∫
dxeiqx

∫
dx0

1

y6x6
0

[(
3 ln

x2

y2x2
0

− 1
)2(x0y)2

x2
0y2

+ 1
]

=
π4

32
(6 lnπ + 3C − 2)q4 ln2 q2 , (39)

leading to

∫
dxdx0e

iqxΠv(x) = c′αs(q)

∑
e2
q

64
ρ6G(z, R2/ρ2)q4 ln2 q2 (40)

where

G(z, R2/ρ2) = ρ6G3
s(0) (41)

is a dimensionless non-singular function of z and R2/ρ2 (the explicit expression can be easily

found from Eq. (35)). The argument of αs in Eq. (38) is determined by the characteristic

momenta in the loop with one extra gluon in the valley background. After inversion, the

characteristic distances in the loop diagram determining the coefficient in front of G3
s are

∼ ρ2
√

x2

x2
0y

2 which means that before inversion the characteristic momenta in the loop were

∼ q (in the integral (42) x2 ∼ x2
0 ∼ y2 ∼ q−2).

Performing the integration over R we obtain the analog of the Eq. (31) for the UV

renormalon

D(q2) ' q2αs(q)
∫ 1

0
dt
∫ ∞

0
dρρ(ln q2ρ2)2e−

4π
αs(ρ)

tΨ̃(t) (42)

leading to

D(t) ' Ψ̃(t)q2
∫ ∞

0
dρ2(q2ρ2)bt(ln q2ρ2) (αs(ρ)/αs(q))

2b′t
b . (43)

Note that extra αs(q) in Eq. (42) is compensated by one power of ln q2ρ2. The integral

over ρ diverges at t = −1
b

which is the position of the first UV renormalon. At the one-

loop level this renormalon is a double pole (1 + t/b)−2, same as in the perturbative analysis
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[4]). Subsequent terms in the expansion (24) correspond to the UV renormalons located at

t = −2
b
,−3

b
,−4

b
... ‡‡. It should be mentioned that the Eq. (43) cannot reproduce the strength

of the first UV renormalon at the two-loop level [14]. The reason is that in Eqs. (24), (38) we

have neglected the anomalous dimensions of the operators ∼ (αs(q)/αs(ρ))
γ
b . Such factors

can change the strength of the singularity. For the IR renormalon this does not matter since

the operator G2 is renorm-invariant (γ = 0) and for the subsequent renormalons we can

easily correct our results by corresponding γ’s. Unfortunately, for the UV renormalons we

do not know how to use the conformal invariance with the anomalous dimensions included.

VI. CONCLUSIONS

We have demonstrated that the integration along the dilatation modes in the functional

space near the IĪ configuration leads to the renormalon singularities in the Borel plane.

It is very important to note that we actually never use the explicit form of the valley

configuration. What we have really used are the three facts: (I) conformal anomaly ⇒ the

fact that the rescaling of the vacuum fluctuation with an action S by a factor λ multiplies

the determinant by λbS/8π
2

leading to the formula (15), (II) the expansion of the polarization

operator (24) in slow varying fields, and (III) the conformal invariance of QCD at the tree

level (for the UV renormalon we wrote down the small-size configuration as an inversion of

a large-scale vacuum fluctuation). All of these properties hold true for an arbitrary vacuum

fluctuation so we could take an arbitrary valley and arrive at the same results Eq. (32) and

‡‡ We do not see the singularity at t = 1
b which is proposed in [15]. However, this singularity is

due to the small-size monopoles which are beyond the scope of this paper (our results are based on

the gaussian integration near the finite-action vacuum fluctuations while monopoles have infinite

action).
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Eq. (43) §§. It means that our result about the renormalon singularity coming from the

dilatation mode in the functional space is general.

The form of the polarization operator in a valley background suggests the following

parametrization of Adler’ function as a double integral in S and ρ

D(αs(q)) =
∫ ∞

0
dt
∫ dρ2

ρ2
d(q2ρ2, t)e−

4π
αs(ρ)

t (44)

where

d(q2ρ2, t) ∼ (q2ρ2)−2 at ρ→∞, d(q2ρ2, t) ∼ (q2ρ2) at ρ→ 0 (45)

The function d(q2ρ2, t) contains only instanton-induced singularities in t whereas the IR

and UV renormalons come from the divergence of the integral (44) at large or small ρ,

respectively. If we “switch off” the running coupling constant (e.g consider the conformal

theory without β-function) the representation of Adler’s function takes the form

Dconf(αs) =
∫ ∞

0
dte−

4π
αs
tDconf(t) (46)

where Dconf(t) =
∫ dρ2

ρ2 d(q2ρ2, t) (the integral over ρ converges due to Eq. (45)). In real QCD

the function Dconf(αs) defines the “conformal expansion” of the Adler’s function with the

coefficients coming from the “skeleton diagrams” in terms of usual perturbation theory [16].

As we mentioned above, our analysis of renormalons is applicable to the “off-shell”

processes which can be related to the Euclidean correlation functions of two (or more)

currents. One of possible directions of the future work would be to generalize these ideas

to the renormalons in the ”on-shell” (Minkowskian) processes intensively discussed in the

current literature (see discussion in ref. [4]).

Finally, we note that our method gives same results as the conventional approach - namely

position and strength of the renormalon singularity, but not the coefficient in front of it.

§§ The only difference would be that the upper limit for the integration over t will be ∞ rather

than 1 because the arbitrary valley starts at the perturbative vacuum and goes to the infinity with

constantly increasing action .
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The coefficient in front of the first IR renormalon is expremely important since it determines

the numerical value of asymptotics of perturbative series for Re+e−→hadrons. In principle, for

a given valley it is possible to calculate this coefficient in the first order in coupling constant

g2(ρ) since it is given by a product of the determinants in the valley background, which can

at least be computed numerically. However, the fact that an extra g2(ρ) does not change

the position and/or character of the singularity means that all terms in the perturbative

series in g2(ρ) contribute on equal footing. This is closely related to the fact that the choice

of the valley is not unique: after the change of the valley, the new leading-order coefficient,

which comes from the determinants in the background of a new configuration, is given by

an infinite perturbative series in g2(ρ) (coming from quantum corrections) in terms of the

original valley. As a result, finding the coefficient in front of the leading IR singularity would

require the integration over all possible valleys. This study is in progress.
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VII. APPENDIX

We will prove that rescaling of the arbitrary configuration by factor λ (so that ρ→ λρ)

leads at the one-loop level to multiplication of the determinant by a factor of

λbS/8π
2

(47)

where S is the action of this configuration. Let us demonstrate it for the determinant of

the Dirac operator in the background of a field Aµ(x; ρ) characterized by the size ρ. We will

prove that ∗∗∗

∗∗∗ For simplicity, we assume that the Dirac operator has no zero modes, as in the case of the IĪ

valley (for the treatment of Dirac operator with zero modes see e.g. [17]).
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√
det 6 P̃ 2 =

√
det 6P 2 λ

S
12π2 (48)

where Pµ = i∂µ+Aµ(x) is the operator of the covariant momentum for our configuration and

P̃µ = i∂µ+Ãµ(x) is the covariant momentum in the background of the stretched configuration

Ãµ(x) = Aµ(x;λρ) = λ−1Aµ(λ−1x; ρ). Using Schwinger’s notations we can write down

ln det 6 P̃ 2 = −
∫ ∞

0

ds

s

∫
d4xTr(x|e−s6P̃2|x) (49)

where |x) are the eigenstates of the coordinate operator normalized according to (x|y) =

δ(4)(x − y). For the Dirac operator, the integral in Eq. (49) diverges so we will assume a

cutoff s > ε and take ε → 0 in the final results. After change of variables x → λ−1x, the

integral in the r.h.s. of Eq. (49) reduces to

ln det 6 P̃ 2 = −
∫ ∞

0

ds

s

∫
d4xTr(x|e−sλ−2 6P2|x) (50)

so

ln det 6 P̃ 2 − ln det 6P 2 =∫ ∞
0

ds

s

∫
d4xTr(x|e−sλ−2 6P2 − e−s6P2 |x) = − lim

ε→0

∫ ε

λ−2ε

ds

s

∫
d4xTr(x|e−s6P2 |x) (51)

Using the well-known result for the DeWitt-Seeley coefficients for the Dirac operator (see

e.g. [18])

Tr(x|e−s6P2 |x) =
3

4π2s2
+

1

48π2
Ga
µν(x)Ga

µν(x), (52)

we obtain

ln det 6 P̃ 2 = ln det 6P 2 − lnλ

24π2

∫
d4xGva

µνG
va
µν (53)

which corresponds to the Eq. (48). In the case of nf quark flavors, the coefficient 1
12π2 in r.h.s.

of Eq. (48) will be multiplied by nf leading to the factor λ−
2
3
nfS/8π

2
. This factor is easily

recognized as a quark part of the one-loop coefficient b for Gell-Mann-Low β-function in

Eq. (47). Similarly, the rescaling of the gluon (and ghost) determinants reproduces 11 - the
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gluon part of the one-loop coefficient b in Eq. (47). Thus we have shown that e
− S
g2 → e

− S
g2(ρ)

with one-loop accuracy. Using the two-loop formulas for the Seeley coefficients one could

prove that e
− S
g2(ρ) reproduces at the two-loop level and demonstrate that g2 → g2(ρ) in the

pre-exponential factor g−17 as well (as it follows from the renormalizability of the theory).
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