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We compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus

of QCD string operators in coordinate representation. To restore the electromagnetic gauge

invariance (transversality) of the twist-2 amplitude we include the operators of twist-3 which

appear as total derivatives of twist-2 operators. Our results are equivalent to a Wandzura-Wilczek

approximation for twist-3 skewed parton distributions. We find that this approximation gives a

finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude

for transverse polarization is divergent, i.e., factorization breaks down in this term.
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I. INTRODUCTION

The deeply virtual Compton scattering (DVCS) process, in which a highly virtual photon γ∗(q1) produces a
real photon γ(q2 = q1 + r) at small invariant momentum transfer t = r2, is receiving a lot of attention as a
potential source of new information about the nucleon structure in terms of so-called “skewed” parton distributions
(SPD’s) [1–4]. The first experimental observation of DVCS has been already reported by the ZEUS collaboration
[5]. Originally, only the purely twist–2 contribution to Compton amplitude was included [1,2], which violates
electromagnetic (EM) gauge invariance in terms linear in the transverse part r⊥ ≡ ∆ of the momentum transfer.
To overcome this problem, Guichon and Vanderhaeghen [6] proposed to add an “ad hoc” O(∆) term restoring the
EM gauge invariance of the twist-2 DVCS amplitude. The correctness of their choice was recently confirmed by
several groups [7–9] which derived this term in a regular way as a kinematical twist-3 contribution. Furthermore,
Anikin et al. [7], using the momentum–space collinear expansion, have obtained expressions which include (in
case of the pion target) all the relevant twist–3 operators. The DVCS amplitude to accuracy 1/

√
−q2

1 was also
calculated by Penttinen et al. [8] in a parton model approach. Within the light-cone expansion framework, Belitsky
and Müller [9] analyzed both quark and quark-gluon contributions and demonstrated that, to get a gauge invariant
result up to terms of order t/q2

1, it is sufficient to retain only the part of the twist–3 SPD’s which is obtained by
Wandzura–Wilczek (WW) type formulas from the twist–2 distributions. Recently, Kivel et al. [10] established that
the WW-approximation expression for the transverse polarization of the virtual photon diverges. The mathematical
aspects of twist decomposition were discussed by Blümlein, Robaschik [11], Geyer and Lazar [12].

Our goal is to analyze the DVCS amplitude within the QCD string operator approach of Balitsky and Braun [13],
which proved to be a powerful tool to investigate the higher-twist effects. Here, we consider only the kinematical
twist-3 terms. In this sense, our results are equivalent to the WW approximation. In addition to offering an
alternative derivation of this approximation, we incorporate the formalism of double distributions [2,14] which
provides a simple way of deriving relations between new SPD’s. For instance, the fact that the WW approximation
gives finite results for the amplitude for longitudinally polarized photon, but diverges in the case of transverse
polarization, can be easily understood on the basis of the formulas relating these SPD’s and the basic twist-2 DD’s.

II. DVCS AMPLITUDE

Generalities. The virtual Compton scattering amplitude is derived from the correlation function

Tµν = i

∫
d4x

∫
d4y e−i(q1x)+i(q2y)〈p2|T {Jµ(x)Jν(y)} |p1〉 , (1)

where Jµ(x) is the electromagnetic current operator. Due to current conservation ∂µJµ(x) = 0, this function is
transverse with respect to the incoming and outgoing photon momenta: qµ1 Tµν = 0 , qν2 Tµν = 0 . It is convenient to
switch to symmetric variables q = (q1 + q2)/2, r = q2− q1 and p = (p1 + p2)/2. Then, the transversality conditions
convert into two relations

qµT{µν} =
rµ

2
T[µν] , qµT[µν] =

rµ

2
T{µν} (2)

connecting the symmetric T{µν} ≡ (Tµν + Tνµ)/2 and antisymmetric T[µν] ≡ (Tµν − Tνµ)/2 parts of Tµν . In the
r = 0 forward limit, the two relations decouple to give the DIS transversality conditions qµT{µν} = 0, qµT[µν] = 0.

In DVCS, the initial photon is in the Bjorken kinematics {−q2
1 →∞, (p1q1)→∞, xB ≡ −q2

1/[2(p1q1)] fixed} and
the final one is real q2

2 = 0. Since q2
2 = q2

1 + 2(q1r) + t, the momentum transfer r in this process should have a large
component in the direction of p, with (rq1) close to −q2

1/2 for small t. The size of this component is characterized
by the skewedness parameter η ≡ (rq)/2(pq). For DVCS, η coincides, up to O(t) terms, with the generalized
Bjorken variable ξ ≡ −q2/2(pq) . Hence, the momentum transfer may be split into the component parallel to p and
the remainder ∆

r = 2ξp+ ∆ , (3)
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which in the t = 0 limit is transverse both to p and q: (∆q) = −t/4, (∆p) = −ξt/2. For finite t, all the components
of ∆ are of order |t|1/2: ∆ ∝ |t|1/2.

Coordinate representation. An efficient way to study the behavior of Compton amplitudes in the Bjorken limit is
to use the light–cone expansion for the product Πµν(x, y) ≡ iTJµ(x)Jν(y) of two vector currents in the coordinate
representation. Following Balitsky and Braun [13], we start from the formal light–cone expansion in terms of QCD
string operators (with gauge links along the straight line between the fields which, for brevity, we do not write
explicitly). The leading light–cone singularity is contained in the “handbag” contribution

Πµν(z |X) =
4izρ
π2z4

{
sµρνσOσ(z |X) − εµρνσO5σ(z |X)

}
, (4)

where sµρνσ = gµρgνσ − gµνgρσ + gµσgνρ, X = (x+ y)/2, z = y − x, and

Oσ(z |X) =
1
2i
[
ψ̄(X − z/2)γσψ(X + z/2) − (z → −z)

]
,

O5σ(z |X) =
1
2
[
ψ̄(X − z/2)γσψ(X + z/2) + (z → −z)

]
. (5)

Twist–2 part. The string operators in Eq. (4) do not have a definite twist. The twist–2 part is defined by
formally Taylor–expanding the string operators in Eq. (4) in the relative coordinate z and retaining only the
totally symmetric traceless parts of the coefficients in the expansion:

[
ψ̄(X − z/2)γσψ(X + z/2)

]twist−2 ≡
∞∑
n=0

1
n!
zµ1 . . . zµn ψ̄(X)

[
γ{σ

↔
Dµ1 . . .

↔
D µn} −traces

]
ψ(X), (6)

and similarly for the operator with γσγ5. As shown in Ref. [13], “symmetrization” and “subtraction of traces” can
be carried out directly at the level of non-local operators. The part of the string operator corresponding to totally
symmetric local tensor operators is projected out by

[
ψ̄(X − z/2)γσψ(X + z/2)

]sym =
∂

∂zσ

∫ 1

0

dt ψ̄(X − tz/2)ẑψ(X + tz/2) (7)

(we use the notation ẑ ≡ zσγσ). The subtraction of traces in the local operators implies that the twist–2 string
operator contracted with zσ should satisfy the d’Alembert equation with respect to z:

2z

[
ψ̄(X − tz/2)ẑψ(X + tz/2)

]twist−2 = 0. (8)

Transversality and twist–3 operators. In the coordinates X and z, the transversality conditions (2) are

∂

∂zµ
Π{µν}(z|X) =

1
2

∂

∂Xµ
Π[µν](z|X) ,

∂

∂zµ
Π[µν](z|X) =

1
2

∂

∂Xµ
Π{µν}(z|X) . (9)

Consider the part of the current product given by Eq. (4) with the string operators replaced by their twist–2 parts.
From Eq. (8) and (∂/∂zρ)[zρ/(2π2z4)] = −iδ(4)(z) it follows that (∂/∂zµ) Πtwist−2

{µν} = 0, (∂/∂zµ) Πtwist−2
[µν] = 0.

Since forward matrix elements are zero for all total derivative operators, this guarantees the transversal-
ity of the twist–2 contribution in the case of deep inelastic scattering. In the non-forward case, we have
(∂/∂Xµ)Πtwist−2

{µν} 6= 0, (∂/∂Xµ)Πtwist−2
[µν] 6= 0 , and (9) is violated. The non-transverse terms in the twist–2 contri-

bution can only be compensated by contributions from operators of higher twist. In fact, the necessary operators
are contained in the part of the string operator which was dropped in taking the twist–2 part. Incorporating
QCD equations of motion, it is possible to show [13] that the twist> 2 part involves the total derivatives of string
operators

ψ̄(−z/2)γαψ(z/2) −
[
ψ̄(−z/2)γαψ(z/2)

]sym =
i

2
εαξρκzξ

∂

∂Xρ

∫ 1

0

dt t ψ̄(−tz/2)γκγ5ψ(tz/2) + . . . . (10)
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The ellipses stand for quark–gluon operators (we do not write them explicitly since they are not needed to restore
transversality of the twist–2 contribution). The relation for the operator with Dirac matrix γαγ5 is obtained by
changing γα → γαγ5, γκγ5 → γκ. The operators appearing under the total derivative on the R.H.S. of Eq. (10)
and its γαγ5 analog are still the full string operators with no definite twist. Hence, one can decompose them into
a symmetric (i.e., twist–2) part and total derivatives, and so on; thus expressing the original string operator as
the sum of its symmetric part and an infinite series of arbitrary order total derivatives of symmetric operators.
This series can be summed up in a closed form (the details of the calculation are presented elsewhere [15]; similar
expressions were derived independently in [9,10]):

ψ̄(−z/2)γσψ(z/2) =
∫ 1

0

dv

{
cos
[
iv̄

2

(
z
∂

∂X

)]
∂

∂zσ
+

iv

2
sin
[
iv̄

2

(
z
∂

∂X

)]
∂

∂Xσ

}
ψ̄(−vz/2)ẑψ(vz/2)

+
i

2
εσαβγzα

∂

∂Xβ

∂

∂zγ

∫ 1

0

dv

∫ 1

v

du cos
[
iū

2

(
z
∂

∂X

)]
ψ̄(−vz/2)ẑγ5ψ(vz/2) + . . . . (11)

An analogous formula applies to the operators with γσ → γσγ5; one should just replace ẑ → ẑγ5, ẑγ5 → ẑ.

III. PARAMETRIZATION OF NONFORWARD MATRIX ELEMENTS

Double distributions. To get the amplitude for deeply virtual Compton scattering off a hadronic target we need
parametrizations of the hadronic matrix elements of the uncontracted twist–2 string operators Oσ ,O5σ appearing
in Eq. (4). We will derive them from Eq. (11). For simplicity, we consider here one quark flavor and the pion
target, which has zero spin and practically vanishing mass. In this case, the matrix element of the contracted
axial operator zσO5σ(z | 0) (parametrized in the forward limit by the polarized parton density) is identically zero.
Thus we need only the parametrization for the matrix element 〈p− r/2 | O(z | 0) | p+ r/2〉 of the contracted vector
operator O(z | 0) ≡ zσOσ(z | 0). With respect to z, it can be regarded as a function of three invariants (pz), (rz)
and z2. For dimensional reasons, the dependence on z2 is through the combinations tz2 and p2z2 only. Since we
are going to drop O(t) and O(p2) terms in the Compton amplitude, we ignore the dependence on z2 and treat
this matrix element as a function of just two variables (pz) and (rz). Incorporating the spectral properties of
nonforward matrix elements [14] , we write the plane wave expansion in the form

〈p− r/2 | O(z | 0) | p+ r/2〉 = 2(pz)
∫ 1

−1

dx̃

∫ 1−|x̃|

−1+|x̃|
e−i(kz)f(x̃, α) dα+ (rz)

∫ 1

−1

e−iα(rz)/2D(α) dα , (12)

where k = x̃p+ αr/2, f(x̃, α) is the double distribution (DD) and D(α) is the Polyakov-Weiss (PW) distribution
amplitude [16] absorbing the (pz)-independent terms. From this parametrization, we can obtain the matrix elements
of original uncontracted string operators, (11), including the kinematical twist–3 contributions. We consider first
the part coming from the double distribution term in Eq. (12); the contributions from the PW–term will be included
separately. In matrix elements, the total derivative turns into the momentum transfer, i∂/∂Xσ → rσ = 2ξpσ +∆σ.
Similarly, we write k = (x̃+ ξα)p+ α∆/2. Expanding up to terms linear in the transverse momentum ∆ we get

1
2
〈p− r/2 | Oσ(z | 0) | p+ r/2〉 =

∫ 1

−1

dx̃

∫ 1−|x̃|

−1+|x̃|
dα f(x̃, α)

{
e−i(x̃+ξα)(pz)pσ

[
1− i α

2
(∆z)

]
+

1
2
[
∆σ(pz) − pσ(∆z)

] ∫ 1

0

dv v e−iv(x̃+ξα)(pz)
[
sin(v̄ξ(pz)) − iα cos(v̄ξ(pz))

]}
. (13)

Skewed distributions. The spectral parameter x̃ appears in Eq. (13) only in the combination x ≡ x̃+ ξα, so we
can introduce two skewed parton distributions:

H(x, ξ)

A(x, ξ)

}
≡

∫ 1

−1

dx̃

∫ 1−|x̃|

−1+|x̃|
dα δ(x− x̃− ξα) f(x̃, α)

{
1

α
(14)
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Note that, in our case, the DD f(x̃, α) is even in α and odd in x̃. As a result, the functions H and A satisfy the
symmetry relations

H(x, ξ) = −H(−x, ξ) , H(x, ξ) = H(x,−ξ) , A(x, ξ) = A(−x, ξ) , A(x, ξ) = −A(x,−ξ). (15)

Furthermore, because of the antisymmetry of the combination αf(x̃, α) with respect both to x and α we have∫ 1

0

dxA(x, ξ) = 0. (16)

Hence, the distribution A(x, ξ) cannot be a positive-definite function on 0 ≤ x ≤ 1.
Combining the cosine and sine functions with the overall exponential factor, e−ivx(pz), one gets vx ± v̄ξ combi-

nations. Using (15), one can arrange that only vx+ v̄ξ would appear:

1
2
〈p− r/2 | Oσ(z | 0) | p+ r/2〉 = pσ

∫ 1

−1

dx e−ix(pz)

[
H(x, ξ)− i(∆z)

2
A(x, ξ)

]
+
i

2
[
∆σ(pz) − pσ(∆z)

] ∫ 1

−1

dx
[
H(x, ξ)− A(x, ξ)

] ∫ 1

0

dv v cos[(vx+ v̄ξ)(pz)] . (17)

In a similar fashion, we get parametrization for the matrix element of the axial string operator (11):

1
2
〈p− r/2 | O5σ(z | 0) | p+ r/2〉 =

i

2
εσαβγ zα∆βpγ

∫ 1

−1

dx
[
H(x, ξ)−A(x, ξ)

] ∫ 1

0

dv v sin[(vx+ v̄ξ)(pz)] . (18)

Note that it is expressed in terms of the same skewed distributionsH(x, ξ) andA(x, ξ) which, in turn, are determined
by the original double distribution f(x̃, α), see Eq. (14).

IV. DVCS AMPLITUDE FOR PION TARGET

DD-generated contribution. Substituting the parametrizations (17) and (18) into Eq. (4) and performing the
Fourier integral over the separation z we obtain the Compton amplitude

Tµν =
1

(pq)

[
pµqν + qµpν − gµν(pq) + 2ξpµpν −

∆ν

2
pµ + pν

∆µ

2

] ∫ 1

−1

dx
H(x, ξ)
x− ξ + i0

+
1

2(pq)

∫ 1

−1

dxR(x, ξ)
∫ 1

0

dv
∆ν(qµ + 3ξpµ)
ξ + vx + v̄ξ − i0 +

1
2(pq)

∫ 1

−1

dxR(x, ξ)
∫ 1

0

dv
(qν + ξpν)∆µ

−ξ + vx + v̄ξ + i0
, (19)

where R(x, ξ) is the universal SPD describing the kinematical twist-3 contributions:

R(x, ξ) ≡ ∂H(x, ξ)
∂x

− ∂A(x, ξ)
∂x

. (20)

This result for the Compton amplitude contains the same tensor structures as those obtained in Refs. [7,8]. All
three terms in Eq. (19) are individually transverse up to terms of order t.

Singularities. The first term is the twist–2 part with the tensor structure corrected exactly as suggested by
Guichon and Vanderhaeghen [6]. The integral over x exists if H(x, ξ) is continuous at x = ξ, which is the case for
SPD’s derived from the DD’s which are less singular than 1/x̃2 for x̃ = 0 and are continuous otherwise (see [17]). In
particular, continuous SPD’s were obtained in model calculations of SPD’s at a low scale in the instanton vacuum
[18]. The second term contributes only to the helicity amplitude for a longitudinally polarized initial photon. The
parameter integral over v gives the function [ln(x+ ξ − i0) − ln(2ξ − i0)]/(x− ξ) which is regular at x = ξ and
has a logarithmic singularity at x = −ξ. The integral over x exists if R(x, ξ) is bounded at x = −ξ, which again is
the case in the DD-based models described in Ref. [17]. The third term of Eq. (19) corresponds to the transverse
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polarization of the initial photon. In this case, one faces the integrand 1/[v(x − ξ) + i0] which produces dv/v
divergence for the v-integral at the lower limit. One may hope to get a finite result only if the integral

I(ξ) ≡
∫ 1

−1

dx
R(x, ξ)
x− ξ + i0

(21)

vanishes. From the definition of the skewed distributions H(x, ξ) and A(x, ξ) (14) it follows that

∂A(x, ξ)
∂x

= −∂H(x, ξ)
∂ξ

.

Hence, one can substitute R(x, ξ) by the combination ∂H(x, ξ)/∂x+∂H(x, ξ)/∂ξ similar to that used in [10] within
the context of WW approximation (in Refs. [9,10], full SPD’s are implied while our H(x, ξ) does not include the
PW term). By analogy with Ref. [10], we integrate the ∂H(x, ξ)/∂x term by parts. This gives

I(ξ) =
d

dξ

∫ 1

−1

dx
H(x, ξ)
x− ξ + i0

,

i.e., the ξ derivative of the twist-2 contribution. In general, the latter has a nontrivial ξ-dependent form determined
by the shape of SPDs (see, however, the discussion of the PW contribution below). We conclude that the twist-3
amplitude for the transverse polarization of the initial photon diverges. A similar observation has been recently
made in Ref. [10]. Since this amplitude is power–suppressed by a factor of 1/q2, factorization for DVCS works up
to (and including) 1/

√
−q2–contributions to observables. Still, this is sufficient to allow for experimental tests of

QCD predictions for DVCS.
WW-type representation. We can express our results in another form, introducing new skewed distributions

related to R(x, ξ) via an integral transformation similar to that used by Wandzura and Wilczek [19] ∗ . This
allows us to establish the equivalence between our approach and the WW-type approximation proposed in Ref. [9].
Treating the combination xv + v̄ξ in (19) as a new variable we define

RW (x, ξ) ≡
∫ 1

−1

R(y, ξ) dy
∫ 1

0

δ(yv + v̄ξ − x) dv = θ(x ≥ ξ)
∫ 1

x

R(y, ξ)
y − ξ dy− θ(x ≤ ξ)

∫ x

−1

R(y, ξ)
y − ξ dy . (22)

In terms of this transform, the matrix element of the vector operator (17) can be expressed as

1
2
〈 p− r/2 | Oσ(z | 0) | p+ r/2〉 =

∫ 1

−1

dx e−ix(pz)

{
pσH(x, ξ)− i

2
pσ (∆z)A(x, ξ)

+
1
4

(
∆σ − pσ

(∆z)
(pz)

)[
RW (x, ξ)−RW (−x, ξ)

]}
. (23)

Note that only the odd part of RW (x, ξ) contributes here. In case of the axial operator (18)

1
2
〈 p− r/2 | O5σ(z | 0) | p+ r/2〉 =

i

4
εσαβγ

zα
(pz)

∆βpγ

∫ 1

−1

dx e−ix(pz)

[
RW (x, ξ) +RW (−x, ξ)

]
(24)

only the even part of RW (x, ξ) appears. The part of the Compton amplitude (19) containing R(x, ξ) can be written
in terms of this new function as

1
2(Qp)

∫ 1

−1

[
∆µ(qν + ξpν)
x− ξ + i0

+
∆ν(qµ + 3ξpµ)
x+ ξ − i0

]
RW (x, ξ) dx . (25)

The integrals with 1/(x±ξ∓i0) converge only if the function RW (x, ξ) is continuous for x = ±ξ. According to Eq.
(22), RW (x, ξ) is given by the integral of R(y, ξ)/(y− ξ) from x to 1 if x > ξ and from x to −1 if x < ξ. Evidently,

∗WW-type integrals of parton distributions have originally appeared within the ξ-scaling formalism [20] .
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x = −ξ is not a special point in the integral transformation (22), hence the function RW (x, ξ) is continuous at
x = −ξ. However, it is extremely unlikely that the limiting values approached by RW (x, ξ) for x = ξ from below
and from above do coincide. Indeed, the difference of the two limits can be written as the principal value integral
(compare with [10])

RW (ξ + 0, ξ) −RW (ξ − 0, ξ) = P
∫ 1

−1

R(y, ξ)
y − ξ dy , (26)

which can be converted into the ξ-derivative of the real part of the twist–2 contribution. This means that the
singularity, which we observed as a straight divergence of the dv/v integral, in this approach appears due to an
unavoidable discontinuity of the RW (x, ξ) transform at x = ξ.

Contribution from the PW–term. The contribution of the PW term to the vector operator

1
2
〈p− r/2 | Oσ(0 | z) | p+ r/2〉PW–Term =

rσ
2

∫ 1

−1

dαe−iα(rz)/2 D(α) (27)

has a simple structure corresponding to a parton picture in which the partons carry the fractions (1 ± α)/2 of
the momentum transfer r. Since only one momentum r is involved, this term can contribute only to the totally
symmetric part of the vector string operator: it “decouples” in the reduction relations (10). In particular, the
PW term does not contribute to the second contribution in Eq. (11) which is generated by decomposition of the
axial string operator: both derivatives, with respect to X and z, give rise to the momentum transfer r, whence the
contraction with the ε–tensor in (11) gives zero. Thus, the PW-contribution should be transverse by itself. Indeed,
a straightforward calculation gives

Tµν |PW =
1

(rq)

[
rµqν + qµrν − gµν(rq) + rµrν

] ∫ 1

−1

D(α)
α− 1

dα , (28)

which evidently satisfies qµTµν |PW = 0, rµTµν |PW = 0. Hence, this term can be treated as a separate contribution.
Alternatively, one may include it into the basic SPD H(x, ξ) and all SPD’s derived from H(x, ξ). Specifically, for

ξ > 0, the PW contribution to H(x, ξ) is D(x/ξ) θ(|x| ≤ ξ) [16]; it contributes (ξ − x)D′(x/ξ) θ(|x| ≤ ξ)/ξ2 [where
D′(α) ≡ (d/dα)D(α)] to R(x, ξ); furthermore, the PW contribution to RW (x, ξ) is D(x/ξ) θ(|x| ≤ ξ)/ξ. Inserting
these functions into Eqs. (19) and (25) one rederives Eq. (28). One can also observe that the PW term gives zero
contribution into I(ξ), Eq. (21).

V. CONCLUSIONS

In this paper, we have studied the DVCS amplitude making use of the light–cone expansion in terms of QCD
string operators in the coordinate space. We have demonstrated that transversality of the light–cone expansion can
be maintained by including a minimal set of “kinematical” twist–3 operators, which appear as total derivatives of
twist–2 operators. Incorporating the formalism of double distributions, we established that the kinematical twist–3
contributions are described by a universal skewed parton distribution RW (x, ξ) which can be derived from the basic
twist–2 double distribution f(x̃, α). The new SPD RW (x, ξ) has the structure of a generalized WW transform. Due
to discontinuities of RW (x, ξ) for x = ξ, the factorization for DVCS breaks down at the twist-3 level for the part
of the amplitude corresponding to the transverse virtual photon. Physically, this happens when the virtual quark
connecting the photon vertices becomes real and has the momentum practically coinciding with the momentum of
the final photon. Such a quark cannot be treated as “hard”, and the relevant contribution is similar to the soft
contribution (Feynman mechanism) for hadronic form factors. The final photon is described then by the photon
wave function rather than by a pointlike vertex. Such a separation of quark virtualities into hard and soft parts
brings in a factorization scale µ, and one would get a ln(Q2/µ2) factor instead of a logarithmic divergence. The
study of the soft/hard interplay for higher-twist contributions in DVCS is an interesting and practically important
problem for future studies. A promising approach is provided by the light-cone QCD sum rules [21].
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