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We present a relativistic procedure for the chiral expansion of the two-pion exchange component
of the NN potential, which emphasizes the role of intermediate =N subamplitudes. The relationship
between power counting in #N and NN processes is discussed and results are expressed directly
in terms of observable subthreshold coeflicients. Interactions are determined by one and two-loop
diagrams, involving pions, nucleons and other degrees of freedom, frozen into empirical subthreshold
coefficients. The full evaluation of these diagrams produces amplitudes containing many different
loop integrals. Their simplification by means of relations among these integrals leads to a set of
intermediate results. Subsequent truncation to @(g*) yields the relativistic potential, which depends
on four loop integrals, representing bubble, triangle, crossed box and box diagrams. The bubble and
triangle integrals are the same as in 7V scattering and we have shown that they also determine the
chiral structures of box and crossed box integrals. Relativistic threshold effects were found to begin
to contribute at ((¢°) only and our results should coincide with those of the standard heavy baryon
approach. Checking this explicitly, we found diferences due to the Goldberger-Treiman discrepancy
and terms of O(g®), possibly associated with the iteration of the OPEP.

I. INTRODUCTION

A considerable refinement in the description of nuclear interactions has ocurred in the last decade,
due to the systematic use of chiral symmetry. As the non-Abelian character of QCD. prevents low
energy calculations, one works with effective theories that mimic, as much as possible, the basic
theory. In the case of nuclear processes, where interactions are dominated by the quarks u and
d, these theories are required to be Poincaré invariant and to have approximate SU(2) x SU(2)
symmetry. The latter is broken by the small quark masses, which give rise to the pion mass at the
effective level.

In the sixties, it became well established that the one-pion exchange potential (OPEP) provides
a good description of NN interactions at large distances. When one moves inward, the next class of
contributions corresponds to exchanges of two uncorrelated pions [1] and, until recently, there was
no consensus in the literature as how to treat this component of the force. An important feature
of the two-pion exchange potential (TPEP) is that it is closely related to the pion-nucleon (wN)
amplitude, a point stressed more than thirty-five years ago by Cottingham and Vinh Mau [2]. This
idea allowed one to overcome the difficulties associated with perturbation theory [3] and led to the
construction of the successful Paris potential [4], where the intermediate part of the interaction is
obtained by means of dispersion relations. This has the advantages of minimizing the number of
unnecessary hipotheses and yielding model independent results, but it does not help in clarifying
the role of different dynamical processes, which are always treated in bulk.

Field theory provides an alternative framework for the evaluation of the TPEP. In this case, one
uses a Lagrangian, involving the degrees of freedom one considers to be relevant, and calculates
amplitudes using Feynman diagrams, which are subsequently transformed into a potential. An
important contribution along this line was given in the early seventies by Partovi and Lomon, who
considered box and crossed box diagrams, using a Lagrangian containing just pions and nucleons
with pseudoscalar (PS) coupling [5]. A study of the same diagrams using a pseudovector (PV)
coupling was performed later by Zuilhof and Tjon [6]. The development of this line of research led
to the Bonn model for the NN interaction, which included many important degrees of freedom and
proved to be effective in reproducing empirical data [7]. On the phenomenological side, accurate
potentials also exist, which can reproduce low-energy observables employing parametrized forms of
the two-pion exchange component [8].




Nowadays it is widely acknowledged that chiral symmetry provides the best conceptual framework
for the construction of nuclear potentials. The importance of this symmetry was pointed out in the
early seventies by Brown and Durso [9] and by Chemtob, Durso and Riska [10], who stressed that
it constrains the form of the intermediate #N amplitude present in the TPEP.

In the early nineties, the works by Weinberg restating the role of chiral symmetry in nuclear
interactions [11] were followed by an effort by Ordésiez and van Kolck [12] and other authors [13,14]
to comstruct the TPEP in that framework. The symmetry was then realized by means of non-linear
Lagrangians containing only pions and nucleons. This minimal chiral TPEP is consistent with the
requirements of chiral symmetry and reproduces, at the nuclear level, the well known cancellations
present in the intermediate 7N amplitude [15]. On the other hand, a lagrangian containing just
pions and nucleons cannot describe experimental #N data [16] and the corresponding potential
missed even the scalar-isoscalar medium range attraction [14].

One needed other degerees of freedom. The A contributions were shown to improve predictions
by Ordéiez, Ray and van Kolck [17] and other authors [18]. Empirical information about the inter-
mediate 7N amplitude at low energies is normally summarized by means of subthreshold coefficients
[16,19], which can be used either directly in the construction of the TPEP or to determine unknown
coupling constants in chiral lagrangians. This allowed satisfactory descriptions of the asymptotic
NN to be produced, with no need of free parameters [23-26). ‘

As far as field theory techniques are concerned, recent calculations of the TPEP were performed
using both heavy baryon chiral perturbation theory (HBChPT) and covariant lagrangians. In the
former case [12,17,24-27], one uses non-relativistic effective Lagrangians, that include unknown
couterterms, and amplitudes are derived in which loop and counterterm contributions are organized
in well defined powers of the typical three-momenta exchanged between nucleons. In this approach,
relativistic corrections required by precision have to be added separately [28].

The motivation for the heavy baryon formalism was the realization that, for system containing
baryons, the dimensional regularization of loop diagrams yielded results that started to contribute at
the same order as tree diagrams, spoiling the desired power counting rules [29,30]. To overcome this
dificulty Jenkins and Manohar [31] proposed the heavy baryon formalism, which consists essencially
of a non-relativistic expansion in inverse of the baryon mass at the level of the lagrangian. The
resulting theory recovers the power counting rules of ChPT, but explicit Lorentz invariance is lost.

Recently Becher and Leutwyler [32] showed that the non-relativistic expansion can be avoided by
means of the so-called infrared regularization. The basic idea is to separate pole contributions in
loop integration located in the low energy domain from those at higher energies in a covariant way.
The latter piece spoil the power counting rules, but it is possible to absorb them in the coupling
constants of the theory. The resulting formalism gives rise to power counting while preserving
Lorentz invariance. The infrared regularized loop integrals contain arbitrary powers of the generic
scale ¢ (meson mass, meson four-momentum or baryon three-momentum), which allow us to assess
the convergence of the HBChPT series.

Relativistic and heavy baryon calculations were compared in single nucleon systems. In the case
of nucleon properties, consistency is possible, provided one uses the nucleon mass as the dimensional
regularization scale [33}. In elastic 7NV scattering, on the other hand, there are important differences.
As demonstrated by Becher and Leutwyler [32,34], the amplitude that underlies the scalar form
factor cannot be represented by the heavy baryon series around the point that determines its large
distance properties. One of the main purposes of the present work is to extend this discussion to
the NN interaction.

Our presentation is organized as follows. In section II we present the formal relations between
the relativistic TPEP and the intermediate N subamplitude, whose chiral structure is analysed in
section III. In section IV we discuss how power counting in wN is transferred to the TPEP, Three
major ingredients of the chiral potential, namely subthreshold coefficients, analytic loop integrals
and subtraction of the iterated OPEP are reviewed in sections V, VI and appendix C. The full
TPEP, which represents an extension of our earlier works [14,22], is derived in appendix D. This
potential is simplified using relations among integrals given in appendix E and the new form is given
in appendix F. The truncation of these results gives rise to our ()(¢*) invariant amplitudes, and
potential components, presented in sections VII and VIII. In section IX we compare these results
with the standard heavy baryon version, using the expansions for loop integrals derived in appendix
G. Conclusions are presented in section X, whereas appendices A and B deal with kinematics and
loop intgrals.




II. TPEP - FORMALISM

The TPEP is obtained from the T-matrix 7Trp, which describes the on-shell process
N(p1) N(pz2) — N(p}) N(p3) and contains two intermediate pions, as represented in fig.l. In
order to derive the corresponding potential, one goes to the center of mass frame and subtracts the
iterated OPEP, so as to avoid double counting. The NN interaction is thus closely associated with
the off-shell # N amplitude.

FIG. 1. Two pion exhange amplitude.

The coupling of the two-pion system to a nucleon is described by T, the amplitude for the process
7w (k)N (p) = (K YN (p'). It has the isospin structure

Toa = 00T H +icvacre T
and the evaluation of fig.1 yields
Trp = [3 T +270.23 T_] ,
with
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where 1 is the pion mass and the factor 1/2! accounts for the exchange symmetry of the intermediate
pions. The integration variable is Q = (k' + k)/2 and we also define g = (k' — k), t = ¢° and
v; = (p; + p:)-Q/2m. Our kinematical variables are fully displayed in appendix A.

For on-shell nucleons, the sub amplitudes TF may be written as

T* = a(p') [A*+ @ B*] u(p)

and the functions AY and B* are determined dynamically. An alternative possibility is

T* =a(p) [D* - 0w —p)'Q" BY| u(m),
with DT = AT 4 v B*. This second form tends to be more convenient when one is interested in the
chiral content of the amplitudes. The information needed about the pion-nucleon sub amplitudes
A%, B* and D* may be found in the comprehensive review by Hohler [16] and in the recent chiral
analysis by Becher and Leutwyler [34].

The intermediate =N subamplitudes A*, B* and D* depend on four independent variables,
namely k%, k2, v and t. For physical processes one has k2 = k* = p?, v > pand t < 0. On the
other hand, the conditions of integration in eq.(2.2) are such that the pions are off-shell and the
main contributions come from the region v == 0. Physical amplitudes cannot be directly employed
in the evaluation of the TPEP and must be continued analytically to the region below threshold,
by means of either dispersion relations or field theory. The analytic structure of the 7N amplitude
plays therefore an important role in the TPEP.

The relativistic spin structure of the TPEP is obtained by using eq.(2.5) into eq.(2.3) and one
has, for each isospin channel,
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where

Ipp = ~if2 / [] DI [D)®, (2.7)
Idp = —if2 / (-1 (DM@ BI®, (2.8)
Iip = —if2 / [..][@* B)V (D)@, (2.9)
5y 3
7y = —if2 [1.110* BIVIQ? B, (2.10)
and
= : 2.11
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The Lorentz structure of the integrals Z is realized in terms of the external quantities g, z, W
and g"”, defined in appendix A. Terms proportional to g do not contribute and we write
WA w z
I’;—‘,B_Z—I( )+—I},}3, (2.12)
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These expressions and the spinor identities (A20) and (A22) yield
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In order to display the ordinary spin content of this amplitude, we go to the center of mass frame
and use the identities (A32-A35), which allow one to rewrite 7rp, without approximations, in terms
of the (2 x 2) identity matrix and the operators®
Qss =g cW.ae?® ,Qp = —¢° (30(1)-66 G—of (2))
Qs =1 (cr(l)—l—cr(z))-q xzf4,0q = oM .gxz cr(z)-qxz .
The two-component momentum space amplitude in the CM is derived by dividing 7 by the factor
(4E?), present in the relativistic normalization, and introducing back the isospin coefficients as in
eq.(2.2). We then have the decomposition
g Y Q 0
£, =% ZEz =15+ —= t5s + mT 7+ —= e+ o QQ 2%, (2.16)

with 7t = 3 and 7~ = 2. The momentum space potential, denoted by fi, is obtained by subtracting
the iterated OPEP from this expression, so as to avoid double counting.

'We use here the notation and results from Partovi and Lomon [5], eqs.(4.26-4.28).




III. INTERMEDIATE =N AMPLITUDE

The theoretical soundness of the TPEP relies heavily on the description adopted for the interme-
diate # N amplitude. In this work we employ the relativistic chiral representation produced by the
Bern group and collaborators [32,34,29], which incorporates the correct analytic structure. For the
sake of completeness, in this section we summarize some of their results.

At low and intermediate energies the 7N amplitude is given by the nucleon pole contribution,
superimposed to a smooth background. Chiral symmetry is realized differently in these two sectors
and it is useful to disentangle the pseudovector Born term (pv) from a remainder (R). We then
write

T* =Tk +Tx . (3.1)

The pv contribution involves two observables, namely the nucleon mass m and the 7N coupling
constant g, as prescribed by the Ward-Takahashi identity [35]. Depending on the chiral order one is
working with, the calculation of these quantities may involve different numbers of loops and several
coupling constants?. Nevertheless, at the end, all this structure must be organized in such a way as
to reproduce the physical values of both m and g [36]. Following Hohler [16] and the Bern group,
(29,34] in their treatments of the Born term, we use the constant g in these equations, instead of
(9a/f=). The motivation for this choice is that the #N coupling constant is indeed the observable
determined by the residue of the nucleon pole. We write

2 ! ’
+ .g_ k'-k k ‘k 2
Dpv“2m (~‘3—m2+u—m2 = 0(g), (3.2)
1 1 _
B;TU:_92 (s—m2_ u_mz) '_)O(q 1)7 (33)
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The arrows after the equations indicate their chiral orders, estimated by using s — m? ~ W-Q
and u — m® ~ -W-Q, with W = p) + p2 = p| + pb. When the relative sign between the s and u
poles is negative, these contributions add up and we have [1/(s —m?) —1/(u—m?)] = O(g). On the
other hand, when the relative sign is positive, the leading contributions cancell out and we obtain
[1/(s — m?) +1/(u~ m2)] - O(g?).

In ChPT, the structure of the amplitudes szE involves both tree and loop contributions. The
former can be read directly from the basic lagrangians and correspond to polynomials in » and t,
with coefficients given by the renormalized coupling constants of the theory. The calculation of
the latter is more complex and results may be expressed in terms of Feynman integrals. In the
description of 7N processes below threshold, it is useful to approximate these contributions by
polynomials, using

Xp=) Tmat™"t", (3-6)

where X stands for D}, B} /v, Dy /v or By. The values of the coefficients Zmn can be determined
empirically, by using dispersion relations in order to extrapolate physical scattering information to
the subthreshold region [16,19]. As such, they become a rather important source of information
about the coupling constants of the chiral lagrangian.

The isospin odd subthreshold coefficients include leading order contributions, which yield the
predictions made by Weinberg [37] and Tomozawa [38] for NV scattering lengths, given by

v

Divr = 37 = 0@, (3.7)
Bz = % -0 | 38)

2For instance, up to O(g") T;f, receives contributions from tree graphs of £ ... £ and 1 loop graphs from £ and £®,
expressed in terms of its bare coupling constants.
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Sometime ago, we developed a chiral description of the TPEP based on the empirical values of
the subthreshold coefficients, which could reproduce asymptotic NN data [22,23]. As we discuss
in the sequence, that description has to be improved when one goes beyond O(q®). In nuclear
interactions, the ranges of the various processes are associated with the variable # and must be
accurately described. In particular, the pion cloud of the nucleon gives rise to scalar and vector
form factors [29] which correspond, in configuration space, to structures extended well beyond 1
fm [39]. On the other hand, the representation of an amplitude by means of a power series, as in
eq.(3.6), amounts to a zero-range expansion, for its Fourier transform yieds only J-functions and its
derivatives. So, this kind of representation is not the best suited for describing extended objects.

FIG. 2. Long range contributions to the scalar and vector form factors.

In the work of Becher and Leutwyler [34] we can check that the only sources of NN medium range
effects are their diagrams & and [, reproduced in our figure 2, which contain two pions propagatmg
in the ¢-channel. Here we con51der explicitly their full contrlbutlons and our amplitudes A and Bi
are written as

DY = [ddo + difgr® + Jgat] @ + [diov? + divPt + dfat?) @t D} (1), (3.9)
B = [byv] wt BL:.(@®), (3.10)
Dy = [v/(2f2) ](1) + [doov + diov® + dgyvt] @ T Dnr(®) | (3.11)
By = [1/(22) +bao) () + [b7ov” + B5nt] ay B (®) - (3.12)

In these expressions, the labels (n) outside the brackets indicate the presence of leading terms
of O(¢"), whereas the label mr denotes the contribution from the medium range diagrams of fig.2.
This decomposition implies the redefinition of some subthreshold coefficients, indicated by a bar
over the appropriate symbol. Their explicit forms will be displayed in the sequence.

FIG. 3. Dynamical structure of the O(g*) #N amplitude; the blobs represent terms coming directly from the effective
lagrangians.

The dynamical content of the O(g*) Ty amplitude derived in [34] is shown in fig.3 and our
approximation, in fig.4. In the latter, the first two diagrams correspond to the direct and crossed
PV Born amplitudes, with physical masses and coupling constants. The third one represents the
contact interaction associated with the Weinberg-Tomozawa vertex whereas the next two describe
the medium range effects associated with the scalar and vector form factors. Finally, the last diagram
summarizes the terms within square brackets in eqgs.(3.9-3.12).
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FIG. 4. Dynamical content of the approximate w/N amplitude.

IV. POWER COUNTING

One begins the expansion of the TPEP to a given chiral order by recasting the explicitly covariant
Trp into the two-component form of eq.(2.16). This procedure involves no approximations and one
finds, in the CM frame,

2 . 2
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with g = p' —p, z = p’ +p and A = 4m(F + m).

The potential to order O(¢™) is determined by t£ — O(g¢"), {tgs:t;tfs} = O(¢™?) and
t% — O(¢"™). This means that one needs Z5, — O(q"), {Igwgi,lgéi,lggi} - O(g™?) and
{Ig”g*,l'g}f} — O(g™™*). We now discuss how the chiral powers in these functions are related
with those in the basic 7N amplitude. This relationship involves a subtlety, associated with the fact
that D,‘,ﬁ, and B, contain chiral cancellations.

(4.1)
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(4.3)
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(4.5)




A generic subamplitude Z3,, is given by the product of the corresponding 7N contributions and
we have

B = [ { A1 ] e (8] ) [ ) ]V ) )

The loop integral and the two pion propagators, as given by eq.(2.11), do not interfere with the
counting of powers, since f [--] = @(¢°). The loop integration is symmetric under the operation

Q — —Q, which gives rise to the exchange 5 <+ u in the Born terms. In the case of REAR [Yp:‘;](z),
one is allowed to use

1 1 (i) 1 1 ) 1 (i) 1 1 ()
=+
(s—mziu—mz) (s~'m2iu—m2) _)z(s-mz) (s—m2 u—mz)

within the integrand. For the specific components this yields

[D;},](i) [D;;,] (J')__+ (’)(qa), [D;u](i) [D;u](j)—* O(qz),
(D717 [@B:]Y = 0@, [D5]? [@B]7 - 0®),
[@B]7 [@BL]V > 0", [@B;]7 [@B;]7 = 0.

These results show that, inside the integral, D}, and Bj, cannot be always counted as ()(g?) and
O(g™") respectively. For the products [XZ]® [YZ]Y) and [XE]D [VE]9)) one uses

1 1 \® 1 \®
£ -+2( )
(a—-m2 u—mz) s —-m?

and has D, — O(q) and BE, —» O(¢™"). Assuming XE)9, [vE1Y = O(q7), one gets

[D;tv](i) [Dﬁ](j)—) 0(q1+r)7 [D;hv](i) [QB%] (J')_) O(qZ-}-r)’
[0%]7 [@BR]7 = 0@, [0B:]? [0BF]V - 0.

Finally, in the case of [X;](")[YR*]U ), one just adds the corresponding powers.

In this work we consider the expansion of the potential to O(g*) and need ZE, — O(q%),
{Il(jwl;i,lgéi,lg},i} - O(q%), and {Ig‘g*,lgg,i} — O(g"). This means that, in the intermediate
wN amplitude, we must consider D}d.‘f to O(g%) and Bﬁ to O(q).

V. SUBTHRESHOLD COEFFICIENTS

The polynomial parts of the amplitudes Tlf to order O(g®), as given by egs.(3.7-3.10), are deter-
mined by the subthreshold coefficients of ref. [34], which we reproduce below

s =_2(201—Cs)#2+893#3+ 3 g% 1°
00 12 TeanfrT |eanfE|
gr o= 2c (4+5gd)p
107 2 327 fF
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+ _ 124544
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o | 19343
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272 12 48 2 fi B fE|
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(4.8)
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where the parameters c; and d; are the usual renormalized coupling constants of the chiral la-
grangians of order 2 and 3 respectively [33]. The terms within square brackets labelled (mr) in
some of these results are due to the medium range diagrams shown in fig.2 and must be neglected?,
because we include their contributions in D%, and BZ,. The terms bearing the (WT') label must
also be excluded, for they were explicitly considered in eqs.(3.9-3.12). This corresponds to the
redefinition mentioned at the end of section III.

TABLE 1. experimental values for the subthreshold coefficients and medium range (mr) contributions in £~ ™ units; experi-
mental results are taken from ref. [16].

dgo dio dg, 3 d; dgy
exp -1.461+0.10 1.12£0.02 1.1440.02 0.200+0.005 0.174+0.01 0.036%:0.003
mr 0.12 - -0.25 - - 0.032
boo
exp -3.54+0.06
doq dio doy
exp 1.53+0.02 -0.1671+0.005 -0.13440.005
WT + mr 1.18 - -0.032
boo bio by,
exp 10.36+0.10 1.08 +0.05 0.2440.01
WT +mr -0.99 - 0.18

3In ref. [34], the contribution of the triangle diagram to dJ, includes both short and medium range terms and only the latter
must be excluded.




The values of the subthreshold coefficients are determined from N scattering data and, in a
chiral expansion to (O(¢g?), they are used to fix the otherwise indetermined parameters ¢; and d;.
In our formulation of the TPEP, we bypass the use of these unknown parameters, for the redefined
subthreshold coefficients are already the dynamical ingredients that determine the strength of the
various interactions. This allows the potential to be expressed directly in terms of observable
quantities.

In table I we show the experimental values of the subtheshold coefficients determined in ref. [16]
and the sum of (WT') and (m'r) contributions. The redefined values are obtained by just subtracting
the latter from the former®. It is worth noting that the values of dJ, and by, are compatible with
ZEro.

When writing the results for the TPEP, it is very convenient to display explicitly the chiral
scales of the various contributions. With this purpose in mind, we will employ the dimensionless
subthreshold constants defined in table II.

TABLE II. dimensionless subthreshold coefficients.

35 01 30 %0
definition mfy dyy/u’ mfy di, mfy dg, mf? b,
value -4.72 3.34 4.15 -10.57
do0 5@ 901 Boo
definition m?f2 doo/1° m’f,; di, m?f2 dy, 2 bg,
value 7.02 -3.35 -2.05 5.04 |
“We use g4 = 1.25, f» = 93 MeV, p = 139.57 MeV and m = 938.28 MeV.
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V1. BASIC INTEGRALS

The covariantly expanded TPEP is expressed in terms of a few functions, associated with loop
integrals. Before displaying our results, we introduce the functions II,, II;, II,, I, and II,, that
occur in this expansion. Their mathematical forms are discussed in detail in appendices B and C
where, for technical reasons, they are called oo , H&B"“), e, ni‘;‘;"’ and H,‘;;"’ respectively.

The function I, represents the bubble diagram and is given by

I d'Q 1 i g
cc = = L.
@r)* ((Q-9/2)?~p?[(Q+q/2)2—-p?]  (4m)?
This integral can be performed analitically® and its regular part may be written as
V1—t/4p?
Mo=—2 Y0 4y (\/1 "t/ + \/—t/4p2) . (6.2)
—t/4p?

The function II;, associated with the ¢riangle diagram, is expressed by

_ d‘Q 1 2mu _ i
I‘“’/ @r)t (@-a/2F (@ F /27 7] Q7+ Q- (W+2)—/4] — an)? (6.3)

and contributes to the scalar form factor of the nucleon. Its properties were discussed in [32], where
the following spectral representation® can be found

(6.1)

* 7 1 1
II; = -2m dt G(t), 6.4
= [ s 6 (6.4
with
4 2 4 2__tl
G(m;t') = et V( ,“ X ;n ) , (6.5)
t'(4m? —t') t—2p

which has the correct analytic structure around the point ¢’ = 4p%. Keeping terms up to O(g%), we
have

(6.6)

2m+/t — 4p?
G(m;t')=(1+ t ) ! ant lﬂ—u—il

8m?/ m/t' t—2u?
In BL one also learns that it is possible to write accurately
) 1 t —2u° 2 t
oty e (3], 4 [ it
m HB [/t —4p . b
2 2
t 2 o
+ H 5 Zm\/— _ m h t tan 1 m , (67)
dm? |, [t —ap? M
The first two terms in this expression correspond to the standard leading heavy-baryon contri-

bution (H B} and next-to-leading correction (N\L), whereas the last one (#) implements the correct
analytic behaviour around ¢’ = 4u®. The use of this result in eq.(6.4) suggests the decomposition

M=t + 2wy 2 [ L, e (6.8)
t= e T om am? |2u2 ¢ L '

It is important to note that this decomposition represents the definition of the function II:* and
not a heavy baryon expansion in powers of u/m. The first two terms are given by’

The function I, is related to the L(q) used in ref. [24] by I, = —2L(q) and to the J(¢) of [34] by II, = (4x)% J — 1.
®BL denote it by v(t) and, in our notation, one has II, = —2mp(dr)2y(t).
"The function II, is related to the A(g) of ref. [24] by II, = —4mpA(qg).
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o= - " o

[—t]4p?

" = (1-t/2p°) 10,

—t/4p?,

with IT" = p (dI1/dp).
The function I may be evaluated either numerically or by means of the approximate expression
of BL '

2mm? u 7 /2
% ~ - +2ln 14 ——L V= T2
D [ my/1 — t/4p? ( 2m/1 ~ t[4p2 1—t/4u?

This function is the signature of the covariant formalism, since it is not present in the ordinary
heavy baryon series. In that case, the last term of eq.(6.8) would become

TR R
N =N

and TI# would be replaced with

M\L_L _a_ 2 3 _ 1/2

1 1 [t/apz . 1
- lim — 5 .
1z t/4p? 1 —t/4p? {1 —t/4p? a9

This result shows that II{™" is different from IT¥. The former contains an extra factor (p/m) and
a non-polynomial singular term, due to the behaviour of eq.(6.12) at threshold.

The functions M II,, and fIz, are associated with crossed bor and boz diagrams and their rela-
tivistic expansions, derived in appendix G, read

| T
I = —IT; — [?%] -(-1—_-7-;—%‘2,—) - [%] % [(1—t/20%)? (2 T0, — TIY) + (22%/3p®) TI] + -
T, = O + [—:;] (1—_% + [ﬁ]z % [(1=t/20%)? (210 —T1})] + - --

A R e

In the expansion of the potential, the following results are useful
I = 2 + [ /(1-t/4u?) ,
I = 2/(1—t/4p®) + [2/(1—t/4p") — 1/(1-t/4p*)"] 10,

I, =L, —wi/(1 - t/4p%) .

VII. DYNAMICS

The chiral two-pion exchange potential is determined by the processes depicted in fig.5, derived
from the basic /N subamplitude and organized into three different families. The first one corre-
sponds to the minimal realization of chiral symmetry [14], includes the subtraction of the iterated
OPEP and involves only pion-nucleon interactions with a single loop, associated with the constants
g and fr. The same constants also determine the two-loop processes of the second family. The
last family includes chiral corrections associated with subthreshold coefficients, representing either
higher order processes or other degrees of freedom.
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FIG. 5. Dynamical structure of the TPEP. The first two diagrams correspond to the products of Born =N amplitudes,
the third one represents the iteration of the OPEP whereas the next three involve contact interactions associated with the
Weinberg-Tomozawa vertex; the diagrams on the second line describe medium range effects associated with scalar and vector
form factors; the remaining interactions are triangles and bubbles involving subthreshold coefficients.

The first two diagrams of fig.5, known respectively as crossed box and boz, come from the products
of the 7N PV Born amplitudes, given by eqgs.(3.2-3.5) and involve the propagations of two pions and
two nucleons. The third one represents the iteration of the OPEP and gives rise to an amplitude
denoted by 7i:. This contribution is derived after the work of Partovi and Lomon [5] and discussed
in detail in appendix C. The remaining interactions corespond to triangle and bubble diagrains,
which contain a single or no nucleon propagators, besides those of two pions.

The construction of the TPEP begins with the determination of the relativistic profile functions,
eqs.(2.7-2.10), using the 7N subamplitudes D* and B* discussed in section ITI. Resuts are then
expressed terms of the one-loop Feynman integrals presented in appendices B and C, that may
involve two, three or four propagators. The evaluation and manipulation of these integrals represent
an important aspect of the present work and it is worth discussing the notation employed.

Momentum space integrals are denoted by II and labelled in such a way as to recall their dynamical
origins. We use lower labels, corresponding to nucleons 1 and 2, with the following meanings: ¢ —
contact interaction, s — s-channel nucleon propagation and u — u-channel nucleon propagation.
This means that functions carrying the subscripts (cc), (sc), (ss) and (us) correspond, respectively,
to bubble, triangle, crossed boz and boz diagrams. The last class of integrals includes the OPEP cut,
that needs to be subtracted. This subtraction is implemented by replacing the (us) integrals by
regular ones, represented by the subscript (reg). Upper labels, on the other hand, indicate the rank
of the integral in the external kinematical variables g, z and W. For instance, the rank 2 crossed boz
integral is written as

d'Q (Q“Q") 2mp  2mp
8

(2m)2 (2 —m? 83 —m?
i [q"¢ 42 WHW> vz
= G | T S e B ey g i

All integrals are dimensionless and include suitable powers of pion and nucleon masses, so as to
make them relatively stable upon wide variations of the latter. We have studied these integrals
numerically and, typically, they change by 30% when one moves the nucleon mass from its empirical
value to infinity. This feature is rather useful in discussing chiral scales and heavy baryon limits. At
present the infrared regularization techniques are still being developed for the case of two nucleon
system [40] and we have used dimensional regularization whenever appropriate.
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The final expressions for the potential are written in terms of the axial constant g4, related
to the N coupling constant by ¢ = (1+ Agr) gam/fr where Agr, the Goldberger-Treiman
discrepancy®, is proportional to ul.

The direct reading of the Feynman diagrams of fig.5 gives rise to our full results for the relativistic
profile functions, displayed in appendix D. These are the functions which the chiral expansion must
converge to and hence they allow one to assess the series directly. On the other hand, they do not
exhibit explicitly the chiral scales of the varions components of the potential, since their net values
are the outcome of several cancellations.

In order to display these scales, in appendix E we derive several relations among integrals, which
are used to transform the full results of appendix DD into the forms listed in appendix F. The relations
given in appendix E are, in principle, exact, provided one keeps heavy integrals, that contain a single
or no pion propagators. In fact we neglect those heavy contributions, because they are short ranged®.
The importance of this approximation was checked by comparing numerically the Fourier transforms
of the various amplitudes of appendices D and F. In all cases, agreement is much better than 1%
for distances larger than 1 fm, except for IZ;D, where the difference is 4% at 1.5 fm and falls below
1% beyond 2.5 fm. This has very little influence over the full potential.

The truncation of the expressions of appendix F to the orders in g discussed at the end of section
IV lead to the following results for the profile functions:

m? _ [p]? [ ga 2

*Tbo = 577 |1n) {ﬁ“‘t/?*‘z) (I ~1Ths)
2 _ _ 2 2

+[L] % a-yt) [k Mo+ 4 (5 + 8 o/u®) ] + [ 2] [—% 3y (1—t/247)?

1 (z4 | = 1 z 2 2
+3 (8 + 56t/ + 5 8 (—yad)) + 2 (51) (1—t/4u2)2] e

TN

2 |
- [5]2 555 73 9 (1= 20/ [(1-y/20") T, 27r]2} ’

2

4 4
Coyk M AR _9A (19,2 B34 (1-y2,2)?
*Ios" = 16 273 [m]{ s t/z”)n‘“L[m] [16 (1=t/2u7)" T

2 -— -
-4 (56% + 36, ¢/u” + % 8o (l—t/4u2)) m] } 7
o T+ — m—2 [ﬁ] ﬁ [(1—t/2p,2) i1, — (3/2—-5t/8uz) Ha]
DB 16 wzfﬁ m 8] .
m

B G4 (5+ o 5+ 2_ 1,4 2
+ [—] 5 (600 + 001 t/u" — 3 dio (1—t/4p )) e,

2
+ m
“TH = 16 23

4 4 ~
{%A (1—¢/4p”) (I« +IL) + [%] %‘1 [(1~¢/24?) (11, — Tiy)
2 11?2 |94 242 1 4 2
+(1—t/4p )Ha] - [E] gA ['l‘g (1-/2p°)" TIx + 3 Boo (1—t/4p )He]} )

(wy+ __m?

4
.IBB ‘——WQAH[,

8The G-T discrepancy may be written [34] as Agr = —2d1su?/g + O(g%).
°It would be very easy to keep those terms, but this would produce longer equations.
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2
z)+ m
oI5yt = 16 77T 94 1, (7.6)

16 72f2 3
and
- m? _ [p]®[ga ¥
¢Ipp = 6273 [;n"] {E (1=t/2p")* (I« + 10p) — TA (95 — 1) (1-t/2p") TI,

457 (63— )P (—t/ap) T + 2] % (-t/26®) [68 T + (63 1) (1-1/2) 1]

2 2 . _ K
+ [%] [QTA (1-t/2u%) ((953“1) 2 40® + 850 + 853 t/1® + —;— 810 (l—t/4,,2))

_(gAﬁi_l) (1—t/4”) ((gi—l) (8/161"+2%/8u°) + G0 + 81 t/1” + g b0 (1_t/4”2))] n

2 2
B [%] 647:_zf,g [—ga ((1—t/20%) T, + 1 - £/344°)

+% (ga ~ 1) (Q—t/4®) T +2 t/4#2)] ’

2 2 .
+ 2] s 4 b [ —t/a® )~ 7 = tr/12%)°
+Aer [(é(bt/‘mz) galgh —1) — (1 —t/2u) (g5 — 1/2)) I,

4
+%4-4 (1—t/24%)? (TIy +r1,,)]} , 7.7)

| y 4
I3y = v | 2] {[“Q?A (=t/2u) H‘]

m

+[£] [512 (g4 = D)(gh — 1 = 2800)(1—t/4s%) - % (93 — 1~ Bao) (1—t/2u2)]_ I,

4
+ [%] [% (1‘”2“2)211"]} ) (7.8)
2 2
ISy = o | 5] { [gf (65 = 1= Bn) (L—t/4%) T — 52 ((1=t/2%) Tip—

-@/2=5t/3") )] + [&] [57 (05— D06k ~ 1~ 2850) (1-t/4%)

+2 (g3 — 1= Foo) (1—t/2u2)] I,

2
- [£] ey o8 [y, — 7 - m/u,f]?} , (7.9)
o1y = o [A] {2 (03 -1 2i) -ttty T - B -y T
BB 167272 |m 4 g9a 00 H t 3 ( /2u%) Iy

+-t/an?) ) + [ 2] [50 (64 — 1~ 2850)* (1=t/au?)

2
+%;i (94 — 1 — 2B5) (l—t/2u2)] I,
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m2
_[“] e 94 [(1 t/dp )Hf,—’ll'—t‘ll'/].Z[.l] } ,

ol'g"g_ o~ Ig;_ ~0.

The leading contributions in IIx and II, are identical and cancel out in Ig p» yielding a result of
O(g®), in agreement with the counting rules of section IV. The results for the basic subamplitudes
presented in this section are closely related to the underlying # N dynamics and, in many cases, this
relationship can be directly perceived in the final forms of our expressions. For instance, reorganizing
the contributions proportional to II, in eq.(7.10), one has

' 204 2 2
= ok ({8 (31~ % g 0w - )

x (1-t/4p”) My =) +---]} .

The terms within the parenthesis represent the contributions from fig.4, which read: (a) Born
terms, proportional to g4; (b) Weinberg-Tomozawa term; (c) two-loops medium range interactions;
(d) other degrees of freedom plus two-loops short range interactions. The organization of the last
three terms may be better understood by noting that, around the point ¢ = 0, the following expansion
holds (1—t/4u?) II; = —7 +#7/6p> and the content of the parenthesis of eq.(7.12) may be written

as .
9 |1 - L(_ghimp , gim
2m2  |2fz " T 39 8 fi 96 7 fipu '
This shows that the structure of eq.(3.12) is recovered, except for the medium range contribution,
which is divided by a factor 2, characteristic of the topology of Feynman diagrams.

VIII. TPEP

The relativistic profile functions derived in the previous section give rise to the potential, which
is expressed in terms of five basic functions (section VI) and empirical subthreshold coefficients
(section V). The various components, obtained by means of eqs.(4.1-4.5) are listed below.

1 m?  3m?

¢ = 57 256nfa [ ] {gha (1—t/24%)? (T« - 1)

L g (1—t/2p") [~gh (Mo + Tet/?) + 8 (335 + &6 ¢/w?) 1]

3=

+[2]
+[ ]2 [—-17—;’—;21%3 (1-2t/u?) ((1—t/2u%)°11; — 27)° +9—Ai(11x +H,,)]
+[2]° [gA——4gA (B + 5 t/u)t/® + (1 — 2¢/3u° + £ /6u7))

+8 (3 + 5 ¢/ + B/ = t/48%)* + G (1—t/4)?| 11}

m2 m2 2
th=tis/2= = ﬁ {-9a (1-t/4p") I« + 1)

- [;%] IA [(1 — t/2p%) (e — TL) + (1 — t/4p®)L ]

2
IJ ,24 242 4 4 2

ths = ’,’52 13;;?29}‘4 [ﬁ] {05 [(1 = t/26®)(Thy — TL) — (3/2 - 5¢/8°) L)
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+ [—:—1] [%’i (Ix +1I,) + (gfat/m _ gs;; (1—7:/4-”2)) n,]} , 83)

2 2.4
+ _m° _migy p
te = e 25672 f4 L. (8.4)

814 () )0 o)

() [0 (e ) oo b))
[(gi—l)§+550+3a;f;+§5ro (1—#) +ﬁa,#]}m

- [%]2@1% [_gf, (1—5%) (nt+1—$) +§(gi—1) (1—#) (11&2-#)]2

el i o)} o

-_ . m2 177.2 H 4 2\ 7 2
tr =tss/2= 7 To872f3 [;] {94 [A—t/26") I + (1—t/4p ) I,
—2924(9% —1—2B5)(1 — t/4p*) I,

+ [%] [“9424(9,24 —1-=283)Q —t/2u%) - %(912q ~1-255)%(1 - t/4p2)] 1,

2
+_s$f,% [ —t/4p*) 10, - 71']2} , (8.6)

= m? m? [ﬂ]{ A [(3/2 - 5¢/8u°) My — (1—t/2u%) (1T, + T )]
LS = E2 64,”2](# m 94 M a H t b

+294(g4 ~ 1 — Boo) (1 — t/4p)1IL,

+ [%] [%(gi - l)z(l"t/‘ll‘z) +9424 Boo (1—t/2p2) — % (g;“"1 —1)B5(1 - t/4l~42)] I,

2 4
-;2?13 [(1 - t/4p2)Hg - 7‘_]2} , 8.7)
te=0- (8.8)

This potential, which is ready to be used as an input in other calculations, is the main result of this
work. To order O(¢®) and, in the framework of dimensional regularization, it coincides numerically
with that derived earlier by ourselves [22]. As far as O(¢?) terms are concerned, the only difference is
due to the explicit treatment of medium range contributions. In our previous study we have shown
that diagrams (k-o0) of fig.5 strongly dominate the potential. In the above expressions, this terms
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are represented by products of g4 by subthreshold coefficients. About 70% of the isoscalar potential
t} comes from the term proportional to (6 + &, ¢/p°), which is related to the scalar form factor
of the nucleon [39], given by

o(t) = :f f;z (1 —t/24%) L,

The leading contribution to ¢, then reads

t
tE~2 % o(t) ~ [ 2¢1—c3(1—¢t/2p )] o(t).

As the scalar form factor represents the part of the nucleon mass associated with its pion cloud,
the leading term of the NN potential corresponds to a picture in which one of the nucleons, acting
as a scalar source, disturbs the pion cloud of the other. A rather puzzling aspect of this problem is
that the largest term in a O(g?) potential is of O(g®).

IX. COMPARISON WITH OTHER WORKS

The potential of the preceding section involves functions and subthreshold coefficients that can
be reexpressed in terms of explicit powers of u/m. For the latter, one uses the results of ref.
[34], summarized in section V. For the functions, one uses the results of section VI, derived using
covariant techniques. Up to O(q ), expressions coincide with those produced by means of heavy
baryon techniques. In this section we display the full w1/m dependence of our potential, without
including terms due to the common factor m?/E?.

We reproduce below the results of refs. [24,27,28], which include relativistic corrections and were
elaborated further by Entem and Machleidt [41]. The few terms which are only present in our
potential are indicated by [ -] :

oV = t+ = 39’24 nd 9424 IJ'E + [211'2(201_0-3). _-qzc3] (2#2+q2) A(q)
7 16nfi | 16m(4p2+q?) _
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9a(20°+q") Alg) 1_, 2 2, 2w
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X. SUMMARY AND CONCLUSIONS

We have presented a relativistic procedure for the chiral expansion of the two-pion eschange
component of the NN potential, based on that derived by Becher and Leutwyler {32,34] for elastic
7N scattering. The basic dynamics is given by three families of diagrams, corresponding to the
minimal realization of chiral symmetry, two-loop interactions in the f-channel and processes involving
NV subthreshold coeflicients, which represent frozen degrees of freedom. The calculation begins with
the full evaluation of these diagrams. Results are then projected into a relativistic spin basis and
expressed in terms of many different loop integrals (appendix D). At this stage the chiral structure of
the problem is not evident. However, chiral scales emerge when these crude amplitudes are simplified
by means of relations among loop integrals. This gives rise to our intermediate results (appendix F),
which involve no truncations and preserve the numerical content of the various subamplitudes. The
truncation of these intermediate results to @(g?) yields directly the relativistic potential (section
VIII), which is ready to be used in momentum space calculations of NN observables.

Our treatment of the NV interaction emphasizes the role of the intermediate 7N subamplitudes
and, in this sense, it is akin to that used in the Paris potential. We discuss how power counting
in 7N and NN processes are related (section IV) and results are expressed directly in terms of
observable subthreshold coefficients. The low energy coupling constants ¢ and d remain hidden
inside these coefficients, grouped together with two-loop short range contributions.

If the potential presented here were truncated at order ¥(g%), one would recover numerically
the results derived by ourselves sometime ago [22]. However, processes involving two loops in the
t-channel do show up at ¢(g*) and results begin to depart at this order.

The dependence of the potential on the external variables is incorporated into four loop integrals,
representing bubble, triangle, crossed box and box diagrams. Only the first of them can be evaluated
analytically. The other ones, in the spirit of the relativistic expansion, are not homogeneous functions
of pion masses and external three-momenta. The triangle integral is the same entering the scalar form
factor of the nucleon and can be represented as a sum of three terms, scaled by powers of (u/m)
(section VI). The two leading terms coincide with those arising in the heavy baryon expansion,
whereas the last one implements the correct analytic behaviour at threshold [32]. We have shown
that this kind of representation can also be used to disclose the chiral structures of box and crossed
box integrals(appendix G) and found out that threshold effects are proportional to (u/m)®. As the
leading term of the potential is of @(q?), these threshold effects only begin to contribute at O(g®).

This means that to @(g*), our results should coincide with those of the standard heavy baryon
approach, corrected by relativity [24,27,28,41].

In order to check this, we have reexpanded both our basic loop integrals and the subthreshold
coefficients (section IX). Comparing the results of both calculations, we find two systematic difer-
ences, apart from some minor scattered ones. The first of them is due to the Goldberger-Treiman
discrepancy, which corrects the isospin odd central potential. The other one concerns terms of O(g%),
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(9.6)

(9.7)

(9.8)




whose origin is less certain. However, the fact that they occur at the same order as the iteration
of the OPEP suggests that there may be an important dependence on the procedure adopted for
subtracting this contribution. This aspect of the problem is rather relevant in numerical applications
of the potential and deserves being clarified.
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APPENDIX A: KINEMATICS

The initial and final nucleon momenta are denoted by p and p’, whereas k and k' are the momenta
of the exchanged pions, as in fig.1. We define the variables
W =pr+p2=pi+p2,
z=[(pr +p1) — (P2 +12))/2,
g=k —k=p) —p1=p2—p,
Q=(k+k)/2.
The external nucleons are on shell and the following constraints hold
m? = (W?+ 2% +¢%)/4,
Wz2=Wqg=zq=0.
For the Mandelstam variables one has
t= q2 ,
81 = [Q*+Q-(W+2)—t/a+m?]
w1 = [Q*~Q-(W+z)—t/d4+m?]
vy = (W+z)‘Q/2m 1
52 = [Q*+Q-(W~2)—t/4+m?]
us = [Q*~Q (W—2)—t/4+m?] .
V2 = (W_Z)Q/zm 3

Sometimes it is useful to write

Q* = (K* — p®)/2+ (K? — p?) /2 + (u* — /1) ,
Q- q=(kK*—p®)/2— (K* - p*)/2.
For free spinors, the following results hold
[@(p) 4 u(@)]” = [a(p') d u(p))® =0,
[@(p') (W+ 2) w(p)]® = 2m [a(p’) u(p)]?,
[@(p") (W— #) w(p))'® = 2m [a(p’) uw(p)]? ,

and also

{anu}t = {(W + 2)5/2m[i u) ~ i/2m[a 0,0 (0 — p)* u]}V,
(q2/4m2){17. u}(l) = {—i/2m[t o\ (p' — p)* u](W + z)’\/2m}(1) )
{@you}® = {(W — 2),/2m[a u] — i/2m[i 0., (0’ ~ p)” u]}® ,
(@°/4m*){@ u}® ={=i/2mli 0., (' ~ p)* W|(W — 2)?/2m}® .
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(A7)
(A8)
(A9)
(A10)
(A11)
(A12)
(A13)

(A14)
(A15)

(A16)
(A17)
(A18)

(A19)
(A20)
(A21)
(A22)




In the center of mass (CM) one has
—(E;p) , 1 =(E;P),
=(E;-p) , p»=(E;-Pp),

= (2E10) k)
q=(0;p'—p),
z2=(0;p' +p)

and the on shell condition for nucleons reads

E’=m’+¢*/a+2%/4.

In the CM frame, the nucleon spin functions may be expressed in terms of two component matrices

as

{up) u@}® = ' [2"‘ + T (@ ”'qxz)] *

Lﬁ(pl) auo(p' —p)* u(p) ® =x' 1 (q2 —iogxz)|x,
” 2m
{#ﬁ(p ) oui (0" —p)* (p)}(i)

(@' +p) ]

=[x =)+ (7~ i waxa) T ZHEL] o,

where s(i) = (1,—1) for i = (1,2). These results, which contain no approximations, allow one to

write the identities
Q Q2
[z w) M@ u)® = am? [ 1+q /)\2) —4(1+4°/X?) /\I;S — )\_4Q] ,

i 1)1 , 2 2 2 2%q?
- B =) ol = 0 2)) 2=t [~ () L

Q
(1+q /)\2+z /)\2 +2q2z2//\ ) 32 54 (1+z /Az) 2m"?A2] ,

— 4
”4;2 [@ o @ —p)* w] V@ 0v, (0 — p)* u]P g™ = 4m® [(1+4 2zz/z\él) _ Qss

16m*  6m?2

Qr 2/4y2 2_2/14 qz Qs 2742 2 2,4y {g

- —(1+4 4 g °Ls -9
Toms ( +4m°/ A" +4m 2/ A ) T (1+8m /A% +dm® 2%/ A%) ot |
1 ’ W~ ’ v 1(2) 2z° 2 gz}

~ (o @ ~p) W ev ('~ p)” W] T = 4m” |-y

222 Q Q
+ (1+2%2%) q4m_4/\§s + (1+2Y22)° 167‘;4] ,

where the two-component spin operators Q2 were defined in section IT and A*> = 4m(E + m).

APPENDIX B: LOOP INTEGRALS

The basic loop integrals needed in this work are

z::"=/[-~l (Q’:...) ,
I /[ (

"
I =/[] (Q__) 2mp 2mp
” p (Q2+Q-(W+2)—t/4] [Q*+Q-(W—2)—t/4]’

) 2mpy
[@*+Q-(W+z)—t/4]’
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(A23)
(A24)
(A25
(A26
(A27

— N

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)

(B1)

(B2)

(B3)




with

L [ d'Q 1
/ 1= | Gay (@=ar s (B4)

All denominators are symmetric under ¢ — —q and results cannot contain odd powers of this
variable. The integrals are dimensionless and have the following tensor structure

m)? | p
v 1 1 l v
I = = G { [¢#q"¢*¢* ] + 3 (90 ¢ + 97 ¢°¢" + 9 ¢"a" + ¢**¢"q
. vay = (000
+9*° g q" +97q"¢") TIE] + [(g" g7 + g"g" + g0 g ) TLCe )]} , (B7)
I.sc = { (000) (BS)
(47f)2
wo_ R #y 7000 } B
1t = s { o [ Wy 2]} (B9)
13 1 1 v v ¥ T
= (W{ [¢"q" TV ] + 5 [("=" + W*W) D] + g ng‘:""’} : (B10)
I = {m%} (B11)
(477)2
I, = W {% [ IS 4w Hggon]} ) (B12)
' 1 1 -
Iy = (—4:;)3— {;7 [¢#q” V] + oo (22 I+ wewy ] 4 g H§2°°’} : (B13)

The usual Feynman techniques for loop integration allow us to write

1
ng‘;m):/ da (—C.)* [po—ln (32)] , (B14)
0

= (k00) __ D,
ko) - _ 2/0 da (— Cn) [ P1 +ln(”2 )] , (B15)

=00) 1 ', DZ D..
1 [ (25 -
mintl 1 1 2 vk m4n
nkmn) ( 2:'1) / cla,a,/ ab P C% (C) 7 (B17)
fIg(:OO) . (2'm) / da a/ db [ po +1n (D“)] , (B18)
m+n+2 K m n
- () [ abicsrigrir,
0 0 o a9
2 1 1 1 2
oo — (Z_m) l/ da (12/ db b/ E_ (B20)
© 2/, o o P
with
Co=a-1/2, (B21)
L =—q'/4+ 47, (B22)
DCC _Pczc+23c = a q +Ecc k) (B23)
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Cy = ab/2
Cq :Ca _"Cb7

Sime = —(1—2ab) ¢’ /4 + (1 — ab) p°,

Die=Pl+%h . =Ciq +C; (F°+W?)+ 2%,

C. =abe/2,
22 — 22

Dy =P +50 n=Clg*+C2 "+ W+ 5%, ..

The case (cs) is obtained from (sc) by making z* — —z*. The case (us) is obtained from (ss) by
making Cp & —C.,.

APPENDIX C: OPEP ITERATION

The iteration of the OPEP has to be subtracted from the elastic scattering amplitude, in order
to avoid double counting in the potential. In this work we adopt the procedure used by Partovi and
Lomon [5], based on a prescription developed by Blankenbecler and Sugar [42]. In this appendix we
adapt their expressions to our relativistic notation and also simplify some of the results.

The iterated OPEP is contained in the box diagram, corresponding to the amplitude

Tooz = [3—27H.7P] T,

where

Tus =1 [—1‘%]4 m* /[]M [ 2mp ﬁ‘y#u](l) [ 2mp ﬁ'y,,u] @

4 ue u—m? s—m?

Evaluating this integral using the results of appendix B, one recovers the spin structure of eq.(2.6)
with

. 2 4 4 4 W4 Wz__ 2
Tool.. = iy [2] [ et T+ Jomg T 4+ = W0

-~ (@r)2 Ilm T 16mA 16m4 4&12
s, = (2] [ne ]
5], =~ (2] [ me 412
), =T (4] ).
73], =~ 5] ).
)., =t (8] e

The iterated amplitude is denoted by 7, and given by
Te=[3-270.79] T,

with

Tie = —i [%]4 _1%?. {(ﬂu)(l)(ﬁ,u)(z) (Is —21I¢)

- [(ﬁu)(l)(ﬁ Yi u)(z) — (@ ¥ 'u)(l)(ﬁu)(z)] i IE + ;_m (Ip -21Io)
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(B24)
(B25)

(B26)
(B27)
(B28)
(B29)
(B30)

(C8)

(C4)

(C5)

(Ce6)

(C7)

(C8)

(C9)




2 : i
_ 1) /= 2) | 4 i ij [ z j i
— (@i ) (U’Yju)()[""mz(IAJ‘Icg)'l'-"(z—Ié"'IC 2—)

P
— (I - 21, .
+4m2 (Is C)]}

The functions I; are three-dimensional loop integrals, defined as

e (2. __m
f (2)

3
. m
IB—Z/(“')E,
Ié:" — I:;” _ I;.“ ,

Pon _n Qi m3
=i [ (ﬂ) FolE3 — B’

where Eg = /m? + (Q@—2/2)2 and

_ a2Q m
/ )= / @ (G- 0/ 1@ a7 + 7]

The usual Feynman parametrization techniques, the representation

m _ 1 [ mkE de
Eg « oo (@ = 2/2)2 + m? + 2E?]’

and the tensor decomposition

I, = {II;OOO)} ’

(4m)?

; i P
I = & 1(010)
T (4nm)? {2m I ’

I = i {qu' 1-1(200)_'_ z II(020) +gY I-I(ouo)} ’

(4m)?

(for £ = a, b, ¢) yield

Too)., = m?/4 [£]4 w2 o 4 2 [ ) 4 2\’ (n(ooo)_2 I—I(OOO))
i (4mz lm m? \ 16m? 4am 4m? B ¢

2
z (II 1-I(oocv)_‘_2lt (010)

(020) _ 24 (010)
4m? \ m2 16m“ (m2 e m e )} ’

=] _m’/4 u (020) (000) B =(000) , M ry(010)
IDB] [— {—T—n-‘-( H +H +mnc +HHC

it (47‘!’)2
+ (1 _ 4:; ) (n(ouo) 9 1-I(ooo (M 1-1(020) 2 Hgno)) } ,
2 2 4 2
0] - _W (W)] _m‘/4 [i] s [ (000) (000)]
IBB] it 4m? Top i (4m)2 Im m2 L™ +0

(z) ]
BB it 471')2

The functions IT and I1 are written as
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[ ] { » H(020)+ u II(020) Zmlt ISUI | (O ng)oo)} _

(C10)

(C11)

(C12)
(C13)

(C14)

(C15)

(C16)

(€17
(C18)

(C19)

(C20)

(C21)

(C22)

(C23)




o™ = (27")2 4m / daa/ db/ dQ [Q2+(§§') R
ﬁfoo)=—zzl;/oldaa/oldb /Omde’
Hg’m):%/oldaa/oldb /:de /DmdQ[—QT:E-iB—_—j;ﬁw
Hg)"o)=( )n /daa/ db/ 1+2/ Q[Q2+22) P22’
g™ = - ﬂzE d”/ db/ 1+2/ Q[Q2+22 -Py’

Pr=Ciq—Cyr 2z,
Th =Sme,
D% =Dmc+ab(1+6) E?,
Th = o +abX (1 +€%) B
The contribution from the OPEP cut in the functions Il.. is cancelled by the integrals IIa.

One parametnzes the loop momentum in those integrals as @ = (abc W/2) = (—C. W) and have
[@* + 2% — P} = D, and write

where

2
# 020) _ (020 K =(000) _. (000
Luposne®, B ane,
with

mn-42 m n
e = (‘Z_m) / daa? / vt / " e ELC)C)(C)
it = ?
H 0 0 0 D
2 1 1 = 2
f{,(-?‘m’:—(zﬂ) 1/ daa.z/ dbb/ de £
I 2 /o 0 o Dus

The integrals IIp and IIc can also be simplified, by adopting the new variables ¢ and 0, defined
by the relations ¢ = va?b?c? — ab cosf/Vab, Q@ = Ev/a?b?c? — ab sinf. Performing the angular
integrations, we have

4
H(OOO) (2m) / da a® / dbb/ de £ )
Dua
m+4 1 1
- 2 T
Hg’ 0 [T / daazf dbb/ de © (Czb) ’
H 0 0 Des
. 4 1 1 oo 2
II(C?OO) = - (2_177,) l‘/‘ daaz/ dbb/ de s .
M 2 0 0 Vab D,

The results presented so far in this appendix correspond just to a reorganization of those obtained
by Partovi and Lomon [5]. They may be further simplified by noting that

Ip =z/() Ez_EQ

=iy / () [1-(Q*-a"/4-Q-2)/2E" + 3(Q" -4’ /4-Q 2)*/8E"] ,
U PR i m?
=i [ )(u ) EEo(E + Eq)

3
~i % /(---) [1-3(Q"-¢°/4-Q-2)/4E* + 5(Q* ¢ /4-Q-2)* /8E"] .

26

(C24)
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(C34)

(C35)

(C36)

(C37)

(C38)

(C39)

(C40)




The integrals f (---) can be performed analytically and we have

1 2m
Jer= g .

iQ; 1 Q5 2
/() (Q/f;? ) = ()2 %(ﬁij—qqg ) (1+4q?)nay

where II, is the function given in eq.(6.9).
Thus

e = 2 ’"3[ o (@ + 2 ~ g/2)

E3

3 2 2,002 2,2 2
o W~ 2+ o q/4)]11

m3

ES

oo — [1 +

m 3 ; 3
" m(u2 ~-q°/2) + T6ma (@ +2°) (" — ¢°/2)

5 5
+gaa(h’ = /) + e (0 — a/4) L

16m?*
2
oo _3(,
HC 4 ( 4”2) na ’
o8 =o,

2
frtoooy . _ ™M 1 a I,
(& 2“ 4”2

The results presented in eqs.(C3-C8), (C20-C23), (C33-C35) and (C43-C47) allow one to write

Ippl,, — Iop);: = M [i]q {

w 2_,2
H(°2°)+ I-I(ooz)+ We— 11(000)

m 16m* 77 16m* T 4m? Ted

2 2 2 2
L T £__ 49 z
2m (1 2u2) (1+ mZ T Eme T 8m2) 1'[0,} ’
4 w? (002) | (000
] { o D + T &

2 1 2
@] _q=] _m/4 [i] (020) ooy _ p (3 _ 5¢°
53], - 753, = @ lm) (@ 5 O 4 0 2m \2 ~8uz) o)

z“”’] —I(‘”)] - m/4

m?/4 g = p q

), -], = 2] {5 (1 £)m)
m?

W] _ gw] _ /4[ ] (002)

IBB] 2 ]u (4m)2 Llm s

I(z)] _ (z)] _ [ ] ez
BB IBB it (47[‘)2 { reg ?

u3

where the integrals Il;.q = ITi¢ — I1,, are regular and given by

mnt2 . 1 = 4 ke me_ n
H,(.I:Zm) (_g_"_-") / da a2/ dbb/ dec ¥ (C) ( Czb) (=Ce) )
K 0 0 1 D
2 1 1 =)
09 = — (Z_m) 1/ daa2/ dbb/
w) 2/ 0 1
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(C44)

(C45)

(C46)

(C47)
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(C50)

(C51)

(C52)

(C53)
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APPENDIX D: FULL RESULTS
In this appendix we list the results for the amplitudes that enter eq.(2.15), obtained by reading the
diagrams of fig.5 and representing loop integrals by means of the functions displayed in appendices

B and C.

family 1 (diagrams a+b-+c+d—+e+f)

274 o4 2., .2
oIi, = _ﬂ_ﬁaw/P %Z {2 ) _ 4 W;le-: oD 16 Hggzo) n 1‘(/;V 17¢002)
W2 274 W W -—z —~
H(ooo) 2@, W poo) | W27 g00)
e Tomd e T Tgma s T iz Hres
2 2 2 2
B 4q 7 q z
- (1-=2= 1+ —=+"2—+— |1, ; , D1
2m( 2;1,2) ( +'m2+8m2+8m2) } (D1)
w /4
oISt = z’;r/ {ZT { —2 I 4 :V & 4+ ™ + r/ g™ + n<°°°>} (D2)
)+ m?/4 g% 0
I8 = Tany mt {2 o™ + gt 4 H(DZO) I + o Hi?fg") +IE”
(3 5¢°
kB (2 I,
2m (2 8u2 ’ (D3)
4 g4 n PE
I(-")"' / H(SOO) 1—I(ooo) 1- L\,
(477)2 mt e Tt +om 1 : (D4)
T+ m?/4 g* 11 4 100 D5
*ipp = (4m)? ’m4{ + (D5)
o T+ m2/4 94 (0200 |, qy(020) ‘ D6
557 = gy gt (T + TG (o)

and
\ 2
ez= =™ (g2 1\ W2 s
DD ™ (47)2 | 2m2 \ m?  f3 dm2 "

2 g* ( ¢° W2—22 [W2+2? {002) , (000)
+ 3 (_-_ f2 HBC +HBC

m m?2 4m?2 4m?2

m? \ m?
wH Wiz _
(020) . {02 1000
[ Tomt > T amz
+ 11(020) _ W o2 _ W2-z? 1000
16m4 reg 16m4 "% dm2 T
p g T
e \l-5z ) \1+ S +z— 1174 [ O D
+2m( 2;‘2)( + 2+8 +8m2) ]} (D7)
R
ez m/A) W (9 1N qewy 29" (o8 L W T 4
PE T igEYamE\me f2) 0 TmomE\mE 2
4 2
T s IS LR L Al (D8)
17'!.4 47712
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- _ m*/4 95 1\ =00 u9* (¢ 1 {002) (000)
*Ips = (4n)? {Zm2 (m2 12 Tlee™ + m m2 \m?2 f2 gz e 11

4 2
g Z~_17(020) | fy(000) _ (020 ooy , # (3 5¢°
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2 2 2 2
- _m°/4 g 1 2u g g 1 o
o T8~ — / [ _ 1'[,(:200) _ H( 00)
BB T (47)2 | 2m2 \ m?  fZ o m \m2 72

94 = (000) (000) _ K f12
+= [Hss —MI3eq 2 (1 - Zlﬁ) Hu] } ) (D10)
2 2 2
(w- _ m/4 g 2p g 1 (002) g (002) (002)
*T55 = e e {; w7 ) T 4 o I ] (D11)
2 2
w-_m/4 g [2u (g 1 (020) (020) (020)
*Iep = (47)% m? {E mZ  fZ I + [H = Ilreg ] : (D12)

family 2 (diagrams g-+h+i+j)

Tho = LB L 0oy [0 - ] (013
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22 2 2 2 2 2
- 2] /.f1r 2 ) W g w (002) 7 (000) M g (000)
= — ———— —_— | — —--—H —_— —_—
*Top =~ ™ {4m2 [m2 (4m2 R B v ,% I,

2 2 2 2 2
- (2 y £ (9 1Y oo
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DB (47)* m? |4m? e 2m "_f,r ’
2
(z)- . M /.f‘rr Z (002) (vo0) m? =(000)
*Iop = (am)d m2 [47112 I+ o 2m 1- 9 f2 Mo ’ (D16)
Tle)= Fz/fw 1-I(m:u))_‘_ /J- 1 m? (000 ? D17
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(w)— _ _H /f2 ¢ w? (002)
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2
(002) | F(000) 7(000)
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+2 10D [freeooy o B (1 M\ 5000 D16
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family 3 (diagrams (k+14+m+n-o)
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APPENDIX E: RELATIONS AMONG INTEGRALS

We derive here the relations among integrals needed for the chiral expansion of the potential.
Results may also involve short range integrals, wich contain just one or no pion propagators, and

are given by

e (5
m = [l
HE = / ]
ity = [l

=R :|©

TN TN TN

=R
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QN m (& +4’)
HA / [] ( PE E[ E2 El]
In the sequence we use several times the results (A14) and (A15) in order to cancel pion propa-
gators and obtain short range integrals.

1. Using eq.(B1) and the tensor decompositions of appendix B, we write

L= [L1(L) L -mn g oneo -
H

Guv Ié‘c /[ ] ( :L ) Icc + Hcc
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where the ellipsis indicate that short range contributions were discarded. The combination of both
results produces
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$2. Eq.(B1) also yields
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$3. Using eq.(B2) we get
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{4. Using eq.(B2) again, we obtain
i 2
I;‘cu /[ ] (Q ) Q 1 =2 H:c g % Hgim) +H§(c)00) =Ty

(s1-m?)  2m

I:c - LH:C

(81 —m?) T 2m 2u? 2m

(W+z)# o /[ JQV42) Q" L(l_L)

Tdm?2 2m

2m Q? t
12 I_gc = ] = 1= — ) I sc
gl /[ ] I—L(Sl*’mz) ( 4[-1'2) +H

2
q (200) | w? —|—z (002) (ooo) t (000)
e d I_LG_,c 4 H +4H l—m Hac +---

Se w? +z 00 4 (o0 _ _ A (1_ 2u2) e .

31

(E5)

(E6)

(E7)

(E8)

(E9)

(E10)

(E11)

(E12)

(E13)

(E14)

(E15)




These results then give rise to
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£5. From eq.(B3) we get
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$6. Eq.(B3) also yields
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Combining these results, we find
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$7. Another relation involving e may be obtained by deriving eq.(B20) with respect to p and
using eq.{B30):

d 2™ (000) | H rp(001)
Zss Lal . E24
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{8. Relations among the integrals II,, can be obtained form those corresponding to Il,. by making
W & —z and we obtain
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$9. Using eq.(C11), we have
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Using eq.(E25) we get
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{10. Integrating eq.(C55) by parts, we find
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and eq.(E28) yields
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$11. Eq.(C11) also allows one to write
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Using eq.(E30) and (E32) into the last expression, we find
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Combining these results with eqs.(E26-E29), we get
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Using eqs.(E31) and (E33), we also find

2
(000) __ M _ 4 (000) _ (001)
* 16 reg 4 H“’g = Am? (1 2#”) g™ ~ 4 7 s

Iz 000y  2m )
1-— 1I - =1l
+2m ( 2p? ) ( e w +
Hggoo) 1— IIS‘:OO) B 1- 1-I,(.(:lo) _
9 4u g 2m 2p, g

{12, Deriving eq.(C55) with respect to u we find
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APPENDIX F: INTERMEDIATE RESULTS

The results presented here for the TPEP were obtained by using the relations among integrals of
the previous appendix into the full expressions of appendix D. In this procedure we just neglected
short range integrals and both sets of equations are equivalent for distances larger than 1 fm. In
family 3, we did not keep contributions larger than C)(q4), in order to avoid unnecessarily long
equations.

family 1 (diagrams a+b+c+d+e-+f)
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APPENDIX G: RELATIVISTIC EXPANSIONS

In section VI we have discussed the relativistic expansion of the function II{2°® derived by Becher
and Leutwyler, which does not coincide with the usual heavy baryon expansion. In this appendix
we show how their results cam be used to produce relativistic expansions for box and crossed box
integrals.

The triangle, crossed box and regularized box integrals given respectively by egs.(B17), (B19)
and (C54) can be written as

1
700 — _ / de IV (M)
1]

o0
oo = / de I (M.,) ,
1

where HE,EO”)(M) is a generalized triangle integral, given by

o )" [0
0

and the denominator D(M) is

D(M) = M*a®b” —a(1-a)(1—b) ¢° + (1 ~ ab) p* .

When M, = m, one recovers the tnangle integral deﬁned in eq.(B17). On the other hand, the
values M2, = (W2 +¢° +¢® 2°)/4 and M2, = (> W? + ¢% + 2)/4 yield eqs.(G1) and (G2).

Performing explicitly the b integration in eq.(G4), we obtain the generalization of eq. (E12), that
reads
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(1 = t/4M®) TV (M) = [n‘°°°’ L (1= t/2pt) IO (M) + T (M)

with
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In all cases M is a large parameter and we can use the relativistic expansion of the triangle
integral discussed in section VI which, in the present case, is given by

(000) [ [
I, /(M) = [H +2M Y +4M'~'( I, + I (M))] ,
with II, and II}* given by eqgs.(6.9,6.10) and
2 M? u
M (M) = +2hn{l+
eM)==5 [ My/1 —t/4,u ( 2M+/1 4/4;&)]
__ w2
o1 —t/4p?

Inserting these results into eqs.(G1) and (G2), we obtain
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In the chiral limit g — 0, we have

11000 — n(OOU) — —(1+ 2%/6m?) I,

and, using eqs.(E17,E19,E20,E24) and (E31,E33,E39,E43), one finds the following relationships valid
in that limit

nie™ = —2miey) - .,
™ =l —»210,/3,
o™ =P » 211, ,
o = — - 11, .

These results may also be combined with those preseented in appendix E, in order to produce
relativistic (¢®) expansions for box and crossed box interals. Eqgs.(E19,G14,E12) yield

o IO = (141 +~zf— m+ 2 (1--5 ),
o 4m? ~ 6m? 2m 242
and, using eqs.(E24,E17), one has
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The results of section VI then produce

000 [l 2 2 '
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where the ellipsis represent polynomials in ¢. A
For the box integrals we evaluate eq.(G19) directly and otain
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Comparing with eq.(E39) and using eq.(E12), we find
2
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Evaluating eq.(E43) we have
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Finally, we note that eq.(E31) allows one to write

e (1t Ymooo _ _ga _ M oph z e
22 res T ¢ 2m " 6mz "t
Using eq.(G21) and comparing with this result we obtain the independent relation for ITt*

/2

mh— e
¢ 1—t/ap2

B o 243 o
gt (mt Hz)+ ,

which is fully consistent with that derived by BL and discussed in section VI of the main text.
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