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Abstract. An introductory review of generalized parton distributions (GPDs) is given.

PACS. 13.40.Gp Electromagnetic form factors — 13.60.Fz Elastic and Compton scattering — 13.60.Hb
Total and inclusive cross sections (including deep-inelastic processes)

1 Introduction

The present-day situation in hadron physics can be briefly
characterized in the following way.

i) We know what are the fundamental particles from which
the hadrons are built: quarks and gluons.

%) Quark-gluon interactions are described by quantum
chromodynamics (QCD), and QCD Lagrangian is known.
14%) But we still need to understand how QCD works, -
i.e., to understand hadronic structure in terms of quark
and gluon fields.

Projecting quark and gluon fields onto hadronic states
|P) gives matrix elements like (0]ga(21)gg(22)| P) (for
mesons) which can be interpreted as hadronic wave func-
tions. In the light-cone formalism [1], a hadron is described
by its Fock components in the infinite momentum frame.
For the nucleon, the Fock decomposition can be schemat-
ically written as |P) = |qqq) + |gqgG) + |qgqag) + ... . In
principle, solving the bound-state equation H|P) = E|P)
one should get the wave function |P) containing complete
information about the hadron structure, In practice, the
equation (involving infinite number of Fock components)
has not been solved. Moreover, the LC wave functions
are not directly accessible experimentally. The way out
in this situation is the description of hadron structure in
terms of phenomenological functions. Among “old” func-
tions used for a long time we can list Form Factors, Usual
Parton Densities, and Distribution Amplitudes. The new
functions, Generalized Parton Distributions [2-4] (for a
recent review see [5]), are hybrids of form factors, parton
densities and distribution amplitudes. Furthermore, “old”
functions are limiting cases of “new” ones.

2 Form factors

Form factors are defined through matrix elements of elec-
tromagnetic and weak currents between hadronic states.
In particular, the nucleon electromagnetic form factors

Fig. 1. Elastic eN scattering in one-photon approximation.

measurable through elastic e N scattering are given by
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where 7 = p — p’ is the momentum transfer and;t = r%.
The electromagnetic current is given by sum.of its fla-
vor components J*(z) = 3 eq¥a(2)7*1a(z). The form
factors can also be written as sums over a, e.g., Fi(t) =
>4 €aF1a(t) for the helicity non-flip form factor Fj(t). At
t = 0, these functions have well known limiting values.
In particular, Fi(t = 0) = en =}, Nqe, gives the total
electric charge of the nucleon (Ny is the number of va-
lence quarks of flavor a) and Fy(t = 0) = &y gives its
anomalous magnetic moment.

(17(0)|p) = 2(F) [+*Fi) +

3 Usual parton densities

The parton densities are defined through forward ma-
trix elements of quark/gluon fields separated by lightlike
distances. In the unpolarized case we have

(p| 1/7:1(—2/2)7“%(2/2) Ip)|22=0
1
=2 [ [0 ) - 0 @] e (2

In the local limit z = 0, operators in this definition convert
into vector currents entering into the definition of form
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Fig. 2. Lowest order pQCD factorization for DIS.

factors. Since £ = 0 for the forward matrix element, we
obtain the sum rule for the numbers of valence quarks

1
| 1) - fa@ldo =N, 3

The definition of parton densities has the form of a
plane wave decomposition. This observation allows to give
the momentum space interpretation: f,;)(z) is the prob-
ability to find @ (@)-quark with momentum zp inside a
nucleon with momentum p. The classic process to ac-
cess the usual parton densities is deep inelastic scatter-
ing (DIS) v*N — X. Via the optical theorem its cross
section is given by the imaginary part of the forward vir-
tual Compton scattering amplitude. When the spacelike
momentum transfer ¢, ¢> = —@Q?, is sufficiently large,
perturbative QCD factorization works. At the leading or-
der, one deals with the handbag diagram. Through simple
dlgebra 1Im 1/(g+zp)? = &(z — z5,)/2(pg) one finds
that DIS measures parton densities at x = xp;, when the
parton momentum fraction equals the Bjorken variable

~xgj = Q?%/2%pg). Comparing parton densities to form fac-
tors, we note that the latter have a point vertex instead
of a light-like separation, and p # p'.

4 Nonforward parton densities

“Hybridization” of different parton distributions is the key
idea of the GPD approach. Let us combine form factors
with parton densities and write the flavor components
Fi,(t) of form factors as integrals over the momentum
fraction z

Fi.(t) —/ [Fal(z,t) ~ Fa(z,t)] dz . 4)

In the forward limit ¢ = 0, the new objects, nonfor-
ward parton densities F,)(z,t) (NPDs), coincide with
the usual (“forward”) densities: Fu(3)(2,t = 0) = fo(a)(x)-
NPDs can be also treated as Fourier transforms of the im-
pact parameter b, distributions f(z,b,) describing the
variation of parton densities in the transverse plane.

An interesting question is the interplay between x
and t dependence of F)(z,t). The simplest factorized
ansatz F,(z,t) = fo(x)F1(t) satisfies both the forward
constraint: F,(xz,t = 0) = f,(z) and the local constraint
(4). The reality may be more complicated: light-cone wave
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Fig. 3. Form factor and wide-angle Compton scattering am-
plitude in terms of nonforward parton densities.

functions with the Gaussian k, dependence W(x;, k; ) ~
expl— 3, kZ, /2% suggest Fo(z,t) = fa(x)e®t/22X" Tak-
ing fu(z) from existing parametrizations like GRV and ad-
justing A2 to provide standard value of the quark intrinsic
transverse momentum (k%) & (300MeV)? gives a reason-
able description of the proton form factor Fi(¢) in a wide
range of momentum transfers —t ~ 1 — 10 GeV? [6].

The same nonforward parton densities appear in the
handbag diagrams for the wide-angle real Compton scat-
tering. The handbag term in this case is the product of
a new form factor R} (t) given by the 1/z moment of
F(z,t) and the amphtude of the Compton scattering off
an elementary fermion. For the cross section, this gives

- .
do 2 | do|
- = e, Ry (t)| |
dt [g eV ] dt | g

where do/dt|gn is the (Klein-Nishina) cross section’ for
the Compton scattering off an eléctron.

The predictions based on handbag mechamsm domi-
nance and NPDs [6,7] are in much better agreement with
existing Cornell data than the predictions ibased on two-
gluon hard exchange mechanism of asymptotic perturba-
tive QCD: the predicted cross section is too small in the
latter case. The absolute normalization for predictions
is settled by the form of the nonperturbative functions
(NPDs in the handbag approach and nucleon distribution
amplitudes in the pQCD approach) which were fixed by
fitting the F; form factor data. Still, when there is an
uncertain overall factor, it is risky to make strong state-
ments. Remarkably, the perturbative QCD hard scattering
mechanism and soft handbag mechanism give drastically
different predictions for the polarization asymmetry Ay ;,
[7]). Expirement E-99-114 recently performed at Jefferson
Lab [8] strongly favors handbag mechanism that predicts
the value close to the asymmetry for the scattering on a
single quark.

, (5).

5 Distribution amplitudes

Another example of nonperturbative functions describ-
ing the hadron structure are the distribution amplitudes
(DAs). They can be interpreted as light cone wave func-
tions integrated over transverse momentum, or as (0| ... |p)
matrix elements of light cone operators. In the case of the
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Fig. 4. Lowest-order pQCD factorization for 4*~ — n° tran-
sition amplitude and for the pion EM form factor.

pion we have
(0] Pa(~2/2)v57*9u(2/2) |7 (D)) g

1
[ e,
-1

with z; = (1+@)/2, z2 = (1 — @)/2 being the fractions of
the pion momentum carried by the quarks. The distribu-
tion amplitudes describe the hadrons in situations when
pQCD hard scattering approach is applicable to exclusive
processes. The classic example is the process of y*y — 79
transition. Its amplitude is proportional to the 1/(1 — o?)
moment of ¢, (a). The predictions for the y*y = 7° form
factor based on two competing models for the pion DA, the
asymptotic p2°(a) = 3(1 — o?) and Chernyak-Zhitnitsky
DA ¢$%(a) = L2a?(1 — o?) differ by factor of 5/3, which
allows for an experimental discrimination between them.

. Comparison with CLEQ and CELLO data for the com-
bination Q%Fy...0(Q?) favors ¢?*(a). It is also worth not-
ing that perturbative QCD works here from rather small
values of momentum transfer Q2 ~ 2GeVZ2. Another clas-
sic application of pQCD to exclusive processes is the pion
electromagnetic form factor. With the asymptotic pion
DA % (a), the hard pQCD contribution to Fr(Q?) is
(2a,/7)(0.7GeV?)/Q?, which is less than 1/3 of experi-
mental value. So, in this case we deal with the dominance
of the competing soft mechanism that is described by non-
forward parton densities, exactly in the same way as the
proton FT (t) form factor discussed in the previous section.

6 Hard electroproduction processes

A more recent attempt to use perturbative QCD to ex-
tract new information about hadronic structure is the
study of deep exclusive photon [3] or meson [4,9] electro-
production reactions. In the hard kinematics when both
Q? and s = (p+ q)? are large while the momentum trans-
fer t = (p — p')? is small, one can use pQCD factorization
which represents the amplitudes as a convolution of a per-
turbatively calculable short-distance amplitude and non-
perturbative parton functions describing the hadron struc-
ture. The hard pQCD subprocesses in these two cases have
different structure. Since the photon is a pointlike parti-
cle, the deeply virtual Compton scattering amplitude has
the structure similar to that of the v*yn® form factor:
the pQCD hard term is of zero order in a,, and there is

Fig. 5. Lowest-order hard subprocesses for deeply virtual pho-
ton and meson production.

no competing soft contribution. Thus, we can expect that
pQCD works from Q? ~ 2GeV?2. On the other hand, the
deeply virtual meson production process is similar to the
pion EM form factor: the hard term has O(a,/7) ~ 0.1
suppression factor. As a result, the dominance of the hard
pQCD term may be postponed to Q2 ~ 5 — 10 GeV2.
One should also have in mind that the competing soft
mechanism can mimic the same power-law ()?-behavior
(just like in case of pion and nucleon EM form factors).
Hence, a mere observation of a “right” power-law behav-
ior of the cross section may be insufficient to claim that
pQCD is already working. One should look at other char-
acteristics of the reaction, especially its spin properties, to
make strong statements about the reaction mechanism.

7 Deeply virtual Compton §c‘éttering and-
generaiized parton distributions

It is convenient to visualize DVCS in the'y*N center-of-
mass frame, with the initial hadron and the virtual photon
moving in opposite directions along the z-axis. Since the
momentum transfer ¢ is small, the hadron and the real
photon in the final state also move close to the z-axis. This
means that the virtual photon momentum g = ¢’ — zg;p
has the component —zp;p canceled by the momentum
transfer . In other words, the momentum transfer r has
the longitudinal component r+ = zg;p*, where zp; =
Q?/2(pq) is the DIS Bjorken variable. One can say that
DVCS has a skewed kinematics in which the final hadron
has the “plus” momentum (1 — {)p™ that is smaller than
that of the initial hadron. In the particular case of DVCS,
we have { = zp;.

The parton picture for DVCS has some similarity to
that of DIS, with the main difference that the plus-momenta
of the incoming and outgoing quarks in DVCS are not
equal. They are Xp* and (X — ¢)p*. Another difference
is that the invariant momentum transfer ¢ in DVCS is
nonzero: the matrix element of partonic fields is essen-
tially nonforward.

Thus, the nonforward parton distributions (NFPDs)
Fe(X;t) describing the hadronic structure in DVCS de-
pend on X, the fraction of p* carried by the outgoing
quark, on ¢, the skewedness parameter characterizing the
difference between initial and final hadron momenta, and
on t, the invariant momentum transfer. In the forward
r = 0 limit, we have a reduction formula ]-‘g=0(X ,t=0)=
fa(X) relating NFPDs with the usual parton densities.
The nontriviality of this relation is that F,(X;t) appear
in the amplitude of the exclusive DVCS process, while the
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Fig. 6. Comparison of NFPDs and OFFPDs.
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usual parton densities are measured from the cross section
of the inclusive DIS reaction. Another limit for NFPDs is
zero skewedness ( = 0, where they correspond to nonfor-
ward parton densities FZ_,(X,t) = F*(X,t) . The local
limit relates NFPDs to form factors

/1 Fo(X,t)dX = F{(t) - (7
0

The description in terms of NFPDs has the advantage
of using the variables most close to those of the usual par-
ton densities. However, the initial and final hadron mo-
menta are not treated symmetrically in this scheme. Ji
(3] proposed to use symmetric varlables in which the plus-
those of the active partons are (% + &) P+ and (z— &P,
P being the average momentum P = (p +p')/2.”

To take into account the spin properties of the hadrons

and of the quarks, one needs 4 off-forward parton distri-
butions H, E, H, E each of which is a function of z,¢, t.

The skewedness parameter ¢ = rt/2P* can be expressed
in terms of the Bjorken variable { = 2p;/(2 — zp;), but
does not coincide with it. Depending on the value of z,

each OFPD has 3 distinct regions. When § < z < 1,'-

they are analogous to usual quark distributions; when
—1 < z < —£ they are similar to antiquark digtributions.
In the region —¢ < x <« &, the “returning” quark has a
negative momentum, and should be treated as an outgo-
ing antiquark with momentum (£ — z) P. The total g7 pair
momentum r = 2£P is shared by the quarks in fractions
r(1+x/€)/2 and r(1 - z/£)/2. Hence OFPD in this region
—¢ < x < & is similar to a distribution amplitude @(a)
with a = z/£. In the local limit, OFPDs reduce to form
factors

1
Yo [ Hom &0 s = Rl ®
Yo [ B &5ty do = ). ©)
@ -1

The E function, like F3, comes with the r, factor, hence,
it is invisible in DIS described by exactly forward r = 0
Compton amplitude. However, the t = 0, £ = 0 limit of E
exists: E%%(z,& = 0;t = 0) = k*%(z). In particular, its
integral gives the proton anomalous magnetic moment &y,
and its first moment enters into Ji’s sum rule for the total

quark contribution J; into the proton spin
1
Zea /(rs“(:z:) — &%(z))dz = K, , (10)
¢ 0

L=3 3 [alr@ + @) + (@) + @) de (11
;|

Note that only valence quarks contribute to &p, while J,
involves also sea quarks. Furthermore, the values of s, ,,
(unlike e, ,, = FF™(0)) strongly depend on dynamics, e.g.,
kn ~ 1/mg in constituent quark models.

8 Double distributions

To model GPDs, two approaches are used: a direct cal-
culation in specific dynamical models: bag model, chi-
ral soliton model, light-cone formalism, etc., and a phe-
nomenological construction based on the relation of SPDg
to usual parton densities f,(z), Af,(z) and form factors
Fi(t), Fo(t), Ga(t), Gp(t). The key question in the second
approach is the interplay between z, £.and.t dependencies .
of GPDs. There are not so many cases in which the pat-
tern of the interplay is evident. One example is the func-
tion E(#,&;t) that is related to Gp(t) form. factor and is
dominated for small ¢ by the pion pole term 1/(t — m?2).
It is also proportional to the pion distribution amphtude

¢(a) = 3 fr(1-a?) taken at @ = z/€. The construction of

self-con51stent models for other. GPDs is performed usmg
the formalism of double distributions [10].

‘The main idea behind the double dlStI‘lblltl(_)nS is a
“superposition” of P* and r* momentum fluxes, i.e., the
representation of the parton momentum k* = AP* + (1 +
a)rt /2 as the sum of a component Pt due to the average
hadron momentum P (flowing in the s-channel) and a
component (1+a)r* /2 due to the t-channel momentum 7.
Thus, the double distribution f(3, a) (we consider here for
simplicity the ¢ = 0 limit) looks like a usual parton density
with respect to 8 and like a distribution amplitude with
respect to a. The connection between the DD variables
B, and the OFPD variables z,£ is obtained from rt =
2¢ PT, which results in the basic relation £ = 8 + £ov.

(x+E)P (x=E)P PP+(1+0)r/2 PP=-(1-0)r/2

(I+E)P (1-§)P P+r/2 P-r/2

Fig. 7. Comparison of GPD and DD descriptions.

The forward limit £ = 0,¢ = 0 corresponds to © = £,
and gives the relation between DDs and the usual parton



A V. Radyushkin: Generalized parton distributions ‘ 5

-

densities

1-18|
/ faBrast=0)da=fa(B).  (12)

~1+|8]

The DDs live on the rhombus |a| + |3]| < 1 and they are
symmetric functions of the “DA” variable a: f,(8,a;t) =
fa(B, —a;t) (“Munich” symmetry [11] ). These restrictions
suggest a factorized representation for a DD in the form of
a product of a usual parton density in the 8-direction and
a distribution amplitude in the e-direction. In particular,
a toy model for a double distribution

f(B,@) = 3[(1 - |B)* ~ a®]6(la| + |8 < 1)

corresponds to the toy “forward” distribution
f(B) = 4(1—|BI)3, and the a-profile like that of the asymp-
totic pion distribution amplitude.

To get usual parton densities from DDs, one should
integrate (scan) them over vertical lines 8 = = = const.
To get OFPDs H(z, &) with nonzero £ from DDs f(3,a),
one should integrate (scan) DDs along the parallel lines
a = (z ~ )/ with a £-dependent slope. One can call this
process the DD-tomography. The basic feature of OFPDs
H(z,£) resulting from DDs is that for £ = 0 they reduce to

-usyal parton depsities; and for £ =1 they have a shape like
‘a meson. distribution amphtude A more complete truth
is that such a DD modehng misses terms invisible in the
forward limit: meson exchange contributions and so-called
D-term, which can be interpreted as o-exchange. The in-
clusion of the D- term’ induces nontrivial behavmr in the
‘central |:c| < ¢ region (for detalls see [5)).

0 Some lessons

Hadronic structure is a complicated subject, it requires
a study from many sides, in many different types of ex-
periments. The description of specific aspects of hadronic
structure is provided by several different functions: form
factors, usual parton densities, distribution amplitudes.
Generalized parton distributions provide a unified descrip-
tion: all these functions can be treated as particular or
limiting cases of GPDs H(z, £,1).

Usual Parton Densities f(x) correspond to the case
£ = 0,% = 0. They describe a hadron in terms of probabil-
ities ~ |Z|2. But QCD is a quantum theory: GPDs with
& # 0 describe correlations ~ ¥;¥,. Taking only one point
t = ) corresponds to integration over impact parameters
b, - information about the transverse structure is lost.

Form Factors F(t) contain information about the dis-
tribution of partons in the transverse plane, but F(t) in-
volve integration over momentum fraction z - information
about longitudinal structure is lost

Nonforward parton densities. A simple “hybridization”
of usual densities and form factors in terms of NPDs F(x, t)
(GPDs with £ = 0) shows that behavior of F(t) is gov-
erned both by transverse and longitudinal distributions.
GPDs provide adequate description of nonperturbative

soft mechanism, they also allow to study transition from
soft to hard mechanism.

Distribution Amplitudes p(z) provide quantum level
information about longitudinal structure of hadrons. In
principle, they are accessible in exclusive processes at large
momentum transfer, when hard scattering mechanism dom-
inates. GPDs have DA-type structure in the central region
|z < &.

Generalized Parton Distributions H(x,£;t) provide a
3-dimensional picture of hadrons. GPDs also provide some
novel possibilities, such as “magnetic distributions” re-
lated to the spin-flip GPD E(z,£,t). In particular, the
structure of the nonforward density E(z,£ = 0,t) deter-
mines the t-dependence of F;(t). Recent JLab data give
Fy(t)/Fi(t) ~ 1/+/=t rather than 1/t expected in hard
pQCD and many models ~ a puzzle waiting to be resolved.
The forward reductions k%(z) of E(z,¢,t) look as funda-
mental as f*(x) and Af%(z): Ji’s sum rule involves x°%(zx)
on equal footing with f(x). Magnetic properties of hadrons
are strongly sensitive to dynamics, thus providing a test-
ing ground for models. Another novel possibility is the
study of flavor-nondiagonal distributions, e.g., proton-to-
neutron GPDs accessible through processes like exclusive
charged pion electroproduction, proton-to-A GPDs (they
appear in kaon electroproduction); proton-to-Delta — this

one can be related to form factors of proton-to-Delta tran- -

sition (another puzzle for hard pQCD). The ‘GPDs for
N — N +soft m-processes can be used for testing the soft
pion theorems and physics of chiral symmetry breaking.

An interesting problem is the separation and flavor de- . -

composition of GPDs. The DVCS amplitude involves all
4 types: H, E, H E of GPDs, so we need to study other
processes mvc)lvmg different combinations of GPDs. An
important observation is that, in hard electroproduction
of mesons, the spin nature of the produced meson dictates
the type of GPDs involved, e.g., for pion electroproduc-
tion, only H,E appear, with E dominated by the pion
pole at small ¢. This gives access to (generalization of)
polarized parton densities without polarizing the target.

10 Summary and conclusions

The structure of hadrons is the fundamental physics to be
accessed via GPDs. GPDs describe hadronic structure on
the quark-gluon level and provide a 3-dimensional pic-
ture (“tormography”) of hadronic structure. GPDs ade-
quately reflect the quantum-field nature of QCD (corre-
lations, interference). They also provide new insights into
spin structure of hadrons (spin-flip distributions, orbital
angular momentum). GPDs are sensitive to chiral sym-
metry breaking effects, a fundamental property of QCD.
Furthermore, GPDs unify existing ways of describing
hadronic structure. The GPD formalism provides nontriv-
ial relations between different exclusive reactions and also
between exclusive and inclusive processes.
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