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Correlated Hyperspherical Harmonics wave Tunctions with A-isobar admixiures obtained from
realistic interactiont are used to study the thermal newtron radiative capture on devierium, and
the H{F 71 He and p(d; 1} He reactions in the center of mass energy rasge 0-100 keV'. The nuclear

ic current includes one- and two-body components. Results for the *H(il,4)*H cross

section md photon polarization parameter, as well as for the energy dependence of the astrophysical

factor and angalar distributions of the differential cross section, vector and tensor analyzing powers,

and photon linear polarisation coefficient of the *H{7,y)’ He and p(f, v\ He reactions are reported.

Large effacts duc to twa-body currcats, in psrticalar the loltg-nm oned gasociated with the tensar

t of the nucl, il interaction, are observed in the photon polarisation parameter

and vector analysing power. Good, quantitative agreement hetween theory and experiment is found

for all cheervables, with the exception of the vector analyring power for which the calculsted values
underestimate the data by about 30 %.

L INTRODUCTION

Very low-energy radiative and weak capture reactions involving few-nucfeon systems have considerable astrophysical
retevance for studies of stellar structure and evolution [1), and big-bang nucleosynthesis [2]. Three such aspects are:
1) the mechanism for the energy and neutrino production in main sequence stars, in particular the determination of
the solar neutting flux; 2) the process of protostellar evolution towards the main sequence; 3) the predictions for the
primordial abundantes of light ¢lements.

These same reactions are also very intereating from the standpoint of the theory of strongly interacting systems,
since their cross sections are very semsitive to the model used to describe both the ground-state and continyun wave
functions, snd the two-body clectroweak current operators. Indeed, calculations of the *H(n, ¥Y*H and 3He(n, v)*He
capture crose sections at thermal neutron energiea carried out with realintic wave functions and a single-nucleon
electromagnetic current, the so-called impulse approximation (I A), predict only sbout 50% [3] and 10% [4] of the
cotresponding experimental values. This is because the JA transition operator cannot connect the main S-state
componenta of the deateron and tritor, or *He and *He, wave functions. Hence, the calculated crose section in 14 is
small, since the reaction must proceed through the small components of the wave functions, in particular the mixed
symmetry 5'-state admixture. Two-body curtents, however, do connect the dominant S-state componenis, and the
nesociated matrix elements are exceptionally large in comparison to those obtained in 14,

The focus of the present study is on the *H(p, v)*He reaction with proton laboratory energies in the range G-150
keV, and the thermal neutron radiative capture on deuteriutn. The tross section for the [atter process was moat
recently measured to be op = 0.508 & 0.015 mb {5}, in sgreement with the results of earlier expetiments [6,7]. In the
late eighties, measutements of beth the photon polarization following polarized neutron capture {8], and v-emission
after polarized neutton capture from polarized deuterans [9) were alsa carried out.

In an experiment performed last year at TUNL [10,11], the total cross eettion and, for the first time, vector
and tensor anslyzing powers of the 7H(5, 7)*He and p{d, ¥)"He renctions were measured at center of mass energies
below 55 keV. The astrophysical S-factor, extrapolated to gero energy from the crogs section data, was found to be
S(Ecm =0)=0.165 + 0.014 ¢V b, where the error includes both systematic and statistical uncertainties {11]. This
value for $(0) is about 35 % smaller than that ohtained by Griffith ef al. {I2] more than thirty years ago, the onfy



other experimental determination of 5(0) which we are aware of. More recently, in another experiment performed at
TUNL, & different group [13] has extended the study of the 2H(f, v)*He and p(d,7)?He reactions at center of mass
energies between 75 and 300 KeV.

The theory of the YH{n, ) capture reaction has a long history. The “pscudo-orthogonality” between the 3H
ground state end nd doublet or quartet state inhibiting the M) transition in I4 for this process, and thus explaining
the smallness of its cross section when compared to that for the p(n, ¥)*H reaction, op = 334.5+ 0.5 mb, was first
pointed cut by Schiff [14]. Later, Phillips [15] emphasized the importance of initial state interactiona and two-body
currents o the capture reaction in a three-body model calculation, by considering & central, separable interaction.
In more tecent years, a series of calculations of increasing sophistication with regard to the deseription of both the
initial and final state wave functions and two-body current model were carried out {16,17]. These efforts culminated
in the 1990 Friar ef al. [3] calculation of the *H(n,7)*H total cross section, quartet capture fraction, and photon
polarization, based on converged bound and continuum state Faddeev wave functions, corresponding to a variety
of realistic Hamiltonian models with two- snd three-nucleon interactions, and a nuclear electromagnetic current
operatot, including the long-range two-body eomponents associated with pion exchange and the virtual excitation
of intermediate A-resonances. Within this framework, Friar ei al. clearly showed the importance of initial state
interactions and two-body current contributions. They alto showed that both the calculated cross section and photon
polarization parameter could be in good, quantitative agreement with the experimental values, if the catoff Ay at
the * NN vertices in the two-body currents was taken in the range 1050 MeV < A, < 1200 MeV, depending on the
particular combination of two- and three-body interactions considered.

The theoretical deactiption of the H{p, v)*He reaction at low energies is complicated by the presence of the Coulomb
interaction. Only relatively recently, has the S-wave capture contribution to the zero-energy S-factor of this reaction
been calculated with numerically converged Faddeev wave functions [18], obtained from realistic Hamiltonians includ-
ing the Coulomb interaction. The calculated value for 55(0) has been found to be 0.108 eV b, in excellent agreement
with ita most recent experimental determination, Ss{0) = 0.109 £ 0.010 eV b [11}.

The recent, precise mesgurements of the astrophysical factor, vector and tensor analyzing powers A, (V) and Taq(6),
respectively, and photon linear polarization F(#) in the reactions 2H(F,1)*He and p(cf,qr)"!ie {11,13] are the main
motivation for the present work., The observed linear dependence upon the energy of the S-factor as well as the
observed angular distributions of the cross section and polarization observables indicate that these reactions proceed
predominantly through S- and P-wave capture {11,13]. Such 5- and P-wave capture processes have not been previously
theoretically studied al very low-energies.

In the present work, the bound trinucleon and continuum Nd wave functions are obtained from realistic two-
and threenucleon interactions with a variational method consisting in their expansion over a Pair-Correlated-
Hyperspherical- Harmonics (PHH) function basis [19-21]. The method has been shown to be very accurate, in the sense
that results obtained for & variety of bound state and low-energy scatiering observables are very close (typically, within
less than 1 %) in comparison to those obtained with converged Faddeev wave functions [22]. We also include one- and
two-A isobar components in the wave functions- These are g ted with the transition-correlation-operator {TCO)
method, developed in Ref. [23). Both the PHH expansion and TCO method are reviewed in Sec. I1. The model for the
nuclear electromagnetic current, given in Sec. 111, consists of one- and two-body terms. Since explicit expressions for
the latter are scattered in a number of Refs. [4,24,25), we list them in Appendix A for completeness. Definitions for
the cross section and polarization observables along with their expansion in electric and magnetic multipoles are given
in Sec. IV and Appendix B, while the Monte Carlo ealeulation of the required matrix elements is discussed in Sec. V.
Results for the 2H(7,7)°H reaction at thermal neutron energy, and the TH(7,y}*He and 1H{d7)?He reactions with
center of masa energies in the range 0-100 keV aze presented, and compared with data in Sec. VI. Finally, Sec. VII
contains a coneluding discussion.

I1. BOUND- AND SCATTERING-STATE WAVE FUNCTIONS
A. Bound-State Wave Functions

In a series of recent papers, a variational technique for calculating the trinucleon bound-state and Nd scattering-
state wave functions has been developed {19-21]. The method consists in the expansion of the three-body wave
functions on a basis of Pair-Correlated Hyperspherical Harmonic (PHH) functions, and is briefly reviewed here. For
the trinucleon bound state, the wave function is written as
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cond; = zifp (2.3)

where x; = rj—ry and y; = {r; +re—2 r.)/+/3, ri denoting the position of particle . The angle-spin-isospin functions
Volik, i) are defined as

VT (k, ) = [V, () @ Vi, (Fo)la[olf ® o5]s, Yoo, BEF @ ti)rr, - (2.4)

Each o-chanuel is specified by the orbital angular momenta £, and La coupled to give A4, and by the spin (isogpin)
s2¥ (13F) and s&, (#8) of the pair jk and the third particle 1, coupled to give Sy (T). Since the wave function ¥5 is
antisymmetric, £, + #,¥ +#} must be odd; furthermore, £, + L, must be even or odd depending on whether the state
has even or odd parity. The hyperspherical polynomials (E)Pf(‘"‘t" are given by [26]

O pge-te (g = Ni=Fo(ain ¢i) = (con ifie PLoF1 3441 con 29,) (25)
where Nf~fe is a normalization factor, and PY are Jacobi polynomials. The grand orbital quantum muinber is
given by K = £+ Lo +2n, n being a non-pegative integer. In Eq. (2.1), K% = £ + L, ia the minimum grand orbital
quantum number and K is ite maximum selected value, 80 that the number of basis functions per channel ja

My = (Kgy —KS)2+1 . (2.6)

The pair correlation functions f,(r;;) take into account the strong state-dependent correlations induced by the
nucleon-nucleon interaction, and are obtained as the solutions of suitable two-body zera-energy Schrodinger equations,
with a technique outlined in Ref. [18]. They improve the behavior of the wave function at small interparticle distances,
thus accelerating the convergence of the calculated quantities with respect to the required number of basis functions
in Eq. (2.1). With the f, set equal to one, as in the original Hyperspherical Harmonic expansion approach [27], the
convergence rate slows down considerably, making the calculationa very difficult for systema, such as nucle, having
strongly repulsive interactions at short distances.

The Rayleigh-Ritz variational principle

< buls|H — E|¥s>=0, @n

is wsed to determine the hyperradial functions u.x(p) in Eq. (2.1). Here 6,¥3 represents the change in the wave
function due to variations of the functions uag(p). For a given N, and K, the resulting set of coupled second order
differential equations ia solved by using standard numerical methods. Typically, N; = 10 + 18 and M, = 5+ 8.
Finally, we note that inclusion of the Coulomb interaction is straightforward in the present approach, sinee no partial
wave decomposition is performed.

B. Scattering-state wave functions

The variational approach based on the PHH function basis has been extended to study scaitering states. The wave
function for a Nd scattering state is written as

w7 =W e (2.8)

where J and J, are, respectively, the total angular momentum and its z-projection, L is the Nd relative orbital angular
momentum, and 5 the channel spin quantum number. The first term ¥ must guarantee an accurate description of
the system in the region where the ¥ and d clusters are close to each other, and interparticle interactions are large;
it vanishes in the limit of large Nd distances. As for the bound-state problem, ¥¢ is expanded in terms of PHH
functions.

The second term ¥4 in Eq. (2.8) deactibes the asymptotic configurations of the systetn, where the nuclear interac-
tions between the two clusters are negligible. For a pd state, it is written as [20]
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where @4 is the radial-spin part of the deuteron wave function, p the magnitude of the relative momentum p between
deuteron and proton, and Fr and Gy, are the regular and irregular Coulomb functions, respectively. For nd scattering,
Fr(z)/= {Gg(x)/=) is replaced by the regular (irregular) spherical Bessel function. The function g(rpd) modifies the
Gpr(prpa) st small rpg by regularizing it at the origin, and approaches one for rpg > 10 fm, thus not affecting the
aaymptotic behavior of ll'g‘f{ . The sum over ['5* is over all values compatible with a given J and parity.

The R-matrix elements RE ' and the functions u,x(p) in the PHH expansion of W are determined variationally
by finding the stationary points of the functional [20]

2
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with respect to variations in the 7REE and u,x (Kohn variational principle). Here Es=—2.226 MeV is the deuteron
ground-state energy, and u the Nd reduced mass. As in the bound state problem, the hyperradial functions uax (p)
are required to vanish in the limit of large p.

G. Ground-etate energles and Nd seattering lengths

The ealculations carried out in the present study are for the following combinations of realistic two- and three-nucleon
interactions: 1) the Argonne v;4 two-nucleon interaction (AV14) [28]; 2) the Argonne vi4 two-nucleon and Urbana
model-VIII three-nucleon [29] interactions (AV14/VIII); 3) the Argonne vig two-nucleon [30] and Urbana model-IX
thres-nucleon [31] interactions (AV18/IX). The vys model containe explicit charge-independence and charge-symmetry
breaking terms, as well as s complete treatment of the NN electromagnetic interaction, including magnetic moment,
two-photon-exchange, Darwin-Foldy, and vacuum polarization corrections to the Coulomb interaction. It also has a
weaker tensor component than the older Argonne viq model

The ¢aleulated *H and 3He binding energies, and nd and pd doublet and quartet scattering lengths are reported in
table I, along with the (available) experimental values, We note that the strength of the three-nucleon interaction is, i
each case, adjusted to reproduce the triton and a-particle experimental binding energies in converged Faddeev [20,36]
and Green's Function Monte Carlo [31,37] calculations. As the value of the doublet nd scattering length is correlated
with that of the triton binding energy [38], both the AV14/VIII and AV18/IX Hamiltonian models predict very well
the measured 2a. Without the three-nucleon interaction, the *a value is overestimated by almost a factor of 2. In
contrast, the quariet scattering length 1a has very little dependence on the Hamilionian model, since in that channel
the process is dominated by repulsive Pauli principle effects.

D. Nuclear wave functions with axplicit A-lsobar componenta

Following a method originally proposed in Ref. [23], explicit A-isobar comyponents are approximately included in
the nuclear wave functions by writing

v ={sTI0+vi™ey | 21
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where § is the symmetrizer, ¥ contains only nucleon degrees of freedom, and the transition operatora U,-":-‘“ are
defined as

UIR = Ut Ut gt (212)
UI-J}'A = [w i) - 85 + )80 m - T, (2.13)
U:;LA - [u"“l(ru)S[ R Sj + u"]“(ru)S}}']T.— -Tf . (2_14)

Here, S; and ‘T; are transition spin and isospin operators, which convert nucleon i into a A-isobar; S,’} and S},‘-I

are tensor operators in which the Pauli spin operators of particle i {or j), and particles i and j are replaced by
corresponding spin-transition operatora. The U™ vanishes in the limit of large interparticle separation, since no
A-components can exist asymptotically.

In principle, the &T* and ¥ could be determined variationally by using a Hamiltonian such as the Argonne tosQ
model [23,28], that contains both nucleon and A-isobar degrees of freedom. Instead we use transition correlations
u""M{r;), etc. (shown in Fig. 1) that approximately reproduce two-body bound state and low-energy scattering wave
functions for the Argonne vaag model, and take the PHH wave functions given above as the ¥y in Eq. (2.11). The
validity of such an approximation has been discussed at length in Ref. [23]. Here we only note that: 1) since the
correlation functions u®™!l, etc. are short-ranged, they are expected to be weakly A-dependent; 2) it is important
that the ¥x used in Eq. (2.11), obtained from the vy4 interaction (phase-equivalent to the visg interaction), be
proportional to that projected out from the full wave function for the vasq interaction. This has been explicitly
verified by direct calculation in the two-body problem [23]. Finally, we note that the new Argonne vjy (nucleons
only) interaction has no available phase-equivalent nucleons and deltas counterpart. Thus we insist on wsing the
U;}‘R obtained from the vigg model even when wsing in Eq. (2.11) the ¥y from the tig. It is expected that this
inconsistency has no significant impact on the results reported in the present work.

{-isobar components in nuclear wave functions are commonly estimated using first-order perturbation theory, and
neglecting the kinetic energies in the denominators. Such calculations are equivalent to using Eq. (2.11) for the nuclear
wave function with the components of U;T? given by

UP_(A.PT = UNN—NA .
f m—ma (2.15)
UI_?A.PT _ _YUNN-aA (2.15)
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where vyw_na 30d Uyy_aa are transition interactions (taken, in the present work, from the Argonne viag model).
This perturbative treatment has been shown to be insccurste, and may lead to a substantial overprediction of the
importance of A-degrees of freedom in nuclei. For example, the cross section for the He{n,7)*He reaction has been
calculated to be, reapectively, 112 pb and 86 ub [23] depending on whether A admixtures in the nuclear wave functions
are included perturbatively or non-perturbatively, as outlined above.

iIl. THE NUCLEAR ELECTROMAGNETIC CURRENT

The nuclear electromagnetic current is expanded into a sum of one- and two-body terms that operate on the nucleon
and A-isobar degrees of freedom [23]:

=Y+ il {3.1)
i i<y
where q is the photon momentum. The one-body term is written as
May= Y. PaB-B), 3.9
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where E (8] is the Pauli operator for the A spin (isospin), and the expression forj?}(q; A — N 1a obtnined from that
for jgll {q; ¥ — A) by replacing the transition apin and iscepin operatom by their Hermitisn conjugates. Here p*=0.88
p#n and p¥=4.706 gy are the isoscalar and isovector nucleon magnelic moments in terms of nuclear magnetons uy;
#yia i8 taken equal 1o 3 py, as obtained from an analysis of IV data in the A resonance region [39]; tiyaa=4.35 un by
sveraging the values recently obtained from a soft-photon anslysis of pion-proton bremsstrahlung data near the A+
resonance {40]. Excitation of the A isobar via an electric quadrupole transition in neglected in the current i N —



A), since the associated pion photoproduction amplitude is experimentally found to be small at resonance [41]. We
also note that in Eg. (3.5) the A-convection current is neglected.

Ouly NN — NN two-body terms are included in js})(q). These are separated into “model-independent” (M 1)
contributions, determined from the ¥ ¥ interaction (the Argonne v,4 or v;3 models in the present study} following a
prescription originally proposed by Riska [42], and “model-dependent” (M D) ones associated with the pxy and wry
electromagnetic couplings:

a7y _ a2 )

.IS,-) =55;.’m +3£},}Mp . (3.6)
Since the expressions for these MI and M D currents are scattered in a number of Refs. [4,24,25], they are listed in
Appendix A of the p t work for complet In principle, there are also two-body currents associated with the

NN — NA and NN = AA transitions. However, these have not been included in the present study.

The M I} currents are purely transverse, and depend on a set of cutoff parameters and coupling constants only
approximately known, Their contribution for momentum transfers < 1 GeV/e¢ is small when compared to that of the
M currenta [24]. The latter are constructed from the NV interaction so a8 to satisfly current conservation,
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exactly [24,42]. While such a preacription cannot obviouely be unique, it does lead to two-body currents, which have
been shown to provide, at low and moderate values of momentum transfers (typically, below 1 GeV/c), a satisfactory
description of the deuteron threshold electrodisintegration [25], 'H(n,7)H capture croes section at thermal neutron
energies [25], and magnetic moments and form factors of the trinucleans [24,29].

The most important of the M currents are those assaciated with the v (ri;)7 - 13, v*T(rij)oy - 0% - 7y and
w7 (rs) Sy 1y components of the interaction. The corresponding current operators are given in momentum space
by [24]:
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where q = k; +k;, and vps(k), vv (k) and vy s(k) are related to the Fourier transforms of the radial functions +*(r),
v'7(r} and v“7(r), as defined in Appendix A, by:

vps(k) =20 (k) —v°T(K) , (3.10)
vv (k) = o' (k) + 077 (k) @.1n
vys(k) = v (k) (3.12)

In a one-boson-exchange (OBE) interaction model, in which the isospin-dependent central, spin-spin, and tensor
components are due to x- and p-exchanges, vps(k), vy (k) and vv 5(k) are given by:

£
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where my and m, are the meson masses, fy, g, and « are the pseudovector N N, the vector and tensor pN N coupling
constants (f2/4x=0.075, g3 /4x=0.55, and £=6.6), respectively. The resulting js;?.)Ps and JS:]V (suitably modified by
the inclusion of form factors at the x NN and pN'N vertices) then have the standard forms commonly used in the
literature [3,18,43]. The Argonne vy and vg interactions are not strictly OBE models. However, the vps(t), v (k),
and vy g(k) components, projected out from the v**, v** and v'™ interactions, are quite similar to those due x- and
p-exchanges {24]. This is illustrated in Fig. 2 for the vps(k) component, associated to which is the leading M7 current
operator.

Additional but far less important A I two-body currents are obtsined from the momentum-dependent terms of the
interaction. They are predominantly isoscalar and give small contributions to the magnetic moment and structure
function B(g) of the deuteron {25,30], and to the isoscalar combination of the magnetic moments and form factors of
the trinucleons {24,29].

IV. CROSS SECTION AND POLARIZATION OBSERVABLES
A. Definitions

In the center of mass (CM) frame, the radiative transilion amplitude between an initial ¢V continuam state with
deuteron and nucleon spin projections ¢z and o, respectively, and relative momentum p, and a final trinucleon bound
stale with epin projection o3 is given by:

Pae(pi@) = (H (@) - S (IR, (4.0)

where €3{q), A = &1, are the spherical components of the photon polarization vector. For a dp state the wave function
) is related to the wave functions #3715 introduced in Sec. II via
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where o; is the Coulomb phase shift. For a dn state the factor €7t js omitted. The wave funciion ¥(¥) satisfies
outgoing wave boundary conditions, and is normalized to unit flux, while the two- and three-nucleon bound-state
wave functions are normalized to one.

The ¢ross section and polarization observables are easily obtained from the transition matsix elements j} ... (p. q).
The unpolarized differential cross section is written as

al®=300 T lihee®aF (44

Adyead
where the factor 1/6 comes from the average over the initial state polarizations, 8 is the angle between p and ¢ {the
vectors p and q define the zz-plane), and
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Here vre| ie the d¥ refative velocity and mgy the mass of the trinucleon. The CM energy of the emitted y-ray is given
by

o= By— By +9 /2
V-2 - B+ raims +1] 12

(48)

where B; and Hs are the binding energies of the deuteron and trinucteon. The differential cross section oy;(#) for a
process in which an initial atate with polarization defined by the density matrix p; leads to a final polarization state
with density matrix p;, can be expressed as
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The initial density matrix is given by the product of the nucleon and deuteron density matrices:

Wi = 3liee m], T re] )
I

73,07

where Py and .P:“ are the polarizations of the spin 1/2 nucleon and spin 1 deuteron beatns, respectively, The
matrices t** are defined as

10, = VI ()T {1oh, 1 - ol “n

LI

For example, an unpolarized deuteron beam has P: ¥ = fxgup- Since in the final state we are interested in processes
for which only the polarization of the emitted photon ie detected, py can be written as

)3 1
(PJ)[:;',',)}:],-_ =3 [ﬁx,x' + Pyby a4+ AP, 5,\..\'] Fhones s {4.10}

where Fy (P.) is the linear {circular) polarization of the emitted photon. Note that P, = P, — P..
With the density matrices given in Eqs. (4.8) and (4.10) the initial and final state polarizations are defined by

asgigning the quantities Py, P: #, Py snd P.. Polarization observables are then obtained from differences of cross
seclions

au(@) = o(6: Py, Py P, P) . (4.11)

Thus the proton and deuteron vector and tensor analyzing powers A, (8) and Typ(#) are given, respectively, by:

i -
aulf)Ay(f) = 3 [6(9; Px =§,600840,0,0) = o{0; Py = —F, 62060, 0, o)] \ (4.12)

(8 Tool0) = % [#10:0. +6116,0.0,0) - 0(6:0, ~br26,0,9, 0] - (4.13)

Expressions for more complicated double polarization observables are obtained in similar fashion. The photon linear
polarization coefficient P, (#) is defined as

eul8)P(6) = 3 [s(0) - 02(0)] . (419)

where
o1 (0} = a(8;0,6x0800, P = 1,0, (4.15)
oy{0) = 5(8;0, 55080, Pr = 1,0} . (4.16)

Here o(#) (¢, (8)} corresponds to a capture cross section in which an unpolarized initial state leads to emission of a
photon with polarization parallel (perpedicular) to the reaction plane. The observation of circular polarization Pr(8),

ou(f)Pr(8) = %[6(9; Py, 6x06u0,0, P = 1) — 0(8; PN, bacbuo, 0. P. = -1} | (4.17)

requires the polarization of the initial proton {or neutron) beam. If the process is dominated by S-wave capture, as
is the case for the *H(n,y)*H reaction at thermal neutron energies, then Pr(#) ia simply given by:

Pr(f)=R.Pn-q. [(5—wave capture only), (4.18)

where R, in the so-called polarization parameter.

B. Expressions In terms of electric and magnetic multipoles

The expansion of the transition matrix clement §2 .. ,(p, 1) in terms of electric and magnetic multipoles, E-57(g)
and M,"‘s"(q) respectively, is given by [44]:

. cep el I
Pl =20 30 ALE(=) (50, 1000SIHS T, LI L) I ., ml 30s)
LSJi,tm

x Dl _5(0,0,0) [-3 MFS(q) - EFS(q)] (4.19)

where DY, _, are standard rotation matrices [45], and £ = +/ZL ¥ 1 and similarly for £. The angie 6 is defined as that
between the p-direction (which is also taken as the quantization axis of the initial and final nuclear spins) and the
q-direction. We have adopted a different spin coupling order between the channel spin and orbital angular momentum
of the initial state with respect to that ueed in Ref. [46]. Regarding the choice of phase between the electric and
magnetic multipole components of the transverse vector potential, our definition is equivalent to the choice of the
positive sign in Eq. (17) of Ref. (48].

By evaluating the sums in Eqs. (4.4) and (4.7}, and using the product property of the D-matrices, the angular
dependence of the unpolarized cross section as well as that of the vector and tensor analyzing powers and photon
linear coefficient of intereat in the present study are made explicit [46):

2u(8) =Y a Pulcosd) | (4.20)
k>0

o ()4, (0) = by Pl(cond) | {4.21)
E>1

aul)Tao(f) = 3 ca Py(coad) , (4.22)
k20

Tu(BYPy(8) = ) du Pi(cost) , (4.23)
k232

where Pi (F[") are Legendre polynomisals (associated Legendre functions), and the coefficients ay, by, cx, and dy
denote appropriate combinations of electric and magnetic multipoles. Expressions for the leading coefficients in the
expansions above for each of the observables considered here are listed in Appendix B of the present work.

V. CALCULATION

In this section we discuss the evaluation of the eleciric and magnetic multipole matrix elements. By using the
partial wave decomposition of the wave function W) in Eq. (4.2), we write:

3 1 B . et s
TP @ =473 (30, 10lS5,) Y, (S5, LM R (B)iel (@), {5.1)
55, LMIJ,
where
A5 (q) = (1316 (0) §T(@)Fan ) - (5.2)

In a frame where the q-direction also defines the quantization axis for the nuclear spins, the matrix element j{‘fj /-

has the multipole expansion [44]:
X s 1
@) = VA A IR = M) [-AMES (g) - EFS )] (5.3)
=1

We note that the expansion above is different from that given in Eq. (4.19), since in the latter the quantization axis
for the nuclear spins was taken as that defined by the relative momentum p-direction, nndsgjmade an angle # with p.
Using Eq. (5.3), the Ef57 and M5 are obtained from linear combinations of the j5577 matrix elements. We

Aoy
find, for example:



Mg = 2ty (5.4)
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The problem is now reduced to the evaluation of the jff,”‘ matrix elements, which we write schematically as
@y )i
e terlite) 50

AR RE
The initial and final states [¥,} {r = i or f) have the form of Eq. (2.11}. It is convenient to expand these as [23]

9.) =5 +3_ UTRUG + . (5.7)
i<}

and the matrix element of the current operator becomes
(W 719:) = (WEI(N only)| Wi} + (95 15(A) ¥} (5.8)

where j(N only) denotes all one- and two-body contributions to j(g) which only involve nucleon degrees of freedom,
ie. (N only) = jONN — N} + fO(NN — NN). The operator §(A) includes terms involving the A-isobar degrees
of freedom, coming from the explicit A currents jONN — A), F{A — N), and jO)(A — A), and the transition
operators UT™. The operator j(A) is illustrated in Fig. 3. The terma in panels 8)-g) of Fig. 3 are two-body current
operators. Thoee in pancta h)-1) of Fig. 3 are to be interpreted as nermmalization corrections to the “nucleonic”
matrix elements (ll!fvlj(N nnly)liﬂ,), due to the presence of A-isobar components in the wave functions. We note
that not included in 7(A) are all remaining connected thres-body contributions of the type shown in Fig. 4. These
are neglected in the present work, since they are expected to be significantly smaller than those considered in Fig. 3.

Each of the terms in Fig. 3 is expressed as an operator acting on the nucleon coordinates. For example, the terms
in panels a) and b) of Fig. 3 have the structure [23]:

S iA = MUEY L USNGN > A) (5.9
if
which can easily be reduced to operators involving only Pauli spin and isospin matrices by use of the identity
2
3
where A and B are vector operatots that commute with ¢, but not necessarily with each other. Expressions for the

other terms in Fig. 3 are obtained in a similar fashion [23].
The normalization of the wave function is given by [23]

s'.AS.B = A-B—%v-(AxB) , (5.10)

(¥19) = (o lB) + (] 3 [2USNIUSY + USSR W)
i<y
+ (three~body terms), (5.11)

and the three-body terms have baen neglected consistently with the approximation introduced in Eq. (5.8).

The matrix elements in Egs. (5.8} and (6.11) are computed by Monte Carlo integration. The wave functions are
written an vectors in the spin-isospin space of the three nucleons for any given spatial configuration R={r),rz,ra}.
For the given R, we calculate the state vector [j(N only) + §{A)] |%4} by performing exactly the spin-isospin algebra
with the techniquea described in Refs. [24,47]. The spatial integrations are carried out with the Monte Carlo method
by sampling the R configurations according to the Metropolis algorithm [48]. Finally, we note that the statistical

errors in the Monte Carlo evaluation of matrix el ta of the type (¥ho2|e*(q) -j'((ﬂlﬁﬁ}"'} are significantly
teduced by explicitly enforcing the orthogonality between the initial dV 5-wave doublet continuum state and the final
trinucleon bound atate, namely

[Eoddy 1w - Tl el (5.12)
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¥1. RESULTS

In this section we present our estimates for the cross section and photon polarization parameter of the thermal nen-
tron radiative capture on ?H, snd for the S-factor, vector and tensor analyzing powers and photon linear polarization
coefficient of the 2H(F,y)*He and p(;,'y)slle reactions in the center of mass energy range 0-100 keV. In Table II we
give the results for the two- and three-body bound state wave function normalizations {¥]¥} /(¥ [¥ ).

In Tables ITI-VIIL, the impulse-approximation (fA) results have been cbtained by using the “nuclecnic” one-body
current in Eq. (3.3), while the JA+PS results include in addition the leading two-body current contribution associated
with the “model-independent™ (M) jps term, Eq. (3.8). The IA4MT and TA+MI+M D results correspond to
caleulationa in which, respectively, only the MT and both the MJ and “model-dependent” (M D) two-body current
contributions are included (in addition to the JA4 contribution). Finally, the JA+...+A results correapond to the
complete calculations including A-isobar components in the nuclear wave fanction.

In these tables as well as in Figs. 7-11, the cumulative nucleonic contributions are normalized as

AR i
UA+ ..+ MD) = - YalI °§1Y)|f“ Lz . (6.1)
[cehredoney win]
However, when the iscbaric contributions are added to the eumulative sum, the normalization changes to

¥y |j{M only) + j(A) ¥}

TA+ ...+ A]=
Lot + A= e e

(6.2)

In the previous equaticns, the normalization of the initial scattering state is the same as that of d, up to corrections
of arder (volume)~?.

We also report results, dencted with JA+...+Apr, in which the A-components in the nuclear wave functions are
treated in perturbation theory, as discussed in Sec. 11D, and the j{A) only includes the operators in panels &) and b)
of Fig. 3 (in fact, this apptoach is moat commonly used to study the effect of A degrees of freedom in nuclei [3,18]).
In this case, the cumulative contributions [[A+...+Apy] are normalized as in Eq. (6.1).

Ag already mentioned in Sec. IV, three-body terms have not been retained in the evaluation of either the matrix
elementa {¥;}7{A)|¥:} or the normalization, Eq. (5.11), as they are expected to provide & small correction (23]

A. Thermal nd radiatlve capture

At thermal energiea the reaction proceeds through S-wave capture predominantly via magnetic dipole transitions
MY and MP¥ from the initial doublet J=1/2 and quartet J=3/2 dn scattering states. In addition, there is »

amall contribution due to an eleciric quadrupole transition E.,“'H from the initial quartet state,
The calculations have been carried out with wave functions obtained from the AV14/VEHI and AV18/IX Hamiltonian

models. The calculated values for the m H. m ”, and E‘,’” reduced matrix elements (RME), which are related
to those defined in Eq. (5.3) via

Xp5 = ;{,j Vax X5, (6.3)
N

are listed in Table III. Here, X stands for either E or M, and sy is nuclear magneton. In terms of the J.('{'s" RME,
the total cross section i given by

3
e 9 BLEF|T  13FLSS 2
1EF 1 + 1M, (6.4)
i 22,
where a=e?f4x.
Inspection of Table 1II showa that:

« As expected, the electric quadrupole (£;) RME is much amaller, in absolute value, than both the doublet and
quartet magnetic dipole (M,) RME.
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o In IA the quariet Af; RME ia, in absolute value, about 23 % larger than the doublet M,. However, two-body
current and A degrees of freedom contributions (row labelled JA+...+A) are lacge and interfere constructively
with the I'A contribution for the doublet Mj, while they are much smaller and interfere destructively with the
IA contribution for the quartet M,. Consequently, the TA+...+A doublet M) is found to be larger than the
quartet M, by more than a factor of 2.

« In IA both the doublet and quartet Af; RME are found to be rather insensitive to the Hamiltonian model used;
however, in the TA+PS calculation, the AV14/VIII prediction for the doublet M; RME is, in absolute value,
about § % larger than that obtained with the AV18/IX Hamiltonian. The vis has & wenker tensor force than
the vy4, leading to a weaker PS current (the dominant two-body current). However, the AV14/VIII result for
the doublet Af; RME is only 3 % larger than the AVIS/IX result in the approximation fA+. +A.

¢ The predicied values for the E; RME, in contrast to those for the M, RME, are found to be very sensitive to
the Hamiltonian model used, even in TA. The reason for such sensitivity is discussed below,

The results for the cross section and photon polarization parameter are presented in Table IV, along with the
experimental data. The cross section in JA is calculated to be approximately a factor of 2 smaller than the measured
value, while the TA+...+A calculations based on the AV14/VIIE and AV18/IX Hamiltonians overestimate the exper-
imental value by 18 % and 14 %, respectively. It should be noted, however, that the commeon perturbative treatment
of A-isobar degrees of freedom (row labelled JA+...+Apt) leads to a significant increase of the discrepancy between
theory and experiment.

The photon polarization parameter is very sensitive to two-body currents. For example, for the AV18/IX Hamil-
tonian their inclusion produces roughly a six-fold increase, in absolute value, of the IA prediction (rows labelled T4
and TA+MI+M D in Table V). Contributions associated with A-components in the nuclear wave functions lead only
to a further 7 % increase (absolute value) of the JA+MI+M D redults. More interesting is the sensitivity displayed
by R, to the small £; RME, particularly for the AV14/VIIl Hamiltonian. In S-wave capture this matrix element is
predominantly due to transitions S(*H) — D(H) and D(?H} -+ 5(*H), where $ and D dencte 5- and D-wave compo-
nents in the bound atste wave functions. In the case of the AV18/IX Hamiltonian, the contributions associated with
these transitions interfere destructively, thus producing a small £ RME; in contrast, for the AV14/VIII Hamiltonian
the interference between these contributions is constructive. This is most clearly seen by considering the function

E'g“(q; Fan) Buch that

E’gii(q) =-[uwdr¢nﬁgil(q;rg,.) ) (6.5)

where rq, is the dn relative distance. This function is easily obtained by binning the appropriate combination of

jgﬁu' matrix elements as function of ra, in the Monte Carlo calculation [49].

The functions o4 {g;r4s), 28 obtained in 14, are shown in Fig. 5 by the solid curves for the AV14/VIIl and
AV1B/IX Hamiltonian models. We also show the results obtained by switching off either the deuteron or tritium
D-state components. By inspecting Fig. 5, we see that for the AV18/IX model the E; RME resulte from the delicate
cancellation between positive and negative contributions associated, reapectively, with the deuteron and tritium D-
states. However, no such cancellation is obtained for the AV14/VIIl model. Thus, the £; RME appears to be very
sensitive upon the D-state content of the two- and three-pucleon bound-state wave functions and, therefore, upon
the strength of the tensor force, as reflected in the large difference between the AV14/VIII and AV18/IX predictions.
It ia unfortunate that, due to the large two-body current contributions affecting the photon polarization parameter,
the sensitivity displayed by this observahle to the 3 RME cannot be exploited to gain information on the tensor
interaction.

Finally, we note that the AVi4/VIII prediction for the cross section in the approximation A+ PS+Apr is 0.545
mb. This result is about 15 % smaller than that reported by Friar and collaborators {3) for the same Hamiltonian.
The difference, however, is mostly due to the different value used for the N — A transition magnetic moment: we
use gona = 3 uy, while Friar ¢f al. used p na == 4.706 pn. Indeed, if we use the latter value for p,na, our result
becornes 0.830 mb, in much better agreement with that reported in Ref. [3]. As a last remark, we note that the R,
patameter, obtained in the JA+PS+Apt approximation by only including the M, RME, is calculated to be -0.48,
again in excellent agreement with the value obtained in Ref. [3].
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B. Thermal pd radiative capture

In tables V and VI we present the resulis for the zerc—energy RME and in Fig. 7 and Table VII the results for the
astrophysical S-factor of the *H(p,7) He reaction. The latter quantity is defined as

S(Ecm) = Ecm or{Ecu) e’/ (6.6)

where o7(Ecu) is the total cross section. We note that in Table V, the zero-energy RME are related to those defined
in Eq. {5.3) via

grsy [t VBE o ypss
e 2’mexp(:.’m:/a,..) Py ix X7 . (6.7)

The quantities XZ¥/ are easily shown to remain finite in the limit v — 0; in terms of these the S-factor is written
as
x s - o~
S(Ecm = 0) = Tau Z?n_= SOEEE+ MEFP (6.8)
L8y
where g is the dp reduced mass.

The predicted angular distributions of the differential croes section ¢, (8}, vector and tensor analyzing powers A;(8)
and Tho(#), and photon linear polarization coefficient P, (#), obtained for the 2H(7F,y)*He and 'H(d,y)*He resctions
are compared with the experimental data of ref. [11] in Figs. 8-11. The ealculations are based on the AV18/IX
Hamiltonjan. For selected obesrvables, b r, results corresponding to the AV14/VIII Hamiltonian will also be
shown. The obeerved linear dependence upon the energy of the S.-factor and the observed angular distributions of
ou(#), Ay(#), Tao(#), and Po{#) indicate that the reaction proceeds through S- and P-wave captures. The conttibuting
RME in the limit of zero incident energy are listed in Table V. We note that M; transitions from the L, 5, J =1,3/2,5/2
initial dp continuum state have been neglected. As in the dn capture, the effects due to two-body currents and A-
degrees of freedom are large on the M; RME, particularly the doublet M;. The E; RME is very small, and the
calculated value appears to be rather inacnsitive to the model Hamiltonian used.

Among the E; and M; RME from P-wave capture, the leading RME are the doublet E;“ with J =172, 3/2.
The quartet E,l_ L (M-,l !-J') are about one order (two orders) of magnitude smaller (in absolute value) than the E;y.
While two-body current contributions for the doublet F; are small and have the same sign as the T4 matrix element,
they are found to be large, in fact dominant, for the quartet Ey, and of opposite sign than the [A contribution. Effects
due to A-iscbar degrees of freedom are small, since the associated currents illustrated in Fig. 3 (with the exception
of those arising from diagrams f), h)-1)) are transverse.

We show in Fig. 8 the functions E':‘*(q;rg,,) and E}l*(q;w,) (defined 28 in the previous subsection): the empty
(filled) aymbols correspond to the T4 {IA+...+A) results. The doublet J=1/2 E; function is long-ranged, and is little
affected by two-body current contributions. In contrast, the quartet J =1/2 E, function is fairly short-ranged, and
changes sign when two-body currents are included. Similar features are exhibited by the doublet and quartet J=3/2
Ey functions. The quartet £; RME are therefore sensitive to the short-range part of the nuclear wave functions, which
is presumably the least accurately determined in the present variational calculations. Furthermore, as can be seen
from Table V by comparing the 7A+ P35 and TA+M]J results for the quartet Ey RME, the M7 two-body currents of
shorter range, particularly those sssociated with the momentum dependence of the NN interaction, give significant
cotrectiona. The precise form of these corrents is rather uncertain [24].

To check the calculation of the £y RME, we have evaluated the appropriate combinations of j{‘i’ %+ matrix elementa
making use of the identity valid in the long-wavelength-approximation (LW) (which is justified in the energy range
under consideration here)

HE Wy = (1] - [ ixet (@) 2 V)

= itey - B) (¥ [ dxe" (@) x s (69)

where j{x) and p(x} = 3, 6(x — ri}(1 + 1.,}/2 are the current and charge density cperators, with r} = r; — Row,
and £, and £y are the CM energies of the initial and final states. In Table VI the results for the £, RME in the LW
approximation are compated with those obiained by direct evaluation of Eq. (5.2). The iwo sets of results listed in

14



Table VI correspond to the AV14 and AV14/VIII Hamiltonian models. The M I two-body currents, by construction,
exactly satiefy current conservation with the AV 14 interaction. Therefore, the degree of agreement between the LW
and 1A+4+MT AV14 results simply reflects the extent to which the present variational wave functicns are truly exact
eigenstates of the AVi4 Hamiltonian. While the LW and TA+MT predictions for the doublet E; RME are quite
close, those for the quartet E; RME are significantly different. Finally, as can be seen from Table V1 by comparing
the AV14 and AV14/VIII results, the effect of the threc-nucleon interaction is not negligible. It ia interesting lo note
that the continuity equation requires, in principle, the presence of three-body currents associated with it. The lack of
these three-body currents is presumably partially responsible for the differences between the LW and TA+M I results,
obtained with the AV14/VIII Hamiltonian.

We note that the pumerically uncertain values of the E; RME impact our predictions for the S-factor and polar-
ization observables at the 10 % level. For example, at Eca=16 keV and #=30° the proton analyzing power ia 0.095
or 0,086, depending on whether the TA+...+A or LW values are used for these RME.

The caleulated 5- and P-wave capture contributions to the zero energy S-factor are compared with the moat recent
experimental determinations [11] in Table VIL. The Sg{Ecm = 0} is found to be 0.105 eV b, in good agreement with
experiment, 55 F(Ecm = 0)=0.109£0.01 ¢V b, and with the value reported in Ref. [18], 0.108 &V b. However, the
experimental P-wave S-factor, Sp (Ecy = 0)=0.073:£0.007 eV b, is 15 (10) % smaller than caleulated with the
AVI8/IX (AV14/VIII) Hamiltonian.

Results for the S-factor in the energy range E,=0-150 keV (Ecm=0-100 keV) are shown in Fig. 7, where they
are compared with the recent TUNL data [11,13] and the much clder data of Ref. [12]. Both the abeclute values and
energy dependence of the TUNL data are well reproduced by the JA+...4+A caleulation. The enhancement due to
two-body current and A-isobar contributions is substantial: the ratios [S{JA+...4+A)-5(1A)]/S(I4) for the S- and
P-wave 5-factors are found to be, reapectively, 0.62 and 0.18 at 0 keV, and increase to 0.75 and 0.22 at E, =150 keV.
The Griffith 1 al. data [12] have large errors, and appear to be at variance with the TUNL data.

The angular distributions of the energy-integrated relative cross section, vector and tensor analyzing powers, and
photon linear polarization [11] are compared with theory in Figs. 8-11. As discussed in Ref. [11], the energy binning
of the data would substantially increase the statistical errors. Accordingly, we have integrated the theoretical caleuls-
tions, weighted by the energy dependence of the cross section and the target thickness, for the purpose of comparing
them with experiment [S0]. H , it should be emphasized that the energy dependence of these observables is
anyway rather weak.

The overall agreement between theary and experiment is satisfactory for all observables with the exception of
Ay(#). This latter observable ia particularly sensitive to two-body current contributions: their effect is to reduce the
results obtained in IA by about a factor of 3, bringing them into better agreement with the data. However, a = 30%
discrepancy between the predicted and measured 4, remains unresolved. It in imporiant to recall here that these
observables, unlike thermal cross sections, are independent of normalization issues in both theory and experiment.

The relative cross section and polarigation observables appear to be rather insensitive to the Hamiltonian used.
This is ehown in Figs. 12-13, where the vector and tensor analyzing powers calculated with the AVIS/IX model are
compared with those obtained from the AV14/VIII model. However, these observables, in particular the A,(0), are
found to be sensitive to D-siate components in either the initial or final states. This is shown in Piga. 14-16 for the
Ay(8) and T3a(8) by switching off the D-state component i either the deuteron (dot-dashed line) or “He (dotted line)
wave functions.

Finally, in Table VIII we list for completeness the values for the coefficients in the Legendre expansion of ou(9),
Ay(8), Tao(#), and P,(6). We note that the total cross section is given by 4xaq.

VII. CONCLUSIONS

Crosa sections and polarization observablea for the 2H(5,y)He and H(d,v)*He reactions below Ecn=100 keV, and
for the thermal neutron radiative capture on deuterium have been calculated with accurate variational wave functions
obtained from realistic interactions and an electromagnetic current operator consisting of one- and two-body parts.
The wave functions include both nucleon and A-isobar degrees of freedom. The one-body currents contain N — N,
N — A, and A — A couplings, while only NN — NN terms have been retained in the two-body currents. The
latter satisfy, by construction, current conservation exactly with the NN interaction.

Comparison between the theoretical results obtained with the more recent (and preferred) AV18/1X Hamiltonian
model and data shows that:

w The predicted valuea for the total cross section or and photon polarization parameter R, of the 2H(n,7)°H
reaction are within 156% of the measured values.
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¢ The predicted energy dependence of the S-factor and angular distributiona of the cross section #.{8}/or, tensor
analyzing power Tie{?), and photon linear polarization coefficient P.{#) for the radiative capture of protons on
deuterons in the center of mass energy range 0~100 keV are quite close to the experimental ones. However, the
observed vector analyzing power A,(f) from H(5,7)°He measurements in 30% larger than calculated.

The cross sections and polarization observables, in particular R, and A, (#), are substantially affected by two-body
currents, apecifically the isovector ones associated with the tensor interaction. The R. and A, (#) observables are also
sensitive to D-state components in the deuteron and *He wave functions, and hence show an interesting interplay
between two-body current effects and D-state admixtures in the ground state wave functions, both of which are
induced by the tensor force.

The predictions based on the explicit inclusion of A-isobar degrees of freedom in the nuclear wave functions are
found to be in significantly better agreement with experiment than those obtained from perturbation theory estimates,

Teo conclude, the overall, quantitative agreement between theory and experiment suggests that the nuclear dynamica
al play in these complicated low-energy processes is fairly well understood. The remaining discrepancies between
theory and experiment, such as the 30 % underprediction of the measured vector analyzing power for the "H(5,v)3He
reaction, indicate that further refinements sre necessary in the present theoretical framework. Examples of these are:
1) the inclusion of three-body current contributions and 2) ihe inclusion of additional relativistic corrections of pionic
range in the two-body current operators [55,56]. Work along these lines is being vigorously pursued. Furthermore, the
measurement of other polarization observables, such as the 7); and T3; analyzing powers, which is currently under
way at TUNL [13] will provide a new testing ground for theory.

Low-energy teactions remain an important aves for studying nuclear dynamics, and a rich field for both thecry and
experiment.
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APPENDIX A: EXPRESSIONS FOR THE TWO-BODY CURRENT OPERATORS

In this appendix we provide complete expressions for the “model-independent” (M) and “model-dependent” (M D)
current operators. A thorough discussion of them can be found in Hels. [4,24,25].

The JS‘JM, operators are constructed from the NV interaction. The Argonne vyq (28] and the charge-independent
part of the new Argonne g [30] interaction models can be cast into the form:

vy = > VP (rig) + o7 (rijdi - 510%; S (A1)
p=c.ot sow0 e
P4 =1, 0,05, $is , L-S. 2ou Loy - Lt he] , L7, Koo (A2)

Hete S;j, L and S are the tensor, orbital angular momentum and total spin operators of pair i, respectively. Corre-
spondingly we write:

dyar= 3T g (A3)
p=PS5,¥V.50.504,LL

whete jij, ps and jij,v have already been given in Eqs. (3.8)-(3.9), and
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Jijsolki ki) = ‘# PSR + 2mP o (k)i + &5) x k¢ — i{ps + )]
QU (k) + 2m*?* (k)}{o, + 03) x ki — i{pi + p}}}
+P(f)[3v°(k:) — 2m¥u**{ka]fo; % q ~ifps + pj)] + = i} . (A4)
Jijs01(q) = %["”’(rij)n{h(‘ﬂ + v (ry ) D (o - (ri x @) 0 x 1,

+ i[v”’(r.-,)D-(q) +0" T () D (@{ev Loy xry}+ie g, (A8)

dgzela) = 0" (mp) + 9" (rdos - 0, D (@) x5 = ri x L) — ;—D+(<1)ru (x5 % q)]

" (i) + 017 (i) - o )[DL (@i vy — ay x LY — %D’_,_(q) ryj % {ri; % q)], (A8)
where p; and p} are the initial and final momentum of nucleon i. We have also defined:
Pi) = % . (A7)
Q)= AL (48)
Di(q) = P} " £ P(jle9™ (A9)
Dyla) = Qi)™ £ Q(iler™s . (A10)

The momentum-space components of the interaction, in terms of which are defined the current operators in Eqs. (3.8)-
(3.9) and (A4}, are given by:

ar 4x [ 2r; aT
k= g [ drelinthn) - 1) (A1)
(]
34 LLEN it 3. tr
v(k) = = drrdja(kr)e' () | {A12)
[
o0
v(k) = 4rf dretjo(kriW?(r) , p=c,er {A13)
[}
ar &
(k) = _T_/ drrdjy (k)P (F) | p < 20,001 . {Al4)
o
The M I} two-body current operator consists of the terms assaciated with the gry and wry contributions:
353 b0 00 Kg) = dig pa (i, 1) 4 i o (ki ) (a15)
with
. N L1 T . di-kq _ a; -k 18
Jors i ki) = 150 S0 - x "’[(k,. Tl +m) ('r.-’+m3)(k,5+m?,)] ' (A10)

Jura (ki kj} = i%lh x ky ok oy -k ]

[(k.-’ TmaE +ma) T R ma)(E v my) L

For the px7, wxy and wNN coupling constants we use the valuea 0.56 and 0.63 (from the measured widths of
p~ x4+ {3l] and w — x 4+ [62] } and 14.6 (from the Bonn potential {53]}, respectively. We introduce monopole
form factors at the pion and vector meson vertices in the pry and wry two-body current operators with A, = 0.75
GeV, and A, = A, = 1.25 GeV. The values used for A, and A, have been taken from a study of the pxy current
contribution to the B(g) structure function of the deuteron [54].

Finally, the configuration-space expressions for the current operators in Eqgs. (3.8)-(3.8) and (A4) are obtained
from [24]:

(ALT)

. - dky  dk; oy ik; (rp-x)s
Jij.a(Q)=fdxe'q“/(§;)£§‘(72;§§elh (xi :)elk, {ry xjij!ﬂ(ki-kj) - (A‘S)
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APPENDIX B: EXPRESSIONS FOR R AND FOR THE LEADING COEFFICIENTS IN THE
LEGENDRE EXPANSIONS OF THE OBSERVABLES

In this appendix we list the expressions for the photon polarization parameter R, and for leading coefficienta a,,
by, cx, and dy in the Legendre expansions Eqs. (4.20)(4.23) of the ¢ross scction and polarization observablea. In the
energy range of interest in the present study, the leading contributions are those associated with electric and magnetic
dipole transitions, while the contributions due to higher order multipoles, although included in the results reported
in Sec. VI, are found to be numerically very small and, therefore, are not explicitly displayed in the formulas below
for ease of presentation (with the exception of R.). We alsc use the notation:

Masi1are = M5, (B1}
Pisq1304a1 = Efs'r 1 (B2)
and
3
=Lt ie £ (B3)

The leading coefficients in the expansion for o,(8) are ag and az, and their expressiona are:
2y = &3 [Imaal” + [masl® + |pasl® + lpaal® + lpasl® + [paal?] (B4)
1
ar = 154 [10V2R(przpia) - 2V/ER(paarsa) ~ Blpael? +4lpadl?] - ()

In the expansion for the vector analyzing power A, the leading coefficient iz 8,, and its expression is:
2
b = -‘g:'- o R [m;, (—\/Epn +4paz + pa + \/2_0p4.|)]
1
+5o1® iy (~VEpsz — Spaa + 0p34 + VEpad) | - (B6)
In the expangion for the tensor analyzing power Tyg the leading coefficients are co and 3, and their expressions are:
vz .
e = *F 1 ® [10VER(praply) ~ Slpal® — 3R (paapia) + tlpedl’] (B7)
. 1 1 . .
tr=m [—ﬁ("“ﬂm«) + \/;|""'M|2 - \/;ﬁ(thu) + \/imPHPM)

L I RRSY LY RETIR . B (88)

In the expansion for the photon linear coefficient P, the leading coefficient is dz, and its expression is:

1 " 1 . 1 1
dy = o1 [ —yf 5R(pazpla) + \f 5 R(Paapia) + Slpadl® — Slpadl®| - (B9)
2 20 4 5

The photon polarization parameter B, for S-wave cal,pf.ure is given by:

1 |:1 _ §|m«|2 + Jﬂ_ﬁ(mnm;,) + ;-|e“|3 + \/ﬂ&(mne:.) - \/ﬂﬂ(mﬂeh) (B10)

Ro=—=
¢T3 [maal® + [medl® + Jeas|*

Here the contribution of the electric quadrupole eqq = Eg“ is explicitly included. Finally, we note a misprint in
Ref. [3} - the interference term R(mzamy,) between the doublet and quartet M; transitions in K. is erroneously
multiplied by a factor /2 rather than /8.
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TABLE L. Binding energies and scatlering lengths corresponding to the AV14, AV14/VII and AV18/IX Hamiltonian models.
The AVI{ results obtained with the PHH expansion are compared with thoss calculated by solving the Faddeev equations in
configuration (Faddesv/R) and in momentum (Faddeev/Q) space. The meanured scattering lengths are from ref. [35].

*H nd *He pd
Hamiltonian Method B Ta ¥a B Ta Ta
{MeV) {fm) (fm} (MeV) {fm) {fm})
PHH 7.683 1.196 6.380 7.032 0.954 13779
AVI14 Faddeev/Q 1.680* 1.200" 6.388"
Faddeev/R 1.670° 1.200% 6.372¢ 7.014° 0.9651 13.764¢
AVLI4JVIIT PHH 548 0.59 6.37 7.80 —0.14 13.8
AVIR/IX PHH X 0.63 .33 7.15 —0.02 13.7
EXP §.48 0.65(2) 6.33(3) T2
*Ref. [32]
PRef. [22]
“Ref. (33}
IRef. {34]

TABLE II. The wave function normalization ratios {¥|¥)/{¥x|¥ x) for the two. and three-body systema,

Hamiltonian H *H
AVI4/VII] 1.004 1.024
AVIS/IX 1.004 1.025

TABLE IIL. Reduced matrix elemenats (RME) in fm®/? calculated with the AV14/VIII and AV18/IX Hamiltonian models
for the *H(n,v)*H reaction at thermal energies. See text for notation, Note that the M; RME are purely imaginary, whereas
the E; RME is purely real. The statistical errors associated with the Monte Carlo integrations are less than 1% for the M,
RME, and about 10% for the E; RME.

AVI4/VII AV18/IX

at it ot o4 i 2
1A -10.7 nz Q13 07 131 -0.17
1A+PS -19.3 124 -1.0 -18.3 12.6 -0.16
TAa+MI -22.2 123 -1.0 ~21.6 12.6 -0.12
TA+MI+MD =225 121 -1.0 -21.8 12.5 -0.14
JA+..+apT -26.6 11.8 -1.0 =259 12.0 -0.14
TAV.. 44 =251 11.8 -1.0 -24.4 12.2 -0.14

20



TABLE IV. Cumulative contributions to the cross section (in mb) and photon polarization parsmeter R, of the reaction
3H(n, 7} H at thermal energies calculsted with the AV14/VII and AV18/IX Hamiltonian models. Re( M1} {Rc(M) + E3)) has
been calculated without {with} inclusion of the electric quadrupole contribution. See text for notation. The statistical errors
associated with the Monte Carlo integrations are less than 2%. The experimental valuen for or and R. are from Refs. [5]
and [8], respectively.

or Ro(M:) R (M + Ea)

AVI4/VIII AVI8/IX AVI4/VIIT AVIS/IX AV14)VIII AV18/IX
7 0.223 0278 —0.089 Z0.083 5.0 ~0.088
TA+PS 0.40% 0.383 0422 —-0.397 -0.345 -0.383
FA+MI 0.502 0.481 -0.460 —0.445 -0.389 —0.437
TA+MI4MD 0.508 0.489 0454 -0.482 —0.394 —0.442
TA+.+8pr 0.658 0.631 -0.492 —0.487 -0.430 -0.478
FA¥.+8 0.600 0.578 ~0.485 -0.47T -0.420 —0.459
EXP 0.506:£0.015 -0.42:£0.03

TABLE V. RME in fm*/? calculated with the AV14/VIII and AV18/IX Hamiltonisn models for the reaction 2H(p,y) He at
zero energy. See text for notation. Note that the M) and M; RME are purely imaginacy, whereas the £; and E; RME are
purely real. The statistical errors sssociated with the Monte Carlo integrations are lesa than 1% for the M, and doublet F;
RME, about 5% for the quartet £i RME, and of the order of 10 (50} % for the By (M) RME.

AVI4/VIH
T4 TA+PS TA+MT L TA+MI+MD TA+. +hpr TA+ +A
A -187 -30.4 321 -33.6 -39.1 -36.1
ﬁﬁi 712 25.1 L] 25.0 2.1 244
E‘;’fi 0.86 112 107 1.08 1.08 1.06
E}E* 192 -10.7 202 -20.2 -20.2 -19.9
BH -1.30 5.85 4.2 427 427 420
E:ig 263 315 324 324 32.4 319
E:Ei -0.01 3.73 3.07 3.10 a1 3.06
i -0.14 -0.14 -0.12 -0.12 -0.12 -0.12
ﬁ,éi 0.20 0.20 0.19 0.1% 0.19 0.13
AVIS/IX
TA TA+PS TA+MI TA+MI+MD JA+..+Apy TA+..+4
L -10.4 301 321 -32.9 384 354
,i?fi’} 281 26.7 258 25.9 25.1 25.3
E;'fi 085 110 1.06 1.07 107 1.05
E:g* 211 -21.8 222 222 222 217
i -1.27 5.32 3T .79 379 371
E}ii 295 326 333 333 333 326
F:,‘Ei -0.01 343 2.84 2.87 2.87 2.1
Fr L -0.15 0.4 -0.15 -0.15 -0.15 -0.15
ﬁ,g* 0.26 0.28 0.28 0.29 0.29 0.28
21

TABLE VI. Doublet and quartet £; RME in fm?/? calculated with the AV14 and AV14/VIII Hamiltonian models for the
reaction “H(p.7)°He at sero energy in 1A and in the approximations JA4+M T and LW. See text for notation. Statistical errors
associated with the Monte Carlo integrations are in the range 1-5%.

AVI4 AV14/VINT
1A TA+MI W 1A 1A+MI w
g2 241 255 RYT -19.2 202 -23.5
Fiih
B Y 46 30 13 42 a1
E,‘E” 2.5 36.5 3Tl 28.3 324 33.5
B3 0.6 25 13 0.0 31 14

TABLE VII. Cemulative contributions in &V b to the S- and P-wave capture zero energy S-factor of the reaction 2}{(9,1')’ He
calculated with the AV14/VIII and AV18/IX Hsmiltonian models. See text for notation. The statistical errors associated with
the Monte Carlo integrations are less than 2%. The experimental values are taken from Ref. [11].

53 Sp

AVI4/VINL AVI18/IX AV14/VIIL AV18/IX
IA 0.0605 0.0647 0.0650 0.0731
1A+PS 0.0880 0.0900 0.0754 0.0878
TA+M] 0.0939 0.0943 0.0822 0.0900
TA+MI+MD 0.0871 0.0972 0.0824 0.0%01
TA+. . +4pr 0.117 0.117 0.0824 0.0901
TA+. . +4 0.108 0.105 0.0800 0.0865
EXpP 0.109£0.01 0.072:40.00T

TABLE VIII. Leading cocflicients ax, bu, cy and di in nb in the Legendre expannions of ou(B), Ay(0), Ty (8}, nnd P, (8),
tespectively, for the “H{p, ¥)}*He capture reaction. The coefficicnts have been calculated with the AV18/IX Hamiltonian mode]
at Ep=10, 25, 45 80, and 150 keV.

£y
10 25 45 80 150
a0 TA 0.0946 1387 6.48 16.2 354
A4, 44 0.130 2.44 8.49 20.7 45.2
a2fap TA ~0.619 ~0.656 ~0.769 ~0.842 ~0.500
JA+.. 44 -0.536 -0.604 -0.694 —0.777 -0.850
by fao TA 0.438 0.348 0258 D.182 0.124
IA+.. 44 0.145 0,114 0.0838 D.0575 0.0429
Y TA 0.0257 0.0266 0.0307 0.0322 0.0353
IA+.. 44 -0.0814 —0.0608 -0.104 -0.117 -0.127
cafao TA 0.242 0.192 0.131 0.0761 0.0287
TA+.. +A 0.361 0.328 0.284 0.245 0.213
d3faq TA 0.309 0.343 0,354 0421 0.450
TA+..4A 0.269 0.303 0.347 0.389 0.426
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FIG. 7. The S-factor of the *H(p,7)*He reaction, obtained with the AV18/[X Hamiltonian model in 74 (long-dashed Line}
and in the JA+...4+4 approximation (solid line) is compared with experimental resulta from Refs. [11-13].
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FIG. 8. The energy-integrated relative cross sections, o(f)/ay (4xag is the total cross section), abtained with the AV18/IX
Hamiltonian model in [ A {dashed line) and in the fA+...+A approximation (solid line), are compared with experimental results
from Ref. [11}. Note that this plot only shows data with £, =0-40 keV {Ecw =0-27 keV). This is done to allow the (d,7) data
with Eq =0-80 keV (Ecu =0-27 keV) and the (p,y) data to be shown in the same graph (with the (d,%) data reflected).
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FIG. 9. The energy-integrated vector analysing powers of the 7H(5,+)*He reaction, obtained with the AV18/[X Hamiltonian
model in /A (dashed line) and in the fA+..+A spproximation (solid line), are compared with experimental results from
Ref. [11].
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FIG. 10. The energy-integrated tensor analyzing powers of the 1H(d‘,-r)slie reaction, obtained with the AV18/IX Hamiltonian
model in fA (dashed line) and in the JA+...+4& approximation (solid line), are compared with experimental resulis from
Ref. [LE].
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FIG. 11. Same aa in Fig. 9, but for the photon linear polarization coefficient.
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FIG. 13. Same a5 in Fig. 12, but for the tensor analyzing powera.

03 E, =45 kaV

02 4

& o \
s !
w ks \
_________ —
D1t F F(no D in'H)
_0'20 30 120 150 180

a0 a0
6{deg)

FIG. 14. The vector analysing powers obtained with the AV14/VIII Hamiltonian model in IA (dashed line) and in the
approximation JA+...+A {solid line labelled F) at E, = 45 keV. Also shown are the JA+...+A resulis abtained by switching
off the D-state components in either deuteron {dot-dashed line labelled F{no D in *H)) or *He (dotted line labelled F{no I in

*He)).
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FIG. 15. Same as ia Fig. 14, but for the tensor analyzing powers.
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