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BETATRON MOTION WITH COUPLING OF
HORIZONTAL AND VERTICAL DEGREES OF FREEDOM”

V. A. Lebedev and S. A. Bogacz
Thonus Jefferson National A celerator Fadility, 12000 Jefferson A werme, Newport Neus, VA 23606

The Courant-Snyder' parametrization of one-dimensional linear betatron motion is generalized to two-
dimensional coupled linear motion. To represent the 4x4 symplectic transfer matrix the following ten
parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances. The
beta-functions have a meaning similar to the Courant-Snyder parameterization, and the definition of alpha-
functions coincides with the standard one at regions with zero longitudinal magnetic field, where they are
equal to negative half-derivatives of the beta-functions. Such a parameterization can be useful for analysis
of coupled betatron motion in circular machines and transfer lines.

Introduction

In many applications analysis of coupled betatron motion is an important part of the
machine design. Although many studies of the coupled motion have been performed over
the last 30 years>***/, there is still no complete, in our opinion, representation of coupled
betatron motion, which would be as elegant as the Courant-Snyder parameterization for one-
dimensional case. This article attempts to introduce such a representation. To parametrize a
4x4 symplectic transfer matrix, the following ten parameters were chosen: four beta-
functions, four alpha-functions and two betatron phase advances. The beta-functions have
similar meaning to the Courant-Snyder parameterization, and the definition of alpha-
functions coincides with the standard one at regions with zero longitudinal magnetic field,
where they are equal to negative half-derivatives of the beta-functions.

Further implementation of this parameterization was included in a computer code

developed by one of the authors®. The resulting numerical study of a model lattice has
proven to be useful for both theoretical understanding of coupled betatron motion and
further code development. It has also assured us of the correctness of the analytical results.

1. Equations of Motion and Condition of Symplecticity

‘Two-dimensional linear motion of a particle in a focusing lattice structure can be described
by the following set of equations:

x"+(Kx2+k)x+(N-—%R']y—Ry'=O ,
1 (1.1)
v+, —k)y+(N+ER')x+Rx’=O

Here x and yare the horizontal and vertical particle displacements from the ideal orbit; the
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derivatives are calculated along the longitudinal coordinate s; K, , =eB, ./ Pc; k =eG/ Pc;

N =eG,/Pc; R=eB /Pc;B,, B and B, are the corresponding components of the

Xy

magnetic field; G is the normal component of the magnetic field gradient; and G, is the

skew component of the magnetic field gradient (a quad tilted by 45 deg. around s axis in the
nght-handed coordinate system).

The Hamiltonian corresponding to Eq. (1.1) is equal to

2 2
p.+p 2 R*\x* 2 R*)y? R
H="F"2 4| K " +k+—|—+|K " —k+— |—+Nxy+— - , (1.2
5 ( 4)2 (y 7|5 N z(ypx xpy) (1.2)

and the corresponding canonical momenta are

, R
P.=x =7y
* 2
M (1.3)
Py =y

Rewriting Eq.(1.3) in matrix form we obtain the relation between the canonical, %, and the
geometric coordinates, X,

I=Rx , (1.4)
where
X X 1 0 0 0
0. 0 1 -R/2 0
X= P , X= , R= / , (1.5)
y y 0O 0 1 0
P, 0, R2 0 0 1

6 =x"and 6, =y'.

Introducing matrix H,

2

Kj+k+54— 0 N ~R/2
H- 0 I k2 o o1 (1.6)
N R/2 Kyz—k+—4~ 0
~R/2 0 0 1|

we can rewrite Egs. (1.1) and (1.2) in the matrix form:



H=—3%"Hx , (1.8)

where the unit symplectic matrix U is introduced as follows,

(]
o O O =
o O
o = O O

-1

For any two solutions of Eq. (1.7), %,(s) and X, (s), one can write that

i(& Tux )=£Ui +5 0B _ g THTUTUR, + %, TUUNR, =0 (1.10)
1 2 2 1 1 2 1 2 3 *
ds ds ds

and, consequently,
&%,"U%, = const . (1.11)

This motion integral is called the Lagrange invariant. Above in Eq. (1.10) the following

properties of the unit symplectic matrix were employed: U"U =1 and UU = -1, where I is
the identity matrx.

Introducing the transfer matrix from coordinate 0 to coordinate s, x(s) = M(0, s)x,,

and the corresponding transfer matrix for the canonical vanables, %(s) = M(O,S)f(o , one
finds using Eq.(1.4) that

NI(0,5)%, = &(s) = R(s)X(s) = R(s)M(0, 5)x(0) = R(s)M(0,5)R'(O)%, ,  (1.12)
which yields that the matrices are bound up by the following equation:
M(0, s) = R(s)M(0, s)R(0)™ . (1.13)

Here and below we put a cap above transfer matrices and vectors related to the canonical
variables. It is also useful to note that the inverse of matrix R is

1 0 0 0

i 0 1 R2 O

R = o o0 1 o (1.14)
-R/2 0 0 1



Taking into account that the invariant of Eq.(1.11) does not change durning motion
we can write that

%,"U%, = %, M(0,s)" UM(0,5)%, = const . (1.15)
As the above equation is sutisfied for any % it yields
M(0,s)" UM(0,5)=U . (1.16)

Eq. (1.16) expresses the symplecticity condition for particle motion. It is equivalent to 7 =16
scalar equations, but taking into account that the matrix M(0, s)7 UM(0, 5) is

antisymmetric, only six ((7—n)/2=6) of these equations are independent. Consequently, only
10 of 16 elements of the transfer matrix are independent. As one can see, the symplecticity
condition imposes more severe limitations than Liouville’s theorem, which i imposes only one
condition, det(M) =1, and leaves 15 independent parameters.

2. Eigen-vectors and Conditions of Orthogonality
Consider a circular accelerator with the total transfer matrix M . The transfer matrix has four
eigen-values, A;, and four corresponding eigen-vectors, ¥; (i = 1, 2, 3, 4). It follows from the

matrix symplecticity that the eigen-values are reciprocal. This can be proven as follows; let A,
and A, (i # j) be two eigen-values,

MV, =A%, , and MV, =1%,. 2.1)

Then, using Eqgs.(2.1) and Eq.(1.16) one can write the identity
0=4,% UM, - 2,9, )= (19, | UNIS, 4,9 TUAS, = (1- 2,4, ] 0%, . 2.2)

Any vector in the phase-space can be represented as a linear combination of four eigen-
vectors V,, and, consequently, these four vectors are linearly independent. The vector UV,
appearing in the last part of Eq. (2.2) cannot be simultaneously orthogonal to all four eigen-
vectors V, and, hence, there is at least one vector ¥ for which 4,4, =1. That proves that

the four eigen-values always appear in two reciprocal pairs.

Below, we will consider the case of a stable betatron motion, meaning all four eigen-
values are confined to a unit circle and, consequently, the four eigen-values split into two

complex conjugate pairs. We will denote themas A,, 4,, A, and 4, , and the corresponding

. A A A A * * .
eigen-vectors as ¥,, v, , ¥, and V, , where " denotes the complex conjugate value.

For the case of 4, # 4,, we obtain the following set of orthogonality conditions:



v,'0v, 20,
v, UV, =0, : (2.3)
Q',.TUQ' ;=0, — otherwise,
where #* =¥ . The values in the two top lines of Eq.(2.3) are purely imaginary, indeed:
(ud) = (FUs) = v U =—UY (2.4)

Therefore one can normalize the eigen-vectors as follows:

A+ ~ . A+ A .

v, Uv, =-21 , v, Uv,=-2i ,

A Tyra A Tyrn

v, UV, =0 , v, Uv,=0 , (2.5)
A Tyrn A +prAa

v, Uv, =0 , v, Uv, =0

Other combinations can be obtained by applying the transposition and (or) the complex
conjugation to Egs. (2.5).

3. Relation between Eigen-vectors and Emittance Ellipsoid in 4D Phase Space

The turn-by-turn particle positions and angles (at the beginning of the lattice) can be
represented as a linear combination of four independent solutions,

%= Re(A,e'”‘" ¥, + e 02)= 4 Re((cos w, —isiny, (0, +1V, D
+ 4, Re((cosy/2 —isin ‘//2{02 +1iv, )) (3.1)
= A,(i'l cosy, + ¥, sinwl) + AZ(VZ cosy, + ¥V, sin 1//2) ,

where four real parameters, A; A, y, and y, , represent the betatron amplitudes and phases.
The amplitudes remain constant in the course of betatron motion while the phases change
after each turn.

Let us introduce the following real matrix
v =[e1 -, } . (3.2)
This allows one to rewrite Eq. (3.1) in the compact form

§=VE, , (3.3)

where



A, cosy,
- — 4, sin
-, il (3.4
, COSY/,

- 4,siny,

Applying orthogonality conditions given by Eq.(2.5), one can prove that matnx Vis a
symplectic matrix. It can be seen explicitly as follows:

T2

* * * * T
vV, +V vV, -V, V.4V v, -V
VTUV= 1 1 1 1 2 2 2 2 U-
2 i
(3.5)

Here we took into account that every matrix element in matrix V'UV can be calculated using
vector multiplication of Egs. (2.5).

Let us consider an ensemble of particles, whose motion (at the beginning of lattice)
is contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by particles with
extreme betatron amplitudes. For any of these particles, Egs. (3.3) and (3.4) describe the 2D-
subspace of single particle motion, which is a subspace of the 3D surface of the ellipsoid,
described by the bilinear form, &, as follows:

T

FTER=1 . (3.6)

This ellipsoid confines the motion of all particles. To describe a 3D surface we introduce the

third parameter y; so that the vector & would describe a 3D sphere with a unit radius,
according to the equation

€)1, (37)
where
cosy/, Cosy,
E- — SNy, COSY/, 09

cosy, siny,

—siny, siny,
Then, combining Egs. (3.3), (3.4) and (3.8) we can write down the equation,
% =VAE, (3.9)

which describes a 3D subspace confining all particles of the beam. Here the amplitude



matrix A is

N

moo
o o ©

(3.10)

o o o
o o
o™ o o
Y

Substituting Eq. (3.9) into Eq. (3.7) one obtains the quadratic form describing a 4D
ellipsoid containing all particles

2 (va)y'f (vay'g=1 . (3.11)
Comparing Egs. (3.6) and (3.11) one can reduce it to the following simple form,

2=((va)y'J (va)', (3.12)
where E is a symmetric matrix depending on two amplitudes, A, and A,.

To determine the beam emittance (volume of the occupied 4D phase-space)

described by Eq. (3.11), one can perform an orthogonal transformation, T, which reduces =
to a diagonal form, according to the equation

Ix]

'=TTET (3.13)

where det(T)=1. Then, in the new coordinate frame the 3D ellipsoid enclosing total 4D
phase-space of the beam can be described by the following equation

—_— 42 —_—" 12 —_r 12 — r2
X+ E,p. By +ELp) =1 (3.14)

It is natural to define the beam emittance as a product of the ellipsoid axes (omitting a factor
correcting for the real 4D volume of ellipsoid) so that

1 1 1

Ep = = 3.15
W EE R, JdeltE)  Jdel(®) (19
Calculation of the determinant using Eq. (3.12) yields
1
(4,4, |det(V)| = (4,4,) , (3.16)

“0 = @)

where we used the condition det(V) =1 following from the matrix V symplecticity.

The squares of amplitudes A, and 4, can be considered as the corresponding 2D
emittances, which coincide with the honzontal and vertical emittances of uncoupled motion.



Furthermore, the symplecticity of matrix V yields the following useful expression for the

. ) 4
mverse matrix, V™ :

v'=-UvV'U ,

where we took into account that U’U =1 and UU = -1.

One can finally rewrite Eq. (3.12) in the following compact form

/¢, O
_uTV 0 /g
0 0

0 0

viu

0 0

0 0
/e, O

0 1g,

(3.17)

(3.18)

where ¢, and &, are the 2D emittances corresponding to the eigen-vectors ¥, and V,.

4. Beta-functions for Coupled Motion

Employing previously introduced notation, one can describe a single particle phase-space
trajectory along the beam orbit as

X(s) = M(0,5) Re(\/ & v,e™ + g, f’ze_iw)
=Re(«lé}f’,(s)e“'(""w'(‘”+ &, {,Z(s)e—i(wﬁ,uz(s))) ,

.1)

where the vectors ¥,(s) = e™'M(0,5)¥, and ¥,(s) = ™ M(0,5)¥, are the eigen-

vectors of the matrix M(0, s)MM(0,s)™", v, and v, are the initial phases of betatron
P

motion and M = M(0, L) is the transfer matrix of the entire ring. One can notice that the

—ipy(s)

are introduced to bring the eigen-vectors to the standard form (see

Eq. (4.2) below). Similar to the case of uncoupled motion we can rewrite Eq. (4.1) in the

terms e “®and e
form
X(s) =Re| /&,

\/:le(s)

iu (s)+a,(s)

v By (s)
meiv.(s)

iu,(s)+ Q, (s) e

‘\,ﬂly(s)

e—i(y.(S)W.) + /82

VBai ()™

_1u3(9) 423, () iy
JVB.(s)
VB, (5)

_ iu,(s)+a,,(s)

\/ﬂzy(s)

e‘(i#z (s)+y,)

(4.2)

where B,.(5), B.s), Bals) and S, s) are the beta-functions, a,,(s), a,,(5), () and ar, (s) are
the alpha-functions which, as will be shown in the next section, coincide with the beta-
functions negative half-derivatives at regions with zero longitudinal magnetic field, z4(s) and

8




14,(s) are the phase advances of betatron motion, and six real functions #(s), #(s), (s), #(s),
v,(s) and v,(s) are determined by the orthogonality condition of Eq.(2.5). Below we will call

ten functions B,,(5), B5)s Baul5)s Bf)s €nl5)s @fs), @l)s fs)s £41(5) and 4(s) as the

generalized Twiss functions.

The first orthogonality condition,

VB ] B

i, ta, 0 1 0 O] _iu+a,
N -10 0 0 VB
(¢,70%, )= 4 " 4 o = i, vuy) =20
By, e 0 0 1| +Bye
_ u, +a, v 0 0 -1 0f_ u, +a,, o

ﬂly i ~ ﬂ]y (s)

43)

yields #, = 1— u, , and similarly for the second eigen-vector, #, = 1~ #,. The next two
equations, ¥,"U¥, =0 and ¥, U¥, =0, are identities. For the rest two non-trivial
orthogonality conditions, taking into account the above relations for # and #, one can write,

~ \/E:ein T+ B _\/FIX

—iu, —a,, i 0 i, -D—a,,
brosd| Ve[
v, Uy, |= \/E 0

i(u, —1)—a2y 0

5, VB

o O O
o~ O O
[ |

=
. -

o O O =

ix 2x

[ 'ﬁ;yy (1(1 u)—a,, )+ ﬁz (iu2+a1y)]eivl =0 |

( 'zzx (1 -u,)+a, )+ g” (iu, —azx)]e”'”2 o

—iuy —Qy, iy, 0 1 0 0] iu,-Y)-a,
(5,705, )= VB 10 0 of B o |_
JBay 0 0 0 1 B, e™
i(uz—l)_az) 0 0 -1 of ~u,—q, iv,




{ Bty B o)

(4.5)
- /ﬂ"’ (i(u, - -y, )+ Po i, +a, )l =0
ﬂZy ﬂly
Multiplying both terms in Eq.(4.4) and Eq.(4.5) by their complex conjugate values one
obtains
sz (K A-u,)+x, 'u )) =4, +(Ky(l——u3)+1<y_1u2)2 , “o)
sz +<K‘ (A-u,)—x, “u )) =4, +(1cy(1—u3)—1(y_]uz)2 ,
where
A.\' = Kxal.r _Kx—laZX >
A, =K a,, -k, a, , (4.7)
K, P )
ﬁZy
Subtracting Egs. (4.6) yields #,=. Substituting #,=s#,=u. into Eqs.(4.4) and Eq.(4.5) one
obtains the following expression for u:
(4, +in e — (4, -ix, "
u=-i ,
N A T
. (4.8)
. (AX + iK.x k‘vz (A} l k

u=-—i Y
beotre k=, 4

Solutions of the above two complex equations determine the last three real unknown
parameters. To solve Eqs. (4.8) one takes into account that the imaginary parts of the right-
hand sides of both Egs. (4.8) are equal to zero. That yields the following pair of equations:

A, cos(v, +v,)-Bsin(v, +v,)+C, =0 ,

9
A_cos(v, —v,)-Bsin(v, —v,)+C_=0 (49)

where

10




B=xux," -k 'k, , (4.10)
C, = AX(KX —K'x_])— Ay(l(} —K)_]) ,
C = AX(K'X +rcr'1)+ Ay(rc) +r<y")

Each of Egs. (4.9) has two roots:

7T —asin & +arg(B+id,) ,
A4, +B?
asin ————9——— +arg(B+iA+) ,
\A+B?

v E(VI +V2)1,2 =1

+12

(4.11)

: C :

7T +asm| ———— |- arg(B + zA_) ,
JA+B?
V., = (Vz -V )1,2 =1
—asin & |- arg(B+id_)
VA + B
Combining expressions for v, and v_ one obtains solutions for v, and v, as follows:
1
vV, =nxw +§(V+ -v)) ,

(4.12)

v, =n7r+%(v++v_)

Here we took into account that phases v- and v, are determined modulo 2x, which yelds
that v, and v, are determined modulo 7. This results in four different solutions for v; and v,
(see below). To find # we can use any of Egs. (4.8). Using the top equation and substituting
Eq.(4.11) to it we obtain two roots forz,

“, = KXZ + K'yz -2+ K, cos(vﬁ2 )— (Ax (K'y -—Ky_l )+ A, (K'x —-Kx_l ))sin(vﬂ'2 ) @)

ol w2l o o, eosl, )
(K'X—K‘X )+K'y-—Ky +2\k, -k, f\k,—K, [coslv,

- -1 : : .
where K, =2k, —K, K,—KXK, . As one can verify, using the bottom equation in Eq. (4.8)

yields the same value for #. The roots u; ; have opposite signs and close absolute values.
Finally, we can write down the following set of four different solutions for #, v, and v;:

11



(. (v, —v_)12, (v, +v.)/2)

w, (v, v )2 m+(v, +v.)I2)
(40 (v, —v_)/2, (v, +v_)12)

‘(uz, T+, —v )2, m+(v, +v_2)/2)

(u,v,,v,)=1 (4.14)

These four solutions can be separated into two pairs; with the same values of « and phases,
v, and w, different by 7. This property originates from the fact that the mirror reflection
with respect to x or y axis does not change s and o’s but only changes relative signs for x
and y components of the eigen-vectors', with subsequent change of v(s) and v, (s) by 7.

Finally we can rewrite Eq. (4.2) in the following compact form

X(s) = Re( \/;1 ¥, (s)e @) 4 [ Q,Z(S)e—(iuz(swz)) ’ (4.15)

where the eigen-vectors, ¥, and ¥, , are given explicitly as follows:

JB ) JBor(5)e:®

_ i(l—u(s))+a]x(s) _u(s)+a,,(s) D
A _ ‘\/ﬂlx () " B \/132;:(5) 416
V,(s) = meiv,(s) > Vz(S) = \/m . ( . )

_iu(s)+a,, () e B il —u(s))+a,,(s)

,B1y(s) i \/ﬂzy(s)

Here v,(s) and v, (s) and u(s) are determined by the beta- and alpha-functions from Egs.
(4.11), (4.12) and (4.13).

5. Differential Equation for Beam Envelopes

Let us consider the relations between the beta-and alpha-functions. A differential trajectory
displacement related to the first eigen-vector can be expressed as follows:

x(s + As) = x(s) + x'(s)As + O(As?) = x(s) +(px(s) +§y)As +0(As?) =

Je Re{(\/ﬂu('s_) ; (— i ‘“jj;—)f—‘;"‘ 2R e"v'“)]AsJe-“ﬂmw-)J +0(As?)
1x s

(5.1)

' It can also be achieved by a change of coupling sign (like simultaneous sign change for gradients of all
skew quads and magnetic fields of all solenoids), which does not change the beta-functions but does change

the v-functions by 7.

12



Alternatively, one can express patticle position through the beta-functions at the new
coordinate s + As:

xX(s + As) = Re( JE B (s + As)e 2w )=
Ve Re[(m ® Lm@jJ o(as?)

(5.2)
2By (s)

Comparing both the imaginary and real parts of Eqs. (5.1) and (5.2) one obtains:

df_lx =-2a,, + R/ B, () B, (s) cos(v,(s)) ,

AY
5.3
du, _1-u(s) R /ﬂl),(s) sin(v, () . )
ds Bi(s) 2N Bi.(s) l

Similarly, one can write down equivalent expressions for the vertical displacement,

y(s +ds) = y(s)+ y'(s)ds = y(s) + (py (- gx)ds =

\/;:Re[[ /ﬁly(s) e _[iu_(s)i-czl—y)(s)eivl(s) +§mjds]e—i(y,(s)+w,)J ,
\Piyls

(5.4)

and

dp, . v

ds) = Y dv. —d i (s)+y—vi(s)) , )
x(s +ds) \/}TRe[[,/ﬂ,y(s)+2m+z,/ﬁ1y(s)( v, ,u,)}e J (5.5)
which yields:
dﬁly
— = -2a,, - R\[B,,(5)B,, (s) cos(v, (5)) ,
dv, _1-us) @) R| [Py A6 g )
ds () B 2(VB.() \B,() ‘

Similar calculations carried out for the second eigen-vector yield,

(5.6)

13



dap,

Por < 20, - R B OB, @ 00s265)

au, _ l:.&+£ Msin(vz(s)) ,
ds  pB,,(s) 25, ()

Lot - 20, + R )Pe,  coslr)

dv, =1—u(s)__ u(s) ____Ri IBZy(s) _ Ba:(s) sin(vz(s)) .
ds ﬂz},(s) By (s) 2\ Bs.(s) ﬂZy(S)

To obtain the equation for the betatron functions (the generalized Floquet envelope

equation) one needs to substitute the phase-space coordinates expressed through the eigen-
vector into Eq. (1.7):

(57)

%(@ke‘*‘k“)): UHV, e ™™ | k=12 (5.8)

Performing differentiation one obtains

ds

=(UH+idu" jok . (5.9)
ds

Using Egs. (5.3) and (5.7) du/ds can be expressed through the eigen-vector components as
follows:

ds v

., '1 . (5.10)
B Ll 2,)

ds Va, o201

Knowing components of the eigen-vectors, ¥, and v, , and employing Eq.(4.16) one finally
obtains the generalized betatron functions.

6. Explicit Representation of Transfer Matrix in Terms of Generalized Twiss Functions

One can derive a useful representation of the one-turn transfer matrix M in terms of the ten
generalized Twiss functions. Using an explicit definition of the matrix V(s) (see Eq.(3.2)) in
terms of eigen-vectors ¥,(s) and ¥,(s) given by Eq.(4.16), one can express it as follows

14



B 0 \/:Bzx cosv, —y By, siny,

a, 1-u usinv, —@,, cosv, UCOSV, +a, sinv,

vy A V. B B
= \/—ﬂ_ly cosv, —\/B; siny, By, 0 . (6.1)

usinv, —@,, Cosv, ucosv, +a;, sinv, Q,, 1-u

,Bly ﬂly \/:—@-y 'BZy

- -

Using Eq.(2.1) one can derive the useful identity
MV(s)=V(s)S , 6.2)

where the matrix S is given explicitly as follows

cosy, sinpy, 0 0
—sin cos 0 0
S = H H . (6.3)
0 0 cosp, sinu,
0 0 —siny, Ccosu,
Multiplying both sides of Eq.(6.2) by the inverse matrix, V™' = -UV'U, as given by
Eq.(3.17), allows one to express the transfer matrix, M, in the form
M=-VSUV'U . (6.4)

Matrix multiplication in Eq.(6.4) was carried out using a symbolic math program. The
resulting 16 transfer matrix elements as a function of generalized Twiss functions are
summarized in Appendix A.

7. Summary

The article introduces a new representation of two-dimensional coupled betatron motion.
This approach is based on a novel parametrization of the 4x4 symplectic transfer matnx by
introducing the following ten functions: 4 beta-functions, 4 alpha-functions and 2 betatron
phase advances which we call the generalized Twiss functions. The beta-functions have
similar meaning to the Courant-Snyder parameterization, and the definition of alpha-
functions coincides with the standard one at regions with zero longitudinal magnetic field,
where they are equal to negative half-derivatives of the beta-functions. Furthermore, one can
easily obtain the generalized betatron functions, knowing components of the eigen-vectors,

¥, and ¥,, and employing Eq.(4.15). A useful representation of transfer matrix M in terms
of the generalized Twiss functions is also introduced (see Appendix A).

A definition of 4D emittance is introduced for an ensemble of particles, whose
motion is contained in a 4D ellipsoid. A 3D surface of this ellipsoid is determined by
particles with extreme betatron amplitudes. For any of these particles, Egs. (3.3) and (3.4)
describe a 2D-subspace of single particle motion, which is a subspace of the 3D surface of

15



the ellipsoid. An explicit expression for the 4D phase-space volume enclosed by the 3D
ellipsoid is derived. It reduces to usual 2D case in the absence of coupling (see Appendix B).

The presented parameterization has been proven very useful for both analytic and
numerical analysis of coupled betatron motion in circular machines and transfer lines. It is
important to note that although the canonical coordinates were used through the article it
usually does not bring complications in practical applications of the developed formalism
because the canonical and geometric coordinates coincide at regions with zero longitudinal
magnetic field. The above-mentioned software developed for study of coupled betatron
motion always uses transfer matrices which start and end at points with zero longitudinal
magnetic field and, thus, canonical and geometric coordinates always coincide. Appendix C
shows an example of analysis of how the strongly coupled motion for the Fermilab electron
cooling project can be analyzed with the developed formalism.

Authors are grateful to Y. Chaa, S. Comeliussen and L. Harwood for careful reading of the
manuscript and useful suggestions for improung darity of the paper.

Appendix A. Explicit Representation of Transfer Matrix in Terms of Generalized TWISS Functions

Performing matrix multiplication given by Eq.(6.4) and using explicit expressions for
matrices V and S , Egs.(6.1)-(6.3) yield the following expressions for all 16 elements of the
transfer matrix M:

M, =(1-u)cosp, +a,, siny, +ucosp, +a, siny, , : (A1)
M,, = B, sinp +ucosp, + By sinu, (A2)
ﬂh’

M,= [czlysm(;zl —v;)+ucosy, - v]+ _[O‘z) sin(zs, —v, ) +(1~u)cos 4 vl)] , (A.3)
Byy

M, =4 ﬁlxﬂly Sin(;ul +V1)+\/ ﬂanZy Sin(tuz _Vz) ’ (A-4)

M, = —-L[(l —u’ )+ al, ]sin 4 ——Bl— u’ +as ]sin 7R (A5)

1x 2x
M,, =(1-u)cosy, —a,, siny, —a,, siny, , (A6)

Zﬁ {1-1ax, —uar, Jcos(as +v)-loy.cr, +odu~Dsin(g +1)}+

F{[uazy 1 u)az]coi,ul v2 [%%y+u(u l]sm(,uz—v2} R
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M,, =J§[au sinfzy —)+(1-u)eos(ps —; )|+ %[azx sin(zg, +v,)+ucodpy, +w)] - (A9)

A432 :\j ﬂl.\'ﬂly Sin(lul —Vl)+\l ﬂZxﬂZy Sin(/‘LZ +V2) ’ (A‘]‘O)
M,, =(1-u)cosy, +a, sinp, +a, siny, , (A.11)
M, =By sinp, + B, sinpy, (A.12)

1
AAB,

M, = {1-fucos(ts-+%) -y sinls +)|-aq ucos(y —1) -a, sin( )]+

(A.13)

\/—E:E {(1_”)[0%005(% +v,)—usin(g, +Vz)]—azy[u005(/‘2 +v,)+ 0, sin(sy +v2)]} )

M, = ”g“ [—aly sin(y, —v1)+ucos(,ul —v,)]— ’gu [azy sin(,u2 +v2)+(1—u)coiy2 +v2)] , (A14)
1y 2y -
M, = ———1—[u2 +a;, ]sin H, —L[(l —u)+ a,, ]sin Uy (A.15)
by ﬂZy
M, =(1-u)cos u, —a,, sin yu, +ucos p, —a, sinp, . (A.16)

Appendix B. 1D Betatron Motion — 2D Phase-space Formalism

In the case of one-dimensional betatron motion, our formalism reduces to standard
Courant-Snyder parametrization. The phase-space trajectory can be represented as

JB
Lj}zA_aﬂe‘”’, A=+e (B.1)

VB

where ¢ is the beam emittance, f is the beta-function and @ is its negative half dervative.
Then matrix V (see Eq.(3.2)) can be written in the simple form
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JB 0
\% a 1 , (B.2)

B B

One can see that its determinant is equal to 1. The inverse matrix 1s given by

vig¥e | )

Finally, the matrix E (see Eq.(3.6)) can be expressed as

1+’
2=((av)'J (av)’ = % 5 “ (B.4)
a f

and the beam emittance (compare Eq.(3.16)) is equal to

1

20 = Jie(®)

Appendix C. Generalized Twiss Functions for Axisymmetric Distribution Function

=A*=¢ . (B.5)

To increase Tevatron luminosity Fermilab is developing a high energy electron cooling
device for cooling of antiprotons®. Because of high energy of the electron beam (~5 MeV), it
is impractical to use the standard choice used in electron cooling devices for the beam
transport where the beam moves in the longitudinal magnetic field along the entire way from
the electron gun to the collector. Nevertheless the longitudinal magnetic field is still used for
beam focusing in the cooling section to cancel the beam defocusing due to the electron
beam space charge and more important to reach collective stability of the electron beam. To
neutralize the rotational motion of particles in the cooling section the beam is produced in
the electron gun immersed in the longitudinal magnetic field. Consequently, the beam
transport is going to be quite sophisticated with a large number of bends and focusing
elements. Taking into account that the space charge effects are comparatively small
everywhere except the gun and the collector it looks attractive to use the developed
formalism for beam transport analysis. The beam motion in the gun should be analyzed by a
specialized code, which calculates beam parameters at exit of the electrostatic accelerator.
Then, the beam transport can be analyzed with the generalized Twiss functions, the initial
values of which we calculate in this appendix.

At the exit of electrostatic accelerator the electron beam distribution is axially
symmetric, and before the beam leaves the magnetic field its distribution function can be

described by the bilinear form
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Yo @ 0 0

1|a 0 0
s=—| % , (C1)

e |0 0 7 a

0 0 a, B,

-]
o

where &, =7, /mkT, / P, is the thermal emittance of the beam, 7. is the cathode radius, T 1s
the cathode temperature, Py and m are the particle momentum and mass, B, =a’/¢,,

a, =—+pB/&;(dalds),and y, = (1 +a, )/ﬁo are the initial Twiss functions, and a is the

beam radius at the electrostatic accelerator exit. After exiting from the magnetic field the
electrons will acquire angular momentum proportional to the radius, and the distribution can
be characterized by the bilinear form:

Vot (DZ:BO a, 0 -0,
o 0
Eo—pTE, - & Py Fo . (C2)
Er 0 DB, y, +D°p, Q,
~-0pg, 0 a, B,
where
1 0 0 O
0O 1 & 0
P = , (C3)
0O 0 1 0
- 0 0 1

® = eB/2P,c is the rotational focusing strength of the solenoid edge, B is the solenoid
magnetic field.

To choose initial values for generalized Twiss functions we use the axial symmetry of
the electron distribution function. It implies that the horizontal and vertical alpha- and beta-
functions are equal, and we obtain for the eigen-vectors:

\/ﬁ i \/Eeivz
_i+2a _z‘+2ae,-vZ
¥.(s) = \/%\f R 2‘/\/% . (C4)

i+2ae“" I+ 2a

2 25

In this case the coefficients of Eq. (4.7) are
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K =k=1 and A,=A4-=0, (C5)

which creates uncertainty in Eq. (4.11) for v, and v,. To avoid this uncertainty we will use
initial Egs. (4.4) and (4.5). Substituting Eq. (C.5) into these equations we obtain,

e " = g™ ’ -
(1- 2u)(e'in —e™ )= 0 .

The solutions of these equations are: u=1/2 and v; =— v, + 27m . As one can see in this
case we have an unlimited number of solutions for v, and v,. We will choose v, =- v, =
71/ 2 to reach a better symmetry for the eigen-vectors. Then, the matrix V is equal to:

Foo 0 P

a (4

1
7 gg M| -

a 1

W5V

Using Eq. (3.18) we obtain the bilinear form,

140 (1 1 11 11 1)]
—+—| a—+— 0 —| ———
45 g ¢ g & AN
a(L+L] ﬁ[L;J _l(L_LJ 0
g & £ & AN . (C3)
1 1 1
0 —— = +—| o —+—
AR 48 g & (a, £, j
l(L_L] 0 a(L+LJ ﬂ[L+L)
2 g g g & & &)
Comparing Egs. (C.2) and (C8) one can express generalized Twiss functions through the
Twiss parameters of the beam distribution function in the magnetic field:

Ial
i
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_ Bo

& wiraip?

aO

a=———— ,

21+ @B,

(C9)
£ = ér
1™ »

JI+ @B, -DB,

£ = o

«/1 + @B + DB,

2 . e . .
One can see that ¢,&, = &, , which venfies the conclusions of Section 3.
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