CODA Performance in the Real World

D.J. Abbott, W.G. Heyes, E. Jastrzembski,
R.W. MacLeed, C. Timmer, E. Wolin

Thomas Jefferson National Accelerator Facility (TINAF)
12000 Jefferson Avenue, Newport News, Virginia 23606 USA

Abstract

The most ambitious implementation of the Jefferson Lab
data acquisition system (CODA) to date is for the CLAS
spectrometer in Experimental Hall B. CLAS has over 40,000
instrumented channels and uses up to 30 front-end
(FASTBUS/VME) crates in the DAQ subsystem. During the
initial experiments we found that performance of the fully
instrumented DAQ system did not scale as expected based on
single point to point benchmarks. Over the past year we have
been able to study various performance bottlenecks in the
CLAS DAQ system including front-end real time performance,
switched 100BaseT FEthernet data transport, and online data
distribution and recording. Performance tuning was necessary
for components on both real time (VxWorks) and UNIX
(Solaris) operating systems. In addition, a new efficient Event
Transfer System (ET) was developed to provide faster online
monitoring while having minimal impact on data throughput
to storage. We discuss these issues and efforis to overcome the
real world problems associated with running a high
performance DAQ system on a variety of commercial hardware
and software.

L. INTRODUCTION

The CODA Data Acquisition systern has been used in
production experiments at Jefferson Lab since 1995. It was
developed as a modular and extensible software toolkit which
allows for rapid construction of DAQ systems of varying
complexity using a wide variety of commercially available
front-end hardware, CPUs, and network links [1]. As a
software-based system CODA, can be easily adapted to run on
many different types of hardware. CODA Version 2 is
supported on the SUN/Solaris [2] and Intel/LINUX 3] based
operating systems, and the VxWorks [4] real-time operating
system. Existing CODA DAQ systems in use at Jefferson Lab
and other facilities range in complexity from a single self-
contained VME crate keeping time-based scalar statistics to the
CEBAF Large Angle Spectrometer (CLAS) which uses over
30 distributed CPUs for physics data acquisition, detector
monitoring and control.

One of the primary problems with such a software-based
DAQ is that the overall system performance is govemed
largely by the “slowest” hardware. This can be an ADC with a
long conversion time, a slow CPU, a poor or congested
network link, or perhaps an “antiquated” disk or tape drive.
However, as systems become more complex new problems can
arise. Tracking down the bottleneck may not be as trivial as
identifying the “slowest” hardware component. This was the
case with the CLAS DAQ system during the first production
experiments. With hardware in place that should have allowed

for trigger rates in excess if 2 kHz and/or aggregate data rates
from 10-15 Mbytes/sec, the CLAS DAQ system could not be
pushed beyond 500 Hz (=1 Mbytes/sec) without suffering a
significant increase in acquisition dead time.

In the time that followed we examined the performance of
the DAQ system as a function of complexity and found that
some of the features that were iniroduced into CODA Version
2 to manage large systems with parallel data streams were not
behaving as predicted in past simulations [S]. We briefly
discuss the CODA architecture followed by the solutions found
to bring the CLAS DAQ system up to experimental
performance specifications.

1L CODA ARCHITECTURE

CODA consisis of a set of software objects or components
which communicate via a common network accessible
database. The three primary CODA components are the readout
controller (ROC), the event builder (EB), and the event recorder
(ER). Additional software services or components can be
implemented to customize and extend the acquisition system.
These include the trigger supervisor (TS) component, the
CMLOG emor/message reporting system, and the cvent
transfer (ET} system which is a replacement for the older
shared-memory data distribution system (DD). Each
component can be run on the same CPU or distibuted among
many different hosts.

In a typical data acquisition system one or more ROCs
would be running on VxWorks single board computers resident
in FASTBUS, VME, or CAMAC crates. Data collected by the
ROCs is bulfered and sent to the EB (via a standard network
link - Ethernet, ATM) running on a UNIX host. The EB sorts
the ROC event fragments and builds a complete event which is
in turn submitted to the ET or DD system for consumption by
the ER and other optional user processes (i.e. online analyzer,
event display).

Control and monitoring of all CODA components can be
handled directly via a built-in Tl (v7.4) [6] shell or through a
Run Control server that is responsible for configuration,
run/state transitions, and monitoring of all active CODA
components. All the information for experimental
configurations, hosts, downloadable modules for components,
and scripts to be executed are stored in a network accessible
mSQL[7] database. This database is the key to transparent
object-based communication between all components in a
CODA DAQ system,

Figure 1 shows the implementation of CODA for the
CLAS data acquisition subsystem. Twenty-one ROCs accept
physics triggers from the Trigger Supervisor subsystem [8]-



COMPUTER CENTER

StorageTek/
Redwaoed

6 Tape Drives
600-1200 TeraByte

B &5
| -

1200 meters

COUNTING HOUSE

Two 32 GByte
RAID Arrays
(Dual Ported
FiberChannel)

CLAS Online Workstations
(for User processes, online analysis
event display etc..)

(Quad 100BaseT)

EXPERIMENTAL HALL

Trigger Supervisor

JTTT

TTTT

HENEN .
TTTTT

Figure 1: Schematic showing the CODA implementation for the CLAS DAQ system.

Four to nine additional ROCs are available for control and

monitoring of the various CLAS detector subsystems. Data 1I1. PERFORMANCE ISSUES

from “physics” ROCs are sent via switched 100BaseT Ethernet

t:; an }FE)Byrunning on Sun SMP (4 CPUs). Built events are COD{& uses standard network protocols (TCP sockets) for

wrilten to one of two dual-parted fiber channel RAID storage transporting data fragments from the ROC to ti_w EB. Ideally

arrays. As one array is filled the second is backed-up to a each event fragment should bf:: sent as soon as it 1s pr_od:‘;:cd 0;11

StorageTek/Redwood tape silo [9] in the Computer Center the ROC; however, to avoid the overhc':ad assoglat Wit
TCP/IP transport, fragments are buffered in sufficiently large

{about 1 km away). Additional Sun workstations are available . .
on a separate subnet for enline monitoring and analysis. records to make the network transport as efficient as possible.



In CODA version 2.0 we implemented a “pull”
architecture for the data transport. The EB sends a “token” to
the ROC indicating it is ready to accept data. In the case where
there are multiple EBs, the ROC queues tokens from each EB
and can then send data to the next one available. The EB
operates as two threads. The main thread is responsible for
polling the ROC connections for data, reading the data,
buffering it, and then generating the next token after it has
received a record from every ROC. The second thread is
responsible for building the events from the ROC fragments,
and writing this data to the DD system for analysis and/or
recording by the ER,

For a single ROC 10 EB link the original hardware was
capable of 2 kHz and/or 3-4 Mbytes/sec throughput. However,
for the case where more than twenty ROCs were sending data
to the EB the performance degraded to less than 500 Hz and/or
about 1 MBytefsec. We looked at many issues including, TCP
sendireceive buffer sizes and alternate token passing schemes,
all of which had nominal effects on the performance, but not
the breakthrough we were looking for. The primary problem
was in the EBs handling of muitiple ROC data streams.
Although the ROCs were simultangously sending data, there
was only a single thread servicing all the connections (via
select()). The EB was still serially reading data from all the
ROCs as well as grinding though the overhead of monitoring
the status of all the connections.

The solution was to provide a mechanism for insuring that
data from the ROCs are read in parallel. The first option would
be to run multiple EBs on the same or different nodes.
However, even with a second EB one could only read two
ROCs in parallel, and increasing the number of active EBs
seemed an unnecessary complication to the DAQ system given
that the network links were perfectly capable of handling the
throughput. In addition, there was more than enough
processing power by running the EB on a quad-CPU Solaris
SMP. Hence, we modified the architecture of the EB to provide
a separate “reading” thread for each ROC connection. Each
thread simply blocks on a read call to its socket. This solves
several problems. First, one avoids calling select(). The main
thread remains unblocked and is still responsive to outside
inquiries. Second, tokens can be avoided. ROCs now “push”
the data to the EB as soon as they are ready. The EB only reads
the data when it is ready. Each thread queues data from its
ROC into a FIFO buffer. If the buffer for one ROC is full,
then no more data is read until the FIFO is emptied by the EB
“Build” thread. TCP/IP essentially provides the “backpressure”
flow control between the ROC and EB.

Letting a modern SMP UNIX operating system manage
20+ threads in a single process proved to be much simpler
than trying to run multiple processes on one or more hosts.
Even for the case where one runs an EB on a single processor
machine, the multiple thread-based architecture proved to be
more efficient than the original two-thread event builder. The
EB performance now truly scales with the host (i.e. the
number of processors, network links) on which it is running.
Its current limitation is the use of only a single build thread.

Concurrent with the software changes, new hardware was
put in place for the front-end processors (Motorola
MVME2306 300MHz VME single board computers). This
boosted the performance of the single ROC to EB data fink to

11 Mbytes/sec. In lests with multiple ROCs sending data to
the new EB ranning on a Sun Ulira 450 (four 250MHz CPUs
and a quad 100BascT Ethernet card), rates of 30-35 Mbytes/sec
were achieved.

Using the components of the revised release of CODA
{(v2.1} the CLAS data acquisition system has been able to
reach its data acquisition design goals, and is now routinely
running at 2.5 kHz, 10.5 Mbytes/sec at about 10% dead time.

Event Transfer and Online Analysis

For most data acquisition systems efficient data fransport to
permanent storage is only half the battle. Users also need the
ability to monitor the data content for quality assessment and
perhaps preliminary analysis. This should be done with no
measurable impact to the data flow.

With CODA version 2, we supported a data distribution
system (DD} written for experiments at Brookhaven National
Lab [8]. It is an event buffer manager based on UNIX System
V shared memory and semaphores. Event Producers can attach
to the system, request a buffer and insert an event. Event
Consumers can attach to the DD, request some fraction of
events for monitoring, analysis, etc, In the CODA
implementation, the EB is a permanent DD Producer and the
ER is a DD Consumer requiring all events placed into the
system.

The DD system was originally designed for the E787
experiment at BNL. There the events were large, and the data
came in bursts during a beam spill. At Jefferson Lab events arc
being acquired in a continuous stream. The DD, while
certainly adequate for many of the experiments that CODA was
designed to handle, had its limitations. We began to see these
limitations as experimental event rates crept up and as more
user processes were attempting to request events both on the
local DD host as well as remotely. For CLAS, after the ROC
to EB communication issues had been dealt with, it was clear
that the next bottleneck was the DD system.

With these issues in mind we have written a new event
distribution system called ET (Event Transfer) for use with
CODA 2.1. The ET system is a general software package
useful for efficient access and high speed transfer of daa
between processes using shared memory. In the ET
architecture, there is one UNIX process that handies the flow
of all events. This process passes event “descriptors™ around a
sequential list of “stations”. The descriptors point to events in
a shared memory file. User processes, including those on
remote nodes, may attach to these stations in order to read and
to write events.

To provide a system with maximum flexibility and
robustness, the ET API has been made reentrant and
independent of environmental variables, and crash recoverable.
To maximize the speed, multithreading, shared memory,
pthread mutexes, and condition variables are used.
Unfortunately at this time, ET’s use of POSIX extensions
(shared pthread mutex semaphores and condition variables)
means that some UNIX flavors may not support the main ET
system (e.g. LINUX). This is not a restriction for an
individual ET consumer process.

Great effort was put into ensuring that a crash of a local or
remote ET user process will be handled gracefully by the



system. A station has three choices in disposing of events left
after the user process disappears. If there is a second process
attached to the station, the events can be re-queued for
consumption by that process. Otherwise, the events can be
passed on to the next station or placed back on the free list.
Conversely, in the case of an ET system crash, a user process
can wait for a new ET “heartbeat”, indicating that the system
is running again, and can then reattach and carry on. This is
particularly uscful for programs such as Event Displays that
the user would like to start and leave running throughout the
experiment.

Preliminary measurements on a Sun SMP (running Solaris
2.6) indicate that ET is up to 25 times faster than the DD
system (independent of any memory to memory copying of
data). Hence, station to station buffer management as well as
multiple producer and consumer overheads have been
significantly reduced. For a typical CODA 2.1 application
running an EB as an ET Producer generating 5 Kbyte cvents
and an ER as an ET consumer, rates of 20-25 kHz can be
achieved (the limiting factor being memory copy speeds).

Iv. CONCLUSIONS

With the front-end hardware upgrades and the
implementation of the CODA 2.1 updaies, the curent
performance limitations of the CLAS data acquisition system
are well balanced for the existing event structure
(=4 Kbytesfevent). File /O to the fiber channel RAID is
currently limited to about 12-15 Mbytes/sec. Front-end
trigger/readout latency restricts event rates to 3.2-3.5 kHz.

The CLAS Online System has provided an exiensive test
of the CODA Data Acquisition System, encompassing all
stages of event processing. Starting from the front-end where
events are acquired using a buffered, multilevel hardware
triggering scheme, on to a network-based event building
system, and finally to a complex event distribution system.
We have been able to create a high-performance flexible DAQ
toolkit that has met and even exceeded the specifications for all
the experimental programs at Jefferson Lab.

V. ACKNOWLEDGEMENTS

We would like to thank the members of the CLAS Online
Group for their participation and assistance during software and
hardware optimization, tuning, and testing of the CLAS DAQ
system. This work was supported by DOE Contract #DE-
ACO05-84ER40150.

VL REFERENCES

(1] G. Heyes, et. al., “The CEBAF on-line data acquisition
System”, Proceedings of the CHEP Conference (Apr.
1994}, pp. 122-126.

[2] Developed by SUN
http:-/iwww.sun.com/

(3] LINUX Software distributed by Red Hat Software Inc.,
Durham N.C., USA.

{4] Developed by Wind River Systems Inc., Alameda, CA,
USA. htip:/fwww, windriver.com/

[51 David C. Doughty Jr. el. Al, “Event Building using an
ATM Switching Network in the CLAS Detector af
CEBAF”, Proceedings of the International Data
Acquisition Conference (Oct. 1994), FERMILAB-Coni-
95-054, Batavia, IL, USA.

[6] J.K. Oustethout, “T¢l and the Tk Toolkit” (Addison-
Wesley, Massachusetts, 1994).

[71 Developed as part of the Minerva Network Management
Environment. Copyright (¢) 1993-1995 David J. Hughes.
htip:/fww hes.com aw/products/msql

[8] E. Jastrzembski et al, “The Jefferson Lab Trigger
Supervisor System”, Proceedings of the Real Time 99
Conference, Santa Fe, NM, USA.

[$] Manufactured by StorageTek Inc., Louisville, CO, USA.
http.//www storagetek com/

Microsystems, USA.




