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ABSTRACT

This talk presenis an istroduction L ibs use of dispersion relatiom b oon-
#brain U shipos of hadromic form Sactboes cossislent with QUT. The sppleations
digirilsial elude metheds for stodylag [V and [V, b stange quark mas,
nred Elee pics clirgn radiu.

1. Introduction and History

Batwess the mid 1050 and late 1960s, o great dial of theoretical activity fofused
o attemping to sodve [or &4 lbast severely constrein) probless of drong interaction
plydics using dispersica theory. An exteasivi and elegant body of work was developed
to study this snslyticity properties of form factoes asd sesttering amplitudes. Eventu-
ally, howewes, whes theorists befieved they had resched the the limite of what could
b= gleased fom dispersive techniques, their aktentions were dosm elsewlere: o the
-:_u;e_-mm mindal, to current algebra, asd eventiually to gauge theories, espesially
Q

The appeal of disprasion thisey lies in its ability to intorpoesie in a completely
Flﬂmdmﬂm&l-iutp-imtuhﬂmrmmtfaﬂ well-dafinmd fekd
theceles, numely, enusality, unitarity, sz erossing symenetry. Moreover, it works equally
well in perturbatier snd nonpertarbative regimes of the undorlying dramical theory,
Homrver, no specific Lagrangisn @ demanded by this scheme, and this bk of speci-
fieiy acts s & double-sdged sword: Witheid dynsmical imput, one oun only dedic
Ut comseaqiiences common bo all pessible dysasics, Om the other band, we now pos-
sess GO0, which & the fundamental, albeit unsolved, thicey of siroag imeractions.
A combination of the twn, in which OO0 mputs sre inserisd diretly B disperaion
relitions, should yield a mch harvest of rigosous and model-independent bounds on
badromic quantities. In this talk we explore the implesentation of this kdes to tha
speecific cases of weak and Wectromagnetic hadranic foem factors,

Dispersica theary has besn with us in particle physics for quite some time, The
arigin of ihe name treces divecily back to the famous Kramers-Kroaky relation' in
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electromagnetism, used to describe the dispersion of light in an arbitrary medium. The
standard formula reads

Re f(w) = Re f(0) + —P J w2 “’w)z, (1)
where f, w, oy, and P denote, respectively, the forward scattering amplitude, fre-
quency, total cross section, and principal value prescription to remove the denominator
singularity. It follows that the dispersive (Re f) and absorptive (Im f ~ o) ampli-
tudes are intimately connected. This relation is derived by using causality and unitarity,
which lead to restrictions on the analyticity properties of f in the space of complex
w. From there, the elegant theorems of complex analysis, especially Cauchy’s theorem,
provide the identities known as dispersion relations.

Since quantum mechanics and quantum field theory are expressed over the field of
complex numbers, it is natural to expect that some variant of the dispersive approach
should also exist in particle theory. Indeed, as early as 1951, Gell-Mann, Goldberger,
and Thirring? described how causality and unitarity lead to a dispersion relation for the
vacuum polarization two-point function of QED. A flurry of other dispersion relations
followed in the literature, each presented with more or less rigor, depending upon
assumptions about the analytic structure of the quantity under scrutiny; however, the
particular dispersion relation used below is nothing more than the QCD version of the
one first studied in 1951.

2. Formalism

We begin by defining the vacuum polarization tensor as the two-point current
correlator in momentum space:

m*™(g) =i / d*z 64 (0|TJ*(z)J1 (0)|0), @)

Here J is some chosen current; since we are working with QCD, we choose it to be a
quark bilinear. Moreover, we choose J to be a weak or electromagnetic, rather than
gluonic, current, so that the individual (perturbative) current insertions are easier to
identify. Suppressing for now the Lorentz indices pv, we would like to use Cauchy’s
theorem to write an expression

T(t)
) = 5 [, o oy 3)

which. relates I at two different momentum arguments, ¢* and ¢. However, in order to
do this, we must identify a closed contour C, inside of which II is analytic in ¢. In the
present case, causality implies that I1(z) is analytic in ¢ except on parts of the positive
t axis, where J! can create on-shell hadrons, which generates a discontinuity only in
the imaginary (absorptive) part of II. We choose C to consist of the lower and upper
sides of this branch cut, together with the circle with |t} — oo; the latter contribution
vanishes as long as IT — 0 for large |t|. Then

w1 o Iml(t+i) 1 0 ImIl(t - i)
H(q)—h/; 4= +27r/ s )

Using the Schwarz reflection principle (II(z*) = IT*(2) if II is real on some segment of
the.real axis, which is true for ¢ < 0 since there are no on-shell thresholds and hence is
no imaginary part there), the two terms in (4) are equal:

n(g) =2 / “adt ————Im(?ft;)ie). )

If TI(¢*) diverges, or the contribution from the circle |¢| — oo does not vanish, such
terms may be removed through the process called “subtraction”: Since the oﬁ'endmg
terms appear as coefficients of a polynomial in ¢2, taking a sufficient number n of ¢?
derivatives yields a finite result,

N _ O anie(a’) ©
(6¢%)" 0¢*)" -
Then the expression for the dispersion relation reads
1 8°11( 2) Im II(t + i€)
(n) (2
) = T = [ - )

Restoring the Lorentz indices and inserting a complete set of states between J and Jt
(unitarity) yields

ImII™ (¢ + i€) = %; / d(r)(2m)4s* (t - p) ©#ICKTI™0),  (8)
r

where only on-shell states I" with phase space ® are included in the sum (a consequence
of reducing the step functions in the time ordering). The matrix elements (0|J*|I") are
nothmg more than decay constants and form factors—pure hadronic quantities—while
g% can be chosen so that II(g%) can be evaluated directly in the fundamental theory
of QCD. In particular, one chooses g2 to be far from the hadronic (strong coupling)
region, and then I1(g%) may be computed usmg an operator product expansion. A very
useful observation due to Meiman® in 1963 is that the 4 = v components of Eq. (8)
are positive definite, meaning that each hadronic contribution serves only to saturate
further the partonic (perturbative QCD) side of the dispersion relation. In this way
one obtains a rigorous inequality between partonic and hadronic physics.

One path from Egs. (7)-(8) leads to the famous QCD sum rules,* which study
the saturation of the equality between the partonic and hadronic sides. We focus also
on what this equality tells us about the behavior of matrix elements (0|J#|T"). The first
work to use the Meiman inequality with QCD inputs was by Bourrely, Machet, and de
Rafael’ in 1981.

As an explicit example, consider the pion electromagnetic form factor:

(m* ()| TEmlm* (0)) = £(@)(p + PV, (9)
where ¢ = p — p/. Then Eq. (8) becomes

InIT) > 2 (6 - 4m2) " 2 (o) Poe - am2), (10)



while the partonic side, finite after two subtractions, is computed to be

nz‘i(Z)(q2)= 1 ){l_l_a,(qz) +0 [(azsrqz))z

8r(—¢? 1r

+ n.p.} . (11)

where n.p. stands for nonperturbative corrections such as vacuum condensates. The
combined inequality reads

! o (?) CACH) 1 (t = 4m2)¥/2
8r(~¢?) {H ™ +0[( m )]”” }_48W2Lm2dt_t‘/2(t—q2)3If(t)'z’

(12)
In general, one obtains an inequality of the form
Wr@B)IF @) (.2
- —_— LI N 13
o[ e R < ) (13)

where £, is the lowest threshold and Wy is a positive weighting factor arising from
phase space and the quantum numbers of the form factor F(t). As discussed by Okubo
and Fushih® in 1971, it is very convenient to map the complex ¢ plane with a cut for
t, <t < +00 to the unit disc using a complex kinematic variable 2:

\/—_f \/——"_ta

which maps the upper (lower) side of the cut to the lower (upper) half of the unit circle.
The parameter’ ¢, < ¢, is chosen later for convenience. One then defines a weighting

function
Welt)
(bt = \J T = PP ) s

which is analytic inside the unit circle, and in terms of which the dispersive bound
reads

s P WP < 1. (16)

If any subthreshold poles remain inside the unit circle at points z = z,, they may be
removed by means of so-called Blaschke factors,

z,,
. 17
Pr(2) has the feature that for |z] = 1, |Pr(2)] = 1, so that the dispersive bound is

unchanged,

P Z B P PP < 1, 1s)

and ¢z (2)Pr(z)F(z) is analytic on the whole unit disc. Crossing symmetry relates the
form factor in all kinematic regimes by analytic continuation. We have thus isolated
the analytic structure of the form factor,

F(t e A 2" (83 1s), 19

() (t)¢Ftts),,z__:o n ( l) ( )

where the coefficients a,, are unknown; however, inserting Eq. (19) back into (18) gives
cd

Yleaff <1 (20)
n=0

Equations (19) and (20) first appeared® in 1995, and re-express in a very compact and
explicit notation all of the analyticity, unitarity, and explicit QCD information implicit
in Eqgs. (7) and (8). Since ¢r and Pp are known functions, the form factor is known
except for a set of parameters a,, each of which must be less than unity in magnitude.
A randomly chosen shape for a form factor would almost inevitably have some |a,| > 1,
and thus would be disallowed by the dispersive bound (20).

One more point that makes the model-independent parameterization (19) useful
is that for spacelike and semileptonic processes, the allowed kinematic range for z
tends to have |z| < 1. Indeed, the parameter , is chosen to enhance this effect. For
example, for B — DIp, |z| < 0.03. This means that the convergence of Eq. (19) is
geometrically fast, and only the first few a,’s are relevant to the shape of the form
factor. The theoretical uncertainty incurred by ignoring the other, infinite set of a,’s
is called “truncation error,”® and falls off geometrically fast with the number of a,’s
used to parameterize the form factor.

3. A Gallery of Results

1) |Vis! and [Vi|. The need for a parameterization describing all solutions of
Eqgs. (7)~(8) was recognized® in studies of the B — 7£p form factor, useful for the
extraction of |V,s]. There it was seen that the inclusion of each (at that time, hypo-
thetical) form factor data point served to decrease the region allowed by the dispersion
relation geometrically fast (Fig. 3). Similar comments apply to using points from a
lattice simulation.!!

The model-independent form factor parameterization Eq. (19) was first used®
to extrapolate measured B — D™} form factor data to a point where phase space
vanishes. In order to extract |V, from the form factor* in the differential width

ar
g B~ D'tn) Wal? |F(@)[ V(Ms + Mp-)? ~ 22, (21)

one must separate |Vis| from |F(¢?)]. The normalization of F, namely, F(¢® = (Mp —
Mp-)?) =1 (up to small corrections), is determined by the heavy quark limit.!° How-
ever, Eq (21) shows that phase space vanishes at exactly this g% therefore, an extrap-
olation is needed. Previously, experimental measurements of the form factor used an

*Strictly speaking, 4 form factors contribute; however, in the limit of heavy quarks, each one either
vanishes or is proportional to a single “Isgur-Wise” form factor.'®
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Fig. 1. Bounds on the B — «¢p form factor f using the dispersive bound and fixing zero, one,
and two points in (a), (b), and (c), respectively. Dashed lines indicate pole dominance models.
(d) shows how certain choices of B* pole parameters can violate the dispersive bounds.

Experiment | Process | {Vi|-10°
CLEO® [B - D | 36972
CLEO* | B— Dév | 448+6.1

ALEPH®Y | B~ D*p | 31.9+24
ALEPH® | B Dtv | 2924173
DELPHIY | B — D*#v | 38.0+1.3

Table 1. Determinations of |V,;| using Eqs. (19) and (20). Footnotes reference the source of
the fit. Uncertainties are statistical plus theoretical.

ad hoc linear or quadratic extrapolation, which implies a theoretic?.l uncertainty of un-
known size (see Fig. 2a). Using (19) and (20) removes this uncertainty, and subsequent
work!?13 refined the analysis to the point that it is used by both theorists and the
experimental groups themselves (Table 1). ; )

2) Strange quark mass. Ky decays possess two form factors, one of which appears
with the coefficient m? in the rate and is called the scalar form'fa.ctor‘ The corresgqnd~
ing [1™ (¢?), evaluated deep in the Euclidean region, is proportional to (m,—m,)? i.e.,
is sensitive to m,. One can invert the program of 1), so that a large .amount °£ form
factor data, thus delineating its shape, is used** to constrain the function 11™(g?) and
hence m,. Indeed, one finds that F(t) o m,a,, so that (20) implies a rigorous lower
bound on m,. o

Currently, not enough data exists in the world sample for such a determu}atlon,
although DA®NE expects to increase the available pool many times over. Untll such
data exists, one may apply the results of a model, or better, a chiral perturbation theory
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Fig. 2. (a). Fit to CLEO data for the B — D*¢p form factor using the model-independent
parameterization (19) with (solid) and without (dashed) the dispersive constraint Eq. (20).
The eye prefers the dashed curve, but it is forbidden by QCD. (b). Fit to timelik§ pion
electromagnetic form factor data. Contrast the smoothness of the fit above ¢ = 0.4 GeV? to
the oscillations below.

(xPT) calculation to compute the required shape parameters a,. Believing xPT to a
level of 5%, 1%, or 1/20% leads to lower bounds on m¥M3(1 GeV) of 40, 90, and 140
MeV, respectively. . '

3) Pion form factor. The parameterization (19) exhibits geometric convergence
for ¢t <ty (|2 < 1). On the other hand, one often possesses data directly on the cut
t > t; (|z] = 1), the timelike region. Does (19) have anything to say about this region?
Although one must be much more careful about convergence, the answer' appears

to be yes. Theorems of complex convergence plus knowledge of asymptotic (¢ — 00)" "

properties of form factors allow one to use (19) even in the timelike region.
For example, for the pion electromagnetic form factor, one obtains the fit of
Fig. 2b. The presence of the p peak is not put in by hand, but simply emerges from
fitting to (19). Note, however, the wild oscillations for ¢ < 0.4 GeV?; one can show that
these occur due to large gaps in the data for & > /2 on the unit circle |z| = 1. These
large oscillations persist when one analytically continues into the spacelike region, where
one obtains
|F(t =0)] = 2.56 £ 2.00, (r?) = 2.66 + 3.44 fm?, (22)

which are rather loose bounds, considering that, e.g., |F(t = 0)| = 1 by charge conser-
vation. This points to the well-known problem of the instability of analytic continuation
of discrete timelike data to the spacelike region; now, however one can quantify exactly
how unstable this continuation is.

One can also proceed directly with spacelike pion form factor data alone, where



the geometric convergence of (19} is restored, Then one finds,' using this model-in-
dependent parameterization, {r?) = 0.480 % 0.020 fm?, a few o larger than the usual
numbers quoted in the literature (=~ 0.42 fm?), which use ad hoc parameterizations.

4. Conclusions

Dispersive techniques provide an elegant, rigorous bridge between hadronic and el-
ementary quantities. For semileptonic or electromagnetic decays, they provide a model-
independent, rapidly convergent parameterization of form factors. We have seen that
a number of different problems have already been studied using this method. Nucleon
form factors, the K charge radius, and improvement of timelike form factors are obvious
future directions. The reader can doubtless imagine many others.
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