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Simple arguments based on unitarity indicate that meson loops diagrams, induced
by an underlying g pair creation process, should badly disturb the phenomenolog-
ically successful spectrscopy and dynamics of the valence quark model, including
such simple but mysterious regularities as the OZI rule. I will discuss some re-
cent progress in adding pair creation to the valence quark model in a way which
provides a rationale for the quark model’s success.

1 Introductory Remarks

QCD is undeniably very complex, so if we are to understand it, we will clearly
have to find some way to simplify it. In particular, I believe that the central
issue in strong QCD! is to identify the correct low energy degrees of freedom
at the “quark model” scale pgap ~ 1 GeV. Hadronic physics of course shares
the analog of this critical problem with most other parts of physics where,
even though the basic interaction might be known, the phenomena of interest
involve complex systems.

In these lectures I will argue that there are many good reasons to believe
that the valence quark model is a good starting point in this quest. First of
all, when extended wvia the flux tube model, wherein the gluonic degrees of
freedom are subsumed into flux tubes, the constituent quark model can be
mapped onto QCD in the large N, limit 2. After reviewing these matters,
I will argue that, while adequate for many purposes, this quark model must
be further extended by the addition of pair creation (a 1/N, effect) if it is
to provide a satisfactory qualitative picture of low energy strong interaction
dynamics. That is, I suggest that dynamical ¢g pairs are the key missing
ingredient of the constituent quark model. In particular, I will show in an
explicit model how one can “unquench” the quark model without spoiling its
spectroscopic successes or ruining the OZI rule3. At the same time, I will show
that while each light quark flavor may make a relatively small contribution to
the net proton spin of order 1/N,, Ny such contributions can account for the
observed “spin crisis”.



2 Proposal for a general Framework

As already mentioned, I believe that the key to a qualitative understanding
of strong QCD is the same as in most other areas of physics: identifying
the appropriate degrees of freedom. For example, atomic physics is based on
taking the nuclei and electrons as the low energy effective degrees of freedom,
with the underlying effects of nucleons subsumed into static nuclear properties
and those of photons into low energy effective potentials; nuclear physics is in
turn very well-described by nucleons moving in an empirical nucleon-nucleon
potential.

Foremost among the puzzles we face in strong QCD is in fact a glaring
“degree of freedom” problem: the established low energy spectrum of QCD
behaves as though it is built from the degrees of freedom of spin—% fermions
confined to a ¢ or ggq system. Thus, for mesons we seem to observe a “quarko-
nium” spectrum, while for the baryons we seem to observe the spectrum of the
two relative coordinates of three spin—% degrees of freedom.

These apparent degrees of freedom are to be contrasted with the most naive
interpretation of QCD which would lead us to expect a low energy spectrum
exhibiting 36 quark and antiquark degrees of freedom (3 flavors x 2 spins x 3
colors for particle and antiparticle), and 16 gluon degrees of freedom (2 spins
x 8 colors). Less naive pictures exist, but none evade the puzzle of the missing
gluonic degrees of freedom in the low energy spectrum.

The second major “degree of freedom problem”, and the one on which I
will focus here, has to do with ¢g pair creation. At least naively, one would
expect pair creation to be so strong that a valence quark model would fail
dramatically. That pair creation should be expected to lead to dramatic fail-
ures of valence quark model spectroscopy and dynamics is true even though we
know empirically (and theoretically) that pair creation is suppressed, i.e., that
the observed hadronic spectrum is dominated by relatively narrow resonances.
More specifically, there are three main puzzles associated with the nature and
importance of such ¢q pairs in low energy hadron structure:

1. the origin of the apparent valence structure of hadrons (since even in
the large N, limit to be described in the next section, “Z-graphs” would
produce pairs unless the quarks were heavy),

2. the apparent absence of unitarity corrections to naive quark model spec-
troscopy, despite one’s expectation of mass shifts Am ~ T" (where I is a
typical hadronic width), and

3. the systematic suppression of OZI-violating amplitudes Aoz, relative to
one's expectation (from unitarity) that Apz; ~ I
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Before addressing these problems associated with ¢§ pairs, I first briefly
review the general framework in which I believe we must view the valence quark
model. This framework is based on results from three different directions which
converge on a simple picture of the structure of strong QCD: valence plus glue
dominance with ¢§ corrections.

2.1 The Large N. Limit of QCD

It is now widely appreciated that many of the observed features of the strong
interactions can be rationalized in QCD within the 1/N, expansion 2. More-
over, there is growing evidence from lattice QCD that while N, = 3 might
not be sufficiently large for the 1/N, expansion to be used quantitatively, the
main qualitative features of QCD (including confinement and the spontaneous
breakdown of chiral symmetry) are independent of N..

We should therefore take seriously the fact that it can be shown in the
large-N, limit that hadron two-point functions are dominated by graphs in
which the valence quark lines propagate from their point of creation to their
point of annihilation without additional quark loops. A form of the OZI rule?
also emerges naturally. Large-N. QCD thus presents a picture of narrow res-
onances interacting weakly with hadronic continua. In this picture the reso-
nances themselves are made of valence quarks and glue.

2.2 Quenched QCD

Quenched lattice QCD provides other new insights into QCD. In quenched
QCD the lattice sums amplitudes over all time histories in which no ¢g loops
are present. It thus gives quantitative results from an approximation with
many elements in common with the large N, limit. One of the most remark-
able features of these calculations is that despite what would seem to be a
drastic approximation, they provide a reasonably good description of low en-
ergy phenomenology. Indeed, for various intermediate quantities like the QCD
string tension they provide very good approximations to full QCD resuits with
the true lattice coupling constant replaced by an effective one. In quenched
QCD, as in the large N, limit, two point functions thus seem to be well-
approximated by their valence content (namely pure glue for glueballs, ¢g plus
glue for mesons, and gqq plus glue for baryons).

In comparing the large N, limit and quenched lattice QCD we note that:

e In both pictures all resonances have only valence quarks, but they have
an unlimited number of gluons. Thus they support valence models for
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2.8

mesons and baryons, but not for glueballs or for the gluonic content of
mesons and baryons.

e In both pictures a propagating valence quark has contributions from not

only a positive energy quark propagator, but also from “Z-graphs”. (A
“Z-graph” is a time-ordered graph in which the interactions first produce
a pair and then annihilate the antiparticle of the produced pair against
the original propagating particle). Cutting through a two-point function
at a fixed time therefore would in general reveal not only the valence
quarks but also a large g sea. This does not seem to correspond to the
usual valence approximation. Consider, however, the Dirac equation for
a single light quark interacting with a static color source (or a single
light quark confined in a bag). This equation represents the sum of a set
of Feynman graphs which also include Z-graphs, but the effects of those
graphs is captured in the lower components of the single particle Dirac
spinor. Le., such Z-graphs correspond to relativistic corrections to the
quark model. That such corrections are important in the quark model
has been known for a long time. For us the important point is that while
they have quantitative effects on quark model predictions {e.g., they are
commonly held to be responsible for much of the required reduction of
the nonrelativistic quark model prediction that g4 = 5/3 in neutron
beta decay), they do not qualitatively change the single-particle nature
of the spectrum of the quark of our example, nor would they qualitatively
change the spectrum of ¢§ or gqq systems.

e Finally, we note that the large N, and quenched approximations are not

identical. For example, the NN interaction is a 1/N, effect, but it is not
apparently suppressed in the quenched approximation.

The Heavy Quark Limit

The third perspective from which there is support for the same picture is the
heavy quark limit4. While this limit has the weakest theoretical connections to
the light quark world, it has powerful phenomenological connections: see Fig.
1. We see from this picture that in mesons containing a single heavy quark,
AFE, pitar (the gap between, for example, the JPY =177 and 2% 7 states), is
approximately independent of mg, as predicted in the heavy quark limit, while
AEpyperfine varies like mZ?l as expected.

Recall that in the heavy quark limit a hadronic two-point function is domi-

nated by a single valence Q plus its associated “brown muck”, with neither QQ
loops nor @ Z-graphs. The fact that heavy-quark-like behaviour persists all the
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Figure 1: The Qg meson spectra as a function of the “heavy” quark mass.

way down to light quark masses suggests that light quarks, like heavy quarks,
behave like single valence quarks and thus by extension that the “brown muck”
behaves like a single valence antiquark.

Fig. 2 shows that heavy quark behaviour also apparently persists in a
stronger form: the light meson spectrum appears to mimic the QQ quarko-
nium spectrum. This is surprising since this latter spectrum depends on the
decoupling of gluonic excitations (as opposed to glue) from the spectrum via
an adiabatic approximation.

In view of this surprise, let us examine the nature of the adiabatic ap-
proximation in QCD. Consider first QCD without dynamical quarks in the
presence of fixed Q; Q5 or Q1Q2Q3 sources™®. The ground state of QCD with
these sources in place will be modified, as will be its excitation spectrum. For
excitation energies below those required to produce a glueball, this spectrum
will presumably be discrete for each value of the Q,Q» relative spatial sep-
aration 7, with each eigenvalue being a continuous function of |7], as shown
schematically in Fig. 3. There will be analogous spectra for Q1Q2Qs which
are functions of its two relative coordinates. We call the energy surface traced
out by a given level of excitation as the positions of the sources are varied an
adiabatic surface, and define the “quark model limit” to be applicable when
the quark sources move along the lowest adiabatic surface.
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Figure 2: The QQ meson spectra as a function of the “heavy” quark mass.

Y

Figure 3: Schematic of the low-lying adiabatic surfaces of Q1Q2 at separation r; Eg(r) is
the gluonic ground state, E;(r) the first excited state, etc..



We all know a simple molecular physics analogy to this approximation.
Diatomic molecular spectra can be described in an adiabatic approximation
by holding the two relevant atomic nuclei at fixed separation r and then solv-
ing the Schrédinger problem for the (mutually interacting) electrons moving
in the static electric field of the nuclei. The electrons will, for fixed r, have
a ground state and excited states which will eventually become a continuum
above energies required to ionize the molecule. The resulting adiabatic en-
ergy functions (when added to the internuclear Coulomb energy) then serve
as effective internuclear potentials on which vibration-rotation spectra can be
built. Molecular transitions can then take place within states built on a given
surface or between surfaces.

In the “quark model limit” the quark sources play the réle of the nuclei,
and the glue plays the réle of the electrons. From this point of view we can see
clearly that conventional meson and baryon spectroscopy has only scratched
the surface of even ¢;G2 and q1q293 spectroscopy: so far we have only studied
the vibration-rotation bands built on the lowest adiabatic surface correspond-
ing to the gluonic ground state. We should expect to be able to build other
“hadronic worlds” on the surfaces associated with excited gluonic states ®.

While the adiabatic approximation is more general, it is becoming increas-
ingly firmly established that this approximation is realized in QCD in terms of
the development of a confining chromoelectric flux tube. These flux tubes are
the analog of the Abrikosov vortex lines that can develop in a superconductor
subjected to a magnetic field, with the vacuum acting as a dual (i.e., electric)
superconductor creating a chromoelectric Meissner effect. A QQ system held
at fixed separation r >> Agep is known to have as its ground state a flux tube
which leads to an effective low energy (adiabatic) potential corresponding to
the standard “quarkonium” potential. However, this system also has excited
states, corresponding to gluonic adiabatic surfaces in which a phonon has been
excited in the flux tube, and on which spectra of “hybrid states” are built.

Lattice results allow us to check many aspects of the flux tube picture. For
example, the lattice confirms the flux tube model prediction that sources with
triality are confined with a string tension proportional to the square of their
color Casimir. The predicted strongly collimated chromoelectric flux lines have
also been seen on the lattice. I have found it particularly encouraging that the
first excited adiabatic surfaces have been seen’ with an energy gap 6V (r) = w/r
above the quarkonium potential as predicted ®, and with the expected doubly-
degenerate phonon quantum numbers (see Fig. 4). This strongly suggests that
the JPC exotic hybrid mesons predicted ten years ago® exist.

The flux tube model thus offers a possible explanation for one of the most
puzzling apparent inconsistencies between the naive quark model and QCD.
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Figure 4: The ground state and first excited adiabatic potentials from lattice QCD7.

Moreover, as discussed above, in the large N, limit of QCD hadrons do indeed
consist of just their valence quarks and the glue between them. Thus the flux
tube model may legitimately be viewed as a candidate realization of QCD in
the large N, limit which is in addition consistent with insights into strong QCD
which have emerged from quenched lattice QCD and from heavy quark theory.

3 Unquenching the Quark Model

The valence quark plus glue dominance embodied in the flux tube model can
at best be a starting point for a systematic description of strong QCD, since
we know that ¢ pair creation plays an important réle in many phenomena.
Nevertheless, néively attempting to add ¢g pair creation to the valence quark
model leads to a number of very serious problems. These problems, which
were mentioned briefly in Section 2, and potential solutions to them have
been extensively discussed in a series of papers on “unquenching” the quark
model %1% In the following I briefly describe these solutions.
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3.1 The Origin and Restliency of Potential Models

In the preceeding Section, we saw that one of the “degrees of freedom” problems
of the valence quark model could plausibly be solved by the flux tube model:
the apparent absence of low energy degrees of freedom associated with the glue.
The second “degree of freedom” problem is the apparent absence of excitations
associated with the strong ¢g sea. Very closely related to this puzzle is the
apparent unimportance of strong meson loop corrections.

A simple resolution of this puzzle has been proposed which is an exte-
nion of the adiabatic approximation to the flux tube: the full quark potential
model arises from an adiabatic approximation including the extra qq degrees
of freedom embodied in the flux tube. At short distances where perturbation
theory applies, the effect of Ny types of light ¢g pairs is (in lowest order) to

shift the coefficient of the Coulombic potential from ago)(Qz) = M(%i;m to
(8]

oV (Q?) = (33_2Nf)lliTQ2//\?vf)' The net effect of such pairs is thus to produce

a new effective short distance QQ potential. Similarly, when pairs bubble up
in the flux tube (i.e., when the flux tube breaks to create a Qg plus qQ system
and then “heals” back to QQ), their net effect is to cause a shift AEy,(r)
in the ground state gluonic energy which in turn produces a new long-range
effective QQ potential.

It has indeed been shown?® that the net long-distance effect of the bubbles
is to create a new string tension be (i.e., that the potential remains linear).
Since this string tension is to be associated with the observed string tension,
after renormalization pair creation has no effect on the long-distance structure
of the quark model in the adiabatic approrimation. Thus the net effect of mass
shifts from pair creation is much smaller than one would naively expect from
the typical width I': shifts that are not absorbed into the physical string tension
can only arise from nonadiabatic effects. For heavy quarkonium, these shifts
can in turn be associated with states which are strongly coupled to nearby
thresholds 1.

It should be emphasized that no simple truncation of the set of all meson
loop graphs can reproduce such results: to recover the adiabatic approximation
requires summing over large towers of Qg plus qQ) intermediate states to allow
a duality with the ¢4 loop diagrams which have strength at high energy.

3.2 The Survival of the OZI Rule

There is another puzzle of hadronic dynamics which is reminiscent of this one:
the success of the OZI rule3. A generic OZI-violating amplitude Aoz; can
also be shown to vanish like 1/N.. However, there are several unsatisfactory
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features of this “solution” to the OZI mixing problem !?. Consider w-¢ mixing
as an example. This mixing receives a contribution from the virtual hadronic
loop process w — KK — ¢, both steps of which are OZI-allowed, and each
of which scales with N, like I''/2 ~ NC_I/Q. The large N, result that this
OZI-violating amplitude behaves like N;*! is thus not peculiar to large N.: it
just arises from “unitarity” in the sense that the real and imaginary parts of
a generic hadronic loop diagram will have the same dependence on N.. The
usual interpretation of the OZI rule in this case - - - that “double hairpin
graphs” are dramatically suppressed - - - is untenable in the light of these OZI-
allowed loop diagrams, which expose the deficiency of the large N, argument:
Aozr ~ T is not a good representation of the OZI rule. (Continuing to use
w-¢ mixing as an example, we note that m,, —my is numerically comparable to
a typical hadronic width, so the large N, result would predict an w-¢ mixing
angle of order unity in contrast to the observed pattern of very weak mixing
which implies that Apz; << T' << m.)

Unquenching the quark model thus endangers the naive quark model’s
agreement with the OZI rule. It has been shown® how this disaster is naturally
averted in the flux tube model through a “miraculous” set of cancellations be-
tween mesonic loop diagrams consisting of apparently unrelated sets of mesons
(e.g., the KK, KK* + K*K, and K*K* loops tend to strongly cancel against
loops containing a K or K* plus one of the four strange mesons of the L =1
meson nonets). Of course the “miracle” occurs for a good reason: the sum of
all hadronic loops is dual to two g¢ hairpins of different flavors created and
destroyed by a 3P, operator 131415 but in the closure approximation such an
operator cannot create mixing in other than a scalar channel.

While slightly more complex, it should be noted that OZI-violating baryon
couplings like p — p¢ can be induced by loop diagrams which are essentially
identical to those responsible for w — ¢ mixing. The same mechansism which
prevents w — ¢ mixing also prevents such OZl-violating couplings.

8.8 Some Comments

The preceding discussion indicates that models which have not addressed the
effects of unquenching on spectroscopy and the OZI rule should be viewed
very skeptically as models of the effects of the ¢§ sea on hadron structure:
large towers of mesonic loops are required to understand how quarkonium
spectroscopy and the OZI rule survive once strong pair creation is turned on.
In particular, while pion and kaon loops (which tend to break the closure
approximation due to their exceptional masses) have a special role to play,
they cannot be expected to provide a reliable guide to the physics of gg pairs.
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Figure 5: A meson loop correction to a baryon propagator, drawn at (a) the hadronic level,
and (b) the quark level.

4 A Pair Creation Model for the Strangeness of the Proton

The strangeness content of the proton arises from the quark-level process shown
in Fig. 5. The main new feature of the calculation on which this discussion
is based 19 is a sum over a complete set of strange intermediate states, rather
than just a few low-lying states. As explained above, this is necessary for
consistency with the OZI rule and the success of quark model spectroscopy.

The lower vertex in Fig. 5 arises when s3 pair creation perturbs the initial
nucleon state vector so that, to leading order in pair creation,
(Y*K*qtS |hss| p)
M, — Fy. — Eg-’

-+ Y / gdq |V K" qlS) (1)

Y*K*¢£s

where hg; is the s3 quark pair creation operator, Y* (K*) is the intermediate
baryon {(meson), g and £ are the relative radial momentum and orbital angular
momentum of Y* and K*, and S is the sum of their spins. This process will
generate non-zero expectation values for strangeness observables:

P|hs§| Y*’K*’q/[/S/>
O;) = 2dq q'*dg’ < :
(Os) > /q 9974 T

Y*K*tS
Y K* gl st

(Y*K*qlS |hys| p) @)
M, ~ Ey. — Ex+

x <Y*’K*'q'e'5' 10, Y*K*qes>
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The derivation of this simple equation, including the demonstration that it
is gauge invariant, is straightforward !1°. We will be considering the cases
O, = As, R?, and p,, where As is the spin carried by the strange quark sea of
the proton, and where R? and and u, are the proton’s strangeness radius and
magnetic moment.

To calculate the p — Y*K* vertices in Eq. (1), the flux-tube-breaking
model was used. This model, which reduces to the well-known 3Py decay model
in a well-defined limit, had its origin in applications to decays of mesons 13:14
and baryons '®. The model assumes that a meson or baryon decays when a
chromoelectric flux tube breaks, creating a constituent quark and antiquark
on the newly exposed flux tube ends. The pair creation operator is taken to
have 3P, quantum numbers:

Mo 322\ z z
haa(t:X) = 7o (m) [z e (—-8——2) d'(tx+ 2o Vgltx—2).
)

The dimensionless constant ~yg is the intrinsic pair creation strength, a param-
eter which was fit to the A — N7 width. The operator (3) creates constituent
quarks, hence the pair creation point is smeared out by a gaussian factor whose
width, r4, is another parameter of the model. The parameter r, is constrained
by meson decay data to be approximately 0.25 fm &9

Once an s3 pair is created, the decay proceeds by quark rearrangement, as
shown in Fig. 6. Even with simple harmonic oscillator (SHO) wavefunctions,
the sum over intermediate states would be very difficult were it not for an
important selection rule: inspection of the quark line diagrams in Fig. 6 shows
that the relative coordinate of the non-strange quarks in baryon Y* is always
in its ground state. Only the relative coordinate between the strange and non-
strange quarks (4.e., the Ay--oscillator) can become excited. This drastically
reduces the number of states that must be summed over. Unfortunately, this
simplification does not apply for wii or dd pair creation.

It is useful to refer to the closure-spectator limit of Eq. (2). This is the
limit in which the energy denominators do not depend strongly on the quantum
numbers of Y* and K™*, so that the sums over intermediate states collapse to
1, giving

(Os) o (p |hssOshss| p) o (0|hssOshss|0) (4)
where the second step follows since hys does not couple to the motion of the
valence spectator quarks. We see that the expectation value of O is taken

between the 3Py states created by hss. From the JPC of the P, pair it then
follows that As = R? = u, = 0 in the closure-spectator limit (a result which
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would not be seen if only the lowest term, or lowest few terms, were included
in the closure sum).

In the next Section I will discuss the results for the expectation values
defined by Eq. (2) for the quantities As, R?, and p,. We will see that deli-

8!
cate cancellations lead to small values for these observables even though the

probability of 3 pairs in the proton is substantial.

4.1 Strange Spin Content

As, the fraction of the proton’s spin carried by strange quarks, is given by
twice the expectation value of the s and 5 spins :

As =2 <s§3> + S§§)> . (5)

Let us first examine the contribution to As from just the lowest-lying inter-
mediate state, AK. The P-wave AK state with J = .J, = % is

8Ky = )~ | o). (©)

The § quark in the kaon is unpolarized, while the s quark in the A carries all

of the A’s spin; because of the larger coeficient multiplying the first term in

(6), the AK intermediate state alone gives a negative contribution to As.
When we add in the (AK*)p: and (AK*)P% states (note that the sub-

scripts denote the quantities £S defined previously), we have

3 v3 v [ !
As (1 —\/g \/§> 1_18 -1 \1/05 —\/; !
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in the closure limit. Here the matrix is just 2(523) + Sgg)) (which is of course
symmetric), and the vectors give the relative coupling strengths of the proton
to [ (AK)ps, (AK*)p1, (AK")ps ]. There are a couple of things to note here:

(1) The matrix multiplication in (7) evaluates to zero; there is no net
contribution to As from the AK and AK* states in the closure limit. There
are in fact many such “sub-cancellations” in the closure sum for As: for each
fixed set of spatial quantum numbers in the intermediate state, the sum over
quark spins alone gives zero (because (Sgs)) = (Sﬁg)) = 0 in the 3P, state).
That is, each SU(6) multiplet inserted into Eq. (2) separately sums to zero.
Moreover, the As operator does not cause transitions between I = 0 and
I = 1 strange baryons so that the A and ¥ sectors are decoupled, hence they

individually sum to zero.
As

(2) Only the diagonal term in Eq. (7) corresponding to p — (AK*)ps —
(AK™)pg — p gives a positive contribution to As. (Here 2¢ denotes the action
of the As operator.} All of the other terms give negative contributions. In the
full calculation with energy denominators, the negative terms are enhanced
because they contain kaon (rather than K™) masses. The full calculation gives
As = ~0.065 from AK and AK* states. The largest individual contribution
is —0.086, from the off-diagonal term p — (AK)P%E(AK*)P% —p.

For intermediate states containing ¥ and ¥* baryons, one finds as expected
a net As from these states of zero in the closure limit, but this time the
insertion of energy denominators does not spoil the cancellation very much:
the full calculation gives As = —0.003 in this sector.

P-wave hyperons and kaons contribute another —0.04 to As, and the net
contribution from all higher states is —0.025. Thus, the result of the calcula-
tion'0 is As = —0.13, in quite good agreement with the most recent extractions
from experiment. It should be emphasized that all parameters of this calcula-
tion were fixed by spectra and decay data. Moreover, the result is quite stable
to parameter changes.

For comparison with other calculations, note that the AK intermediate
state alone contributes —0.030 to As, and the contribution from the AK, ¥ K,
and * K states together is (coincidentally) also —0.030.

4.2 Note on the Spin Crisis

With this background in mind, let me make some comments on the spin crisis.
In the spirit of “valence quark plus glue with ¢g corrections”, let us write

Aq - AQUaIence + AQSea
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and note that:

1. Given the earlier discussion, we do not expect the nonrelativistic re-
sult Aqyatence = 1 since the lower components of the relativistic valence
quarks developed wvia Z-graphs typically reduce their contributions to
Aqwctl«artce ~ 0.75.

2. Since Agseq = Zf AqﬁQL, where Aqgf;l is the spin sum contribution of
the quark-antiquark sea of flavor f, if there are Ny approximately flavor-

symmetric light quark flavors then Agzeq ~ N quﬁég’, where fi is the

first of these light flavors. Note that no matter how suppressed Aqg}z)

might be, if Ny >> N., Agq — Aguaience Will be large. In other words,
although the spin crisis makes the valence approximation look bad, what
is relevant for the approximation is that AqﬁZL << Aquatence Which is
indeed what is observed experimentally.

3. A possible scenario for the spin crisis is that Aguaience =~ 0.75, Aqgil ~

-0.13, Aqgg,)l ~ —0.16, and Aqut), ~ —0.16 (where we have speculatively
included a small SU(3)-breaking effect) leading to Ag ~ 0.3. If this
scenario is correct, then the spin crisis will have shown us !¢ that the
valence quarks behave just as they were supposed to do!

We can expect that, within the intrinsic systematic errors, Au, Ad,and As
will be known in another year or two. Then, the next logical step will be to
determine the contribution of sea quarks, and the strange quarks in particular,
to the static properties of the nucleons. Using parity violation as a probe,
the SAMPLE experiment at MIT’s Bates Lab and an extensive program of
measurements planned for CEBAF at Jefferson Lab (including measurements
utilizing the existing Hall A spectrometers as well as a new special purpose
detector called G° funded for construction in Hall C) will allow us to decompose
the nucleon form factors into their quark-level components: G%, G‘};, 8
and GYy, G‘}W, G4y each as a function of Q?. Predictions relevant to these
measurements are described in the next two subsections.

4.8  Strangeness Radius

The calculation of R? is more difficult than the calculation of As, for sev-
eral reasons. First, the operators appearing in R? cause orbital and radial
transitions among the intermediate states. Thus SHO transitions satisfying
An = 0,41 and/or Af = 0, +1 are allowed, so there are many more terms to
calculate (n and ¢ are orbital and radial SHO quantum numbers). Moreover,
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Table 1: Proton strangeness radius from hadronic loops (in fm?). The rows give the running
totals as progressively more excited intermediate states are added into the calculation. The
final column shows the total from all intermediate states.

S-waves plus plus D-waves and all
P-waves S-wave radial excitations states

T2 .097 198 210 173
r2 094 139 .185 210
R? .003 059 025 —.04

the sub-cancellations discussed above no longer occur, so that R? converges
more slowly than As: more states must be included in Eq.(2) to obtain good
accuracy. In addition, the basic matrix elements are more complicated.

The results for B2 are shown in Table 1. With the standard parameter
set, R? = —0.04fm®. For reasonable parameter variations, R? ranges between
—0.02 and —0.06fm?. Table 1 shows that the lowest-lying SU(6) multiplets of
intermediate states (z.e., the S-wave hyperons and kaons) account for about
half of 2 and r2. Most of the remaining contributions come from P-wave
hyperons and kaons. However, R? involves a large cancellation between 72
and 72, and its value doesn’t settle down until we add in quite highly excited
intermediate states. For this reason, the precise numerical value (and perhaps
even the sign) of R? cannot be considered definitive: the conclusion is rather
that R? is small, about an order of magnitude smaller than r2 and r2. This
result is not too surprising: R? is exactly zero in the closure limit, and previous
hadronic loop studies®? led one to expect that the full calculation with energy
denominators would preserve the qualitative features of this limit.

Note that the AK intermediate state alone gives R? ~ —0.01fm* (the sign
is as expected from the usual folklore) while the AK, £K, and ¥£*K states
together give —0.017fm?. Nevertheless, although the sum over all states gives
the same sign and order of magnitude as these truncations, Table 1 shows that
this is just a coincidence.

4.4 Strange Magnetic Moment

The strange and antistrange quarks carry magnetic moments —%u(s*g) where

1
W = a5 1+ 109) ®)
mg
_ 1 ~ ,
P =~ (250 4 L) ©)
Mg
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Table 2: Proton strangeness magnetic moment from hadronic loops

(25.) (L;)  ps (in nuclear magnetons upy)
s quarks -0.058 +0.043 -0.025
§ antiquarks -0.074  +.038 +0.060
total +0.035

and we denote the net strange magnetic moment by p:
ps = ) 4 . (10)

Computing the expectation values of these operators presents no new diffi-
culties beyond those encountered in the R? calculation. In fact, there are no
radial transitions in this case, so there are fewer states to sum over and the
sum converges more quickly.

The result (see Table 2) is a positive (albeit small) value for pg, in dis-
agreement with most other models. Where does the positive sign originate?
First note that the signs of (Si”), (Lgs)), and (Lf)) are correctly given by
just the lowest lying intermediate state, AK of Eq. (6). (Note that the L,’s
have similar magnitudes so that orbital angular momentum contributes very
little to ps in any case.) On the other hand, the AK state has (Sf)) =0,

whereas (S £§)> is quite large and negative. (The main contribution comes from

the off-diagonal process p — (AK)F%SA)(AK*),)% — p, although there is also
a significant contribution from p — (A(1405)K)S%SA)(A(MOS)K*)S% — p.)
These important terms, which drive p, positive, are omitted in calculations
which include only kaon loops. (The AK intermediate state alone contributes
—0.080puN to u,, and the contribution from AK, YK, and ¥*K together is
—0.074ppN.)

5 Summary

In these lectures I have advocated treating the phenomenology of QCD in
two steps. In the zeroth order, strong QCD is approximated by a relativistic
constituent quark model with flux tube gluodynamics. As a second step, gq
sea and other 1/N, effects are added as perturbations.

We have seen here how the quark model might be “unquenched” in a way
that preserves its spectroscopic successes and respects the OZI rule. All of
the results presented are qualitative, but the picture appears to offer a viable
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explanation of the underlying physics. The key asumptions of the model are
that flux tube dyanamics, including a flux tube full of ¢g pairs, can be treated
adiabatically, and that the ¢q pair creation occurs into a state with vacuum
quantum numbers (3P or JF¢ = 0F+),

5.

The main new results of the picture I have advocated are:

. The quark model spectrum is immune to meson-loop-induced mass shifts
apart from those associated with nearby thresholds. By systematically
incorporating the adiabatic effects into the definition of the quark model
potential, a systematic low energy expansion of the effects of thresholds
is possible 1.

The OZI rule survives loops corrections, once they are done systemati-
cally; an exception to this rule will occur for J¥¢ = 0%* mesons since
their mixing is not zero in the closure limit %.

. Both of the preceeding results are associated with insights into the extent
of the set of hadronic states required to respect the dualities which un-
derlie them, and they strongly suggest that low energy hadronizations of
QCD are in trouble, since sums over large towers of states were required.

. As ~ —0.13, which when combined with comparably polarized v and d
sea quarks and with £yaence ~ 0.75, suggests !¢ that the valence quarks
are actually “normal”, with the sea quarks responsible for the spin crisis.

s and 72, are small.

The physical picture underlying these results also suggests that one may expect
that:

. Sea effects will generally be small in static current matrix elements.

JPC

An exception to this rule will occur for = 0" currents since they

are not zero in the closure limit.

To the extent that the adiabatic approximation holds, sea quark effects
will play minor réles in hadronic form factors (and in particular charge
radii) 17.

Associated with the suppression of ¢q effects in charge radii will be an
associated resonance dominance of nonsinglet-current-induced processes,
since nonresonant contributions will be associated with the failure of the

adiabatic approximation 7.
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Sea quark effects, most easily studied via the 5 content of the proton, thus
could open a window on some of the key issues in strong QCD: the applicability
of the adiabatic limit, the origin of the effective quark model potential, the
nature of the OZI rule, and the mechanisms behind quark-hadron duality.
The precision determination of the properties of this sea are thus of the utmost
importance.
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