
Hall C HV CSS User Manual
Tyler Lemon

June 6, 2019

Contents

I. Overview

II. Start-up script

III. Screen descriptions
i. Main Menu

ii. Histogram Monitoring Screen

iii. List Monitor and Controls Screen

iv. Backup GUI

v. Restore GUI

IV. Running script to generate screens

V. Backup and restore script
i. Backup procedure

ii. Backup output file format

iii. Restore procedure

VI. Common issues and troubleshooting steps
i. Start-up script does not open to main menu

ii. Workspace cannot open because it is already in use

iii. CSS errors

a. Script returns error

b. Resource Exception: Resource called is out of sync in CSS

iv. Installing required software/packages

a. pyepics

b. pip

June 6, 2019

2

I. Overview

The Hall C HV CSS screens are built in Control Systems Studio (CSS), an Eclipse-based collection of tools

created to help control large-scale systems using EPICS channel access. Part of CSS is an extension called “Best

Operator Interface (OPI) Yet”, or CSS-BOY. CSS-BOY utilizes the tools available in Eclipse to create graphical

user interfaces (GUIs, or screens). Because Eclipse is Java-based, extensions and scripts can be executed from

CSS’s runtime environment, allowing developers to customize the environment to the needs of the control system.

Before the development of Hall C’s HV CSS screens, all HV monitoring and controls were done through

Tcl/Tk scripts. These scripts created GUIs upon execution for users to control/monitor Hall C’s high voltage

systems. CSS was selected as a replacement for Tcl/Tk given CSS’s native ability to communicate over EPICS and

the ability to generate static screens that are stored locally and do not need to be re-generated every time they are

opened.

Hall C’s HV CSS screens, accessible using a start-up script on any Hall C subnet PC (Part II), provide

monitoring and controls capabilities for all HMS and SHMS detectors (Part III). The CSS screens can be updated at

any time by modifying its configuration file and re-running the script developed to generate the screens (Part IV).

The CSS controls system also includes the ability to backup and restore parameters for HV channels (Part V).

June 6, 2019

3

II. Start-up script

A shell script was created to open the screens in the appropriate workspace and in runtime mode. The shell

script, called go_hallc-hv, is located at /home/cdsg/ on cdaql2 and contains the command below to open the screens.

/home/cdsg/tlemon/css-4.5.0/css -data /home/cdsg/CSS-Workspace/HV_release2/ -nosplash

Components of the command are as follows:

/home/cdsg/tlemon/css-4.5.0/css

 CSS executable with path to its location on cdaql2.

-data

 Command line option allowing user to specify which workspace to open.

/home/cdsg/CSS-Workspace/HV_release2/

 Path to workspace containing CSS-BOY screens and scripts.

-nosplash

 Option to suppress CSS's default splash screen as it loads.

If the user is on Hall C counting house PCs, a second executable has been created called go_newhv that utilizes

secure shell to allow go_hallc-hv to be executed from remote hosts.

Currently, go_hallc-hv only allows one user to use the screens at a time. The next version of the start-up script

that will alleviate this issue is under development.

June 6, 2019

4

III. CSS Screen Description

i. Main Menu

When the go_hallc-hv is executed, CSS opens and displays the main menu in runtime mode. If this is not the

case, steps to resolve this issue are in Part VI. On the main menu, all detector systems are listed as dropdown boxes

that allow the user to open either a histogram monitoring screens or a listed view controls and monitoring screen.

There are also menu options to open histogram monitoring screens for all HMS channels or all SHMS channels.

From this main menu, if needed, the user can access CSS’s editor workspace using the menu bar at the top of

the screen.

June 6, 2019

5

ii. Histogram Monitor Screen

For each detector on HMS and SHMS, one of the options for the screen to select from the main menu is the

histogram monitor. This screen plots all of a detector’s channels’ voltage and current in a bar plot, or histogram,

view. This screen is used only for monitoring and has no control functionality. When the screen is running and

channels are on (unlike screenshot below from when all channels were off), the histogram will show one bar for

each channel. These screens are used to visually check that all channels are on and there are no channels that are

significantly lower or higher than the rest.

From each histogram monitoring screen, there are two additional dropdown menus. These two dropdown

menus are displayed on every histogram and list-view screen. One menu, labeled “File”, on the left opens the

backup and restore GUIs. The second menu, labeled “Group”, on the right opens list-view monitoring and controls

for any detector in the same spectrometer.

June 6, 2019

6

iii. List Monitor and Controls Screen

The second screen available for each individual detector is a list view of controls and readbacks for each

channel. Each channel is displayed in its own row with its ID name (Ch ID), on/off control (On/Off), status readback

(Status), voltage readback (Vmon), current readback (Imon), voltage setpoint readback/control (Vset), current trip

point readback/control (Itrip), software voltage limit readback/control (Vmax), ramp up rate readback/control

(RmpUp), and ramp down rate readback/control (RmpDwn).

In addition to individual channel controls, there are controls at the bottom of the screen to set values for all

channels displayed. There are group controls for channel on/off, current trip point, software voltage limit, ramp up

rate, and ramp down rate. These controls utilize CSS’s ability to embed Java or Python scripts in a control to change

all channels’ parameters from one control. When these controls are used, a confirmation message is displayed

requiring the user to confirm that they want to change that parameter for all channels of that detector.

Also on the list view screens are the same two “File” and “Group” dropdown menus for accessing other

detectors and the backup/restore GUIs.

June 6, 2019

7

iv. Backup GUI

If the user selects “Backup” from the “File” menu, the backup menu is opened. This screen contain a text box

that can be used to enter comments into the file created and a Boolean control button that the user must click to

initiate the backup. Further details on how the backup is performed are in Part V.

v. Restore GUI

If the user selects “Restore” from the “File” menu, the restore menu is opened. This screen contain a dialog

box that can be used manually enter the file to perform the restore from or to open a file explorer window to select

the file to restore from. The user may also leave the dialog box empty to automatically perform the restore using

the latest backup file. Further details on how the restoration is performed are in Part V.

June 6, 2019

8

IV. Running Script to Generate Screens

The script to generate all CSS-BOY screens for high voltage monitoring and controls, called TCL2CSS, is

Python based and takes advantage of CSS-BOY’s OPI file type being a variation of XML that can be read and

edited as text. TCL2CSS uses “widget templates” (“widget” is CSS’s name for any item placed on to a screen) to

format and place controls and indicators on a CSS-BOY screen. Widget templates are text constants extracted from

an OPI file with key parameters, such as a widget’s x-position, y-position, height, width, and PV name, replaced

with keywords that can then in turn be replaced by script. These PV names and properties are parsed by TCL2CSS

from two configuration files, HV.hvc and HV.group, which are from the old Tcl/Tk high voltage monitoring system.

TCL2CSS cannot generate CSS-BOY screens without these two files.

TCL2CSS is executed via command line and allows the user to declare which directory contains HV.hvc

and HV.group and which directory to write the resulting CSS-BOY files to. TCL2CSS also has the ability to

generate channel mapping reference documentation and EPICS Alarm Handler (ALH) configuration files based on

input options. Complete usage information on TCL2CSS is below.

python tcl2css.py [-m] [-a] dir [write]

[-m]

 Optional argument to output channel_map, group_map, and HV.alhConfig.

[-a]

 Optional argument to output only HV.alhConfig.

 If option is used, no other files will be generated.

dir

 Mandatory argument for directory containing HV.hvc and HV.group used to make the CSS-BOY screens.

[write]

 Optional argument for directory to write resulting CSS-BOY files to.

 If argument is not used, resulting files will be written to user’s current working directory.

June 6, 2019

9

V. Backup and Restore Script

The backup and restore functionality of the HV CSS-BOY screens is performed by a Python script that uses

the pyepics module (an interface to the Channel Access library for Python) to read/write values from/to PVs. In

order to use the backup/restore functions of the CSS screens, pyepics must be installed on the PC being used (See

Part VI for help installing pyepics).

There is one script for both backup and restore functions. Which function to use is automatically passed to

the backup/restore program by CSS depending on the GUI used to execute the script.

Rather than allowing users to select the detector to backup or restore, when the backup/restore program is

executed in backup mode, all HMS and SHMS high voltage channels are backed up. This ensures that there is

always a backup of all channels that can in turn be used by TCL2CSS to rebuild all CSS-BOY high voltage controls

and monitoring GUIs.

i. Backup Procedure

1. Open any detector’s controls/monitoring screen.

2. Use “File” drop down menu to select “Backup”.

3. Enter any comments into the “Comments” text box on the backup GUI.

4. Click “Run Backup” button.

June 6, 2019

10

Upon successful backup, the GUI prints the success message with the name of the resulting backup file and the time

required to complete the backup.

ii. Backup File Format

The resulting backup file’s name is automatically contains the date and time of the backup to avoid any

ambiguity about which file is most recent and eliminates the possibility of overwriting a previous backup file. The

backup file contains the data and time of the backup, any comment entered by the user, and all channels’ settings.

The backup data is formatted into rows based on channel with the channel’s properties separated by tabs. This

creates a document that is readable in any text editor. Any line in the backup file that starts with a “#” character is

ignored by the backup/restored program, allowing users to comment out channels or to add other comments between

channels. Below is a portion of the backup file showing the overall header for the file and the backup data for HMS

Hodoscope 1 X.

June 6, 2019

11

iii. Restore Procedure

1. Open any detector’s controls/monitoring screen.
2. Use “File” drop down menu to select “Restore”.

3. Select file to restore from. Can be done in three ways:

a. Use file dialog by clicking icon of folder.

b. Type name of backup file into text box.

c. Leave text box blank (do neither option above) to restore from latest file.

4. Click “Run Restore” button.

Upon successful backup, the GUI prints the success message with the name of the file used in the restoration

and the time required to complete the backup.

June 6, 2019

12

VI. Common issues and troubleshooting steps

i. Start-up script does not open to main menu

If the last screen closed is not the main menu screen, the next time the start-up script is executed to open the

monitoring and controls screens, the screen displayed will not be the main menu. Regardless of the screen displayed,

to get back to the main menu, the user should follow the steps below.

1. In top tool bar, go to Window – Open Perspective – Other…

2. Select “OPI Editor”

3. In window that opens, expand CSS folder in Navigator panel on left of window.

a. Any errors in console pop-up tab at bottom of window can be ignored.

June 6, 2019

13

4. Right-click on “main-menu.opi”, select Open With – OPI Editor

5. Click run button on top tool bar or hit Ctrl+G.

June 6, 2019

14

6. Close OPI Editor Perspective while leaving screen that opened after step 6 running.

CSS screens can now be used as normal after this step.

ii. Workspace cannot open because it is already in use

With the current start-up script for CSS, only one instance of the screens can be used at a time. If the screens

are already open, the dialog box below will appear.

Currently there is no resolution for this error besides finding the instance of the screens already in use and close

them. As mentioned in Part II, there is a version of the start-up script under development that will alleviate this

issue.

June 6, 2019

15

iii. CSS errors

When an error occurs in CSS, it will display the error in a pop-up console tab at the bottom of the workspace’s

main screen. Typically, this main screen for Hall C CSS-BOY HV system will be the main menu.

June 6, 2019

16

The following are errors known to occur and how to resolve them.

a. Script returns error

When calling scripts from CSS, as done by for the backup/restore GUIs and the group controls, there is a

possibility that calling the script will result in an error. The error displayed in the console tab will notify the user of

which script the error occurred in and the approximate line in the script that caused the error. The user can then use

this information to debug the script. Below is an example error received when executing the backup functionality of

the backup/restore script from the backup GUI.

1 2019-06-03 10:24:05 ERROR: Error in on Action Button_1.
2 Traceback (most recent call last):
3 File "<script>", line 19, in <module>
4 File "/home/cdsg/tlemon/css-4.5.0/plugins/org.python.jython_2.7.0.release.jar/Lib/subprocess.py", line 551, in check_output
5 subprocess.CalledProcessError: Command '['python', '/home/tlemon/CSS-Workspaces/dev/CSS/HV-bur.py',
 'backup', '/home/tlemon/CSS-Workspaces/dev/CSS/']' returned non-zero exit status 2

The message displayed when the error is the result of a failed script tends to have two parts. The first (Line 1 in

example above) states the date and time of the error and the widget that was activated to trigger the script. The

second part (lines 2-5) gives the source of the error in the called script.

b. Resource Exception: Resource called is out of sync in CSS

If a file called by CSS, such as a script embedded in a widget or an image, is modified in any way and then

opened in CSS quickly after modification, CSS will display an error stating that the source file is out of sync with

the workspace (e.g., developing a script in your preferred IDE, while running the CSS screen that calls it and then

using the widget that calls the script). The solution to this error is to simply wait a few seconds before performing

the action that triggered the error. CSS automatically refreshes files in its workspace, but if the file was modified

using an external program, it takes a few seconds. Below is an example error received when the source file is out of

sync with the CSS workspace.

1 2019-06-03 12:57:47 ERROR: Failed to register tcl2css_V2.py.
2 org.eclipse.core.internal.resources.ResourceException: Resource is out of sync with the file system:
 '/CSS/tcl2css_V2.py'.

Line 1 states the time and date of the error with the source. Line 2 states the actual error and the file out of sync.

June 6, 2019

17

iv. Installing required software/packages.

a. pyepics

To install pyepics, the following terminal command should be used:

pip3 install --trusted-host pypi.org --trusted-host files.pythonhosted.org --user pyepics

Components of the command are as follows:

pip3 install

 Calls pip3 (Package Installer for Python 3) with the argument to install a module.

--trusted-host pypi.org --trusted-host files.pythonhosted.org

 Adds pypi.org (a common repository for Python modules) and pythonhosted.org (site that hosts

documentation from modules’ authors) as a trusted host.

 This option may not be necessary, but with the proxies set up on Hall experimental subnets for network

security, declaring these two sites as trusted hosts prevents pip from not being able to connect to download

the necessary files to install pyepics.

--user

 Option installs module for only the user currently logged in.

 This option can be omitted if sudo or root privileges are used to install the module.

pyepics

 Declares pyepics as the module for pip to install.

b. pip

If user needs pip installed to be able to then install pyepics, the command below should be used.

sudo yum install python3-pip

This command calls yum, the primary tool for maintaining/installing Red Hat Enterprise Linux (RHEL) software

packages from official RHEL repositories, as a sudo user to install pip for Python 3.

