
18/12/2022

Configuration File Control for Hardware Interlock LabVIEW Program

Detector Support Group

Aaron Brown
2022-06

Configuration File Control for the NPS Hardware Interlock
LabVIEW Program

I am working on creating a configuration file control VI for the NPS
hardware interlock LabVIEW program. The configuration file contains all of
the set point values for the hardware interlock system.

When the hardware interlock LabVIEW program is run for the first time,
this configuration file needs to be read, parsed, and used to set various
parameters as well as specifying which sensors and values to use.

There are six things that the configuration file control VI needs to be able
to accomplish: read the current configuration file, create a new
configuration file, create a backup configuration file, copy a configuration
file, delete a configuration file, and check the status of the cRIO’s SD card
where the configuration file is stored.

I wrote a Python program to generate the initial configuration file,
configTest.py. This program generates a .csv file that contains the set point
values for the NPS hardware interlock system in a 27 x 222 grid. I first
started with reading in the configuration file.

The LabVIEW program checks to make sure that the configuration file is
valid (contains data), records the date and time the file was created, and
records the size (in bytes) of the file.

• Developed Python program to generate
configuration file for hardware interlock
system

• Creating LabVIEW VI to read configuration file
and pass values to parameter variables

• VI will be used to read, create, copy, backup,
and check the status of configuration files

28/12/2022

FIG. 1. Screenshot of Configuration File Control VI

Configuration File Control for Hardware Interlock LabVIEW Program

Detector Support Group

Next the program parses the configuration file row by row and displays
the data on the front panel via indicators for each individual parameter.

One problem that I encountered was when I was initially reading in the
configuration file, the program was only retaining one column of data. This
was because I had the delimiter set to tabs instead of the comma that was
being used in the configuration file generated with the Python program
configTest.py. One this was corrected, I was able to read in and display the
entire configuration file.

Another problem that is currently being debugged is that the data from
the configuration file is not being passed to some of the parameter variables
properly. I am still in the process of debugging this issue.

As of now, I am able to read in the data from the configuration file and
check to verify that the file is not corrupted and actually contains data. The
next steps will be to resolve the issue with passing the data values to all of
the corresponding parameter variables, and then work on the remaining
portions of the VI that can create a new configuration file, create a backup
configuration file, copy a configuration file, delete a configuration file, and
check the status of the cRIO’s SD card where the configuration file is stored.

