
14/12/2022

Threaded Python

Detector Support Group

Brian Eng
2022-03

Threaded Python for Improved Debugging and Performance

In a previous memo a PID process for controlling flow was introduced, 
this memo expands upon that one by adding add concurrent execution to 
the code. There are several modules in Python that provide different 
methods of execution in order to provide parallelism, the one selected was 
the threading module which adds thread-based parallelism. Due to the 
Global Interpreter Lock in CPython, which is the name given to the 
mechanism which assures only one thread executes Python bytecode at a 
time, performance can be limited in certain cases. However for I/O-bound 
tasks the threading module is an appropriate choice.

The main reason I added parallelism to the code was to separate out 
input (getting user input for flow set point) and output (PID function 
outputting debugging information) to allow for easier testing. The previous 
implementation relied on fixed flow set points and/or fixed delays 
between changing values. This resulted in a slower cycle of changing 
values and executing the code then repeating with different values. With 
threading implemented there is now a thread that handles the user input 
to get the flow set point and a separate thread that runs the PID 
functionality. Each of these functions has either blocking calls (waiting for 
user input) or fixed delays (sample time of the PID function that controls 
the update rate) the separate threads allow for better utilization of 
resources.

The main issue encountered was the exception handling on errors and 
when terminating the program. In the previous implementation both of 
these would update the DAC chip to power off all the channels as well as 
stop the program through a system exit call. Selecting which threads would 
handle which exceptions as well as adding a separate function to handle 
the signal emitted when terminating the program plus putting the threads 
in daemon mode allowed for successful execution. In daemon mode once 
the main program is stopped all threads are stopped as well. This can 

• Added threading module to PID flow control 
for concurrent execution

• Allows separate threads for handling user 
input and PID functions



24/12/2022

Threaded Python

Detector Support Group

potentially cause issues with resources not being released properly 
however this functionality is performed in the signal handling function.

The addition of the threading module to allow for concurrent 
execution will enable for faster debugging of the PID functionality when 
testing different flow change scenarios via manipulating the flow set point. 
This also paves the way for improved performance if additional valves are 
added as currently only a single valve is being tested as proof-of-principle 
before expanding to a full system.


