
15/16/2022

Handling Terminal Input/Output with Threaded Python

Detector Support Group

Brian Eng
2022-04

Handling Terminal Input/Output with Threaded Python

In a previous memo [1] I detailed the addition of concurrent execution to 
program that controls the PID process for controlling flow the use of threads 
to provide parallelism was introduced; in this memo I mention the 
development of that code to better handle the terminal interactions of 
those threads. Figure 1 shows the flow control for the threads.

FIG.1. Thread Flowchart

When running multiple threads I found that while troubleshooting and 
adding additional console output logging, it was very messy and difficult to 
keep track of the source of the messages, especially when trying higher 
sample rates for the PID thread. A module that calls the curses library was 
therefore added to the program. The curses library provides terminal 
control via an abstraction layer for screen-painting and keyboard-handling. 
It also handles windows, a rectangular area on the screen, these windows 
are not required to be the same size as the terminal window itself. As the 
user input thread generally doesn’t have much I/O to perform I gave it a 
window only two rows tall at the top of the screen while the PID thread 
would get all the remaining area, an example output is shown in figure 2. 
The top of the window shows the currently entered setpoint, which will be 
updated when a user enters a new value. The bottom of the window 
displays the current valve position and flow value, which will scroll up as 
newer values are output at the bottom of the window.

• Curses library added to threaded python PID 
control code

– Separate threads have their own window section for 
easier troubleshooting and the ability to precisely 
control text positioning

https://www.jlab.org/div_dept/physics_division/dsg/weekly_reports/monthly_notes/be_2022-03.pdf


25/16/2022

Handling Terminal Input/Output with Threaded Python

Detector Support Group

FIG.2. Example console output

The main issue encountered was that the coordinate system used in 
curses is passed as (y, x) rather than the normal convention of having the x 
position listed first. While extensively documented it is uncommon enough 
that it caused a few unexpected display issues when first trying to 
implement the code. 

With the addition of the curses library to allow each thread to have a 
separate window of the screen it allows easier troubleshooting, a nicer 
overall display, and the ability to precisely position elements should 
additional information need to be displayed.

[1] Brian Eng, Threaded Python for Improved Debugging & Performance, 
Software Memo 2022-03, 2022.

https://www.jlab.org/div_dept/physics_division/dsg/weekly_reports/monthly_notes/be_2022-03.pdf

