\relax \citation{DVCS-HallA} \citation{appuhn} \citation{achenbach} \@writefile{toc}{\contentsline {section}{\numberline {4.7}High Performance Calorimeter}{181}} \citation{achenbach} \citation{appuhn} \citation{achenbach} \newlabel{pbf2-comp}{{4.7}{182}} \@writefile{lot}{\contentsline {table}{\numberline {4.14}{\ignorespaces Comparison of Pb-Glass, PbF$_2$, and PbWO$_4$ calorimeter properties. The photo-electrons per GeV for TF-1 Pb-Glass are obtained with a photo-cathode covering 36obtained with a UV sensitive mesh PMT covering 45\% of the cross section. The critical energy is the energy at which electron energy losses by ionization and radiation are equal. The element size chosen for Pb-glass is 40x40x400 mm$^3$, for PbF$_2$, 30x30x150 mm$^3$.}}{182}} \citation{appuhn} \@writefile{lof}{\contentsline {figure}{\numberline {4.22}{\ignorespaces Photon resolution on a plot $Q^2$ vs. $s$. The curves labeled by different photon energy resolution values correspond to the kinematic limit at which the $p(e,e'\gamma )$ and $p(e,e'\gamma )N\pi $-threshold are separated by $1$-$\sigma $ in the forward (DVCS) limit. For each resolution curve, the entire kinematic region to the left is accessible with the exclusive channel resolved without a triple coincidence. The curve labeled WO4 corresponds to PbWO$_4$, a high density scintillator. }}{185}} \newlabel{calo_kin}{{4.22}{185}} \@setckpt{Sections/equip-calor}{ \setcounter{page}{186} \setcounter{equation}{2} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{4} \setcounter{section}{7} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{22} \setcounter{table}{14} }