\relax \@writefile{toc}{\contentsline {chapter}{\numberline {1}Introduction}{1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {chapter}{\numberline {2}Executive Summary}{3}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {2.1}The Valence Quark Structure of the Nucleon}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1.1}Quark Flavor and Spin Decomposition in the Nucleon}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces A measurement of the neutron polarization asymmetry $A_1^n$, determined by the spin structure of the valence quarks made possible by the combination of an 11 GeV beam and the MAD spectrometer in Hall A. The shaded area represents a range of valence quark models; the solid line is a prediction of a pQCD light-cone quark model.}}{5}} \newlabel{fig:fig1_es}{{2.1}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces A semi-inclusive measurement of $\pi ^+$ and $\pi ^-$ production on the proton and $^3He$ allows a spin and flavor decomposition of the nucleon spin quark distributions. Factorization is assumed but will be tested and quantified by several additional measurements.}}{6}} \newlabel{fig:fig2_es}{{2.2}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1.2}Color Electric and Magnetic Polarizabilities}{7}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1.3}Other semi-inclusive experiments}{8}} \@writefile{toc}{\contentsline {section}{\numberline {2.2}Exclusive reactions}{10}} \citation{Sc91} \citation{Ch78} \citation{Sc91} \citation{Ch78} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}Hadrons in the Nuclear Medium}{14}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}Search for New Physics in the Electroweak Sector}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces a) $g_2$ spin structure function measured in Hall A using the 11 GeV electron beam and the MAD spectrometer. Neutron $d_2$ matrix element compared to nucleon models and to state of the art Lattice QCD calculations}}{18}} \newlabel{fig:g2d2}{{2.3}{18}} \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Ratio of the differential $\gamma p \rightarrow \gamma p$ cross section to the Klein-Nishina process on an elementary point-charge $e$, as a function of $s$ at three values of $t$. The ``pQCD'' and ``Handbag'' curves are described in the text. All projected data points are $\pm 5\%$ bins in $t$ and $\pm 2.5\%$ bins in $s$. The data can be obtained at three incident electron energies 6.6, 8.8, and 11.0 GeV, and the configuration described in the Exclusive Reactions section. A total of 1000 production hours is required. }}{19}} \newlabel{fig:RCS}{{2.4}{19}} \@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces Projected data for the $^3$He form factor $F(Q^2)$ with an 11\nobreakspace {}GeV JLab beam. Also shown are existing data and predictions of the standard model (IA+MEC)\nobreakspace {}\cite {Sc91} and the dimensional-scaling quark model (DSQM)\nobreakspace {}\cite {Ch78} }}{20}} \newlabel{fig:Heff}{{2.5}{20}} \@setckpt{Sections/executive-summary}{ \setcounter{page}{21} \setcounter{equation}{8} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{2} \setcounter{section}{2} \setcounter{subsection}{2} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{5} \setcounter{table}{0} }