\relax \citation{gayou} \citation{jones} \citation{Collins:1998be} \citation{Radyushkin:1998es} \citation{Ralston:2001xs} \citation{Diehl:2002he} \citation{Ji:1996ek} \citation{Afanasev:1998ym} \@writefile{toc}{\contentsline {section}{\numberline {3.3}Exclusive Reactions}{68}} \@writefile{lof}{\contentsline {figure}{\numberline {3.21}{\ignorespaces Up-quark probability distributions transverse to the proton center-of-momentum coordinate, in the infinite momentum frame (along $\mathaccent "705E\relax {z}$), for three values of lightcone momentum $x P^+$. The left column $u(x,{\bf b}) = {\@mathcal H}_u(x,{\bf b})$ is the up-quark probability distribution for an unpolarized proton. The right column $u_X(x,{\bf b})={\@mathcal H}_u(x,{\bf b}) -[1/(2M)](\partial /\partial b_y){\@mathcal E}_u(x,{\bf b})$ is the probability distribution for a proton polarized in the $x$ direction. ${\@mathcal H}$ and ${\@mathcal E}$ are the Fourier transforms with respect to $\Delta _\perp $ of $H(x,0,t=-\mathaccent "017E\relax {\Delta }_\perp ^2)$ and $E(x,0,t=-\mathaccent "017E\relax {\Delta }_\perp ^2)$, respectively. }}{69}} \newlabel{fig:ugpd}{{3.21}{69}} \citation{jones} \citation{gayou} \newlabel{gaussian}{{3.34}{70}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}$G_{Ep}/G_{Mp}$ at high $Q^{2}$}{70}} \@writefile{lof}{\contentsline {figure}{\numberline {3.22}{\ignorespaces Form factor ratio $\mu G_{Ep}/G_{Mp}$ measured via $p(\mathaccent "017E\relax {e},e'\mathaccent "017E\relax {p})$. The points labeled JLab--HallC are projected points with 6 and 11 GeV beam energy. The points labeled JLab-MAD-11 are projected points in Hall A with the MAD spectrometer.}}{71}} \newlabel{fig:SahaGEp}{{3.22}{71}} \citation{An94} \citation{Si92} \citation{brooks} \citation{lung} \citation{gen} \citation{sick} \citation{highq} \newlabel{tab:GEp}{{3.3.1}{72}} \@writefile{lot}{\contentsline {table}{\numberline {3.6}{\ignorespaces Kinematics and Run Time Estimate for $p(\mathaccent "017E\relax {e},e'\mathaccent "017E\relax {p})$ measurements of the ratio $G_{E\,p}(Q^2)/G_{M\,p}(Q^2)$, at $E_i=11 $ GeV.}}{72}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Measurement of $G_E^n$ at high $Q^2$}{72}} \citation{Radyushkin:1998rt} \citation{Hu02} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Real Compton Scattering}{73}} \@writefile{lof}{\contentsline {figure}{\numberline {3.23}{\ignorespaces Available data on $G_E^n$. Top: data for $Q^2 \le 2$\nobreakspace {}(GeV/c)$^2$. Bottom: data for $Q^2 \ge 1.0$\nobreakspace {}(GeV/c)$^2$. Because the Rosenbluth separation cannot determine the sign of $G_E^n$, the bottom figure shows the square of the ratio of $G_E^n$ normalized to the dipole form factor $G_D$. The data points plotted with $G_E^n$ = 0 are from planned experiments and from experiments which have run, but are unpublished.}}{74}} \newlabel{fig:GEn}{{3.23}{74}} \citation{Sh79} \@writefile{lof}{\contentsline {figure}{\numberline {3.24}{\ignorespaces Statistical uncertainty in $G_E^n$ obtainable in 30 days of beam time via the $^3\mathaccent "017E\relax {He}(\mathaccent "017E\relax {e},e'n)X$ reaction, utilizing different spectrometer setups.}}{75}} \newlabel{fig:GEn_err}{{3.24}{75}} \newlabel{eq:Kroll}{{3.38}{75}} \@writefile{lof}{\contentsline {figure}{\numberline {3.25}{\ignorespaces Coincidence $p(\gamma ,\gamma ' p)$, $p(\gamma ,p \gamma )\gamma $, and $p(e,e' p)$ events from JLab Hall A Real Compton Scattering Experiment 99-114. The horizontal axes are the difference between the detected position (cm) of the photon (reconstructed in the calorimeter) and the position predicted from the proton momentum measured in the HRS, assuming the event is an exclusive Compton event. The peak at $(0,0)$ contains the $p(\gamma ,\gamma ' p)$ events. The dipole magnet in front of the calorimeter displaces the $p(e,e' p)$ peak to negative $\Delta x$. The broad background is $p(\gamma ,p \gamma )X$ events, mostly $\gamma p \rightarrow p \pi ^0$.}}{76}} \newlabel{fig:rcslogo}{{3.25}{76}} \@writefile{lof}{\contentsline {figure}{\numberline {3.26}{\ignorespaces Experimental setup for RCS with 12 GeV CEBAF}}{77}} \newlabel{fig:RCSsetup}{{3.26}{77}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.4}Deeply Virtual Compton Scattering}{77}} \citation{Vanderhaeghen:1999xj} \@writefile{lof}{\contentsline {figure}{\numberline {3.27}{\ignorespaces Kinematics of RCS with 12 GeV CEBAF}}{78}} \newlabel{fig:RCSkin}{{3.27}{78}} \citation{Diehl:1997bu} \citation{Guichon:1998xv} \citation{Gu95} \citation{Guichon:1998xv} \citation{Pasquini:2001yy} \citation{Ro00} \citation{Pasquini:2001yy} \newlabel{eq:dsig_hel}{{3.42}{79}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.5}Polarizabilities at High $Q^2$}{79}} \@writefile{lof}{\contentsline {figure}{\numberline {3.28}{\ignorespaces Missing Mass squared (GeV$^2$) distribution for the $p(e,e'\gamma )X$ reaction at $E_i=11$ GeV, $Q^2= 6.0$ GeV$^2$, and $s=11$ GeV$^2$. The three curves are: $e p \rightarrow e p \gamma $ (Black); $e p \rightarrow e \Delta \gamma $ (Blue) $e p \rightarrow e p \pi ^0$ (Red, almost 0). In both top and bottom, the electrons are detected in the MAD spectrometer, and the photons are detected in the proposed PbF$_2$ calorimeter (see text). For the $e p \rightarrow e p \pi ^0$ events, only the leading photon is detected. In the bottom plot, the proton is detected in a scintillator array (see text) and a 2D cut is applied between the detected position of the proton and the position predicted by the $p(e,e'\gamma )p$ kinematics. For the simulation, the $e p \rightarrow e \Delta \gamma $ cross section (including both BH and DVCS processes) is set equal to the $e p \rightarrow e p \gamma $ cross section. In the plot, the $e p \rightarrow e p \pi ^0$ cross section is amplified by a factor 20 relative to the model prediction, in order to make the $\pi ^0$ yield visible on the plot. }}{80}} \newlabel{fig:mx2-mid-x}{{3.28}{80}} \@writefile{lof}{\contentsline {figure}{\numberline {3.29}{\ignorespaces Helicity dependent cross sections $\mathaccent "707E\relax {s}\mathaccent "707E\relax {u}\left [d\sigma (\mathaccent "017E\relax {e},e'p\gamma )- d\sigma (\mathaccent "017E\relax {e},e'p\gamma )\right ]$ at $\left =0.35$ in 7 bins in $t$, weighted by the Bethe-Heitler propagator $\mathaccent "707E\relax {s}\mathaccent "707E\relax {u}$. Statistics are for 400 hours at ${\@mathcal L}=10^{37}$/cm$^2$/s. The proton array is centered around the nominal $\mathaccent "017E\relax {q}$ direction of $-7^\circ $, but all active detector elements are more than $20^\circ $ from the beam line. The Calorimeter is centered at $-12.5^{\circ }$. The blue points are pseudo data (with error bars) distributed statistically around the values obtained in the simulation. The red curve is a Fourier fit to the pseudo data. }}{81}} \newlabel{fig:asy-mid-x}{{3.29}{81}} \@writefile{lof}{\contentsline {figure}{\numberline {3.30}{\ignorespaces Anticipated precision of the extraction of the leading twist $\mathop {\mathgroup \symoperators sin}\nolimits \phi $ and higher twist $\mathop {\mathgroup \symoperators sin}\nolimits 2\phi $ terms as a function of $t$, at $Q^2=6$ GeV$^2$, $s=11$ GeV$^2$ ($x_{\rm Bj}=0.37$). Statistics are for 400 hour at ${\@mathcal L}=10^{37}$/cm$^2$/s. The horizontal error bands are the widths of the bins. The ratio $B/A$ was fixed at 0.05 in the simulation.}}{82}} \newlabel{fig:AB-mid-x}{{3.30}{82}} \@writefile{lof}{\contentsline {figure}{\numberline {3.31}{\ignorespaces Helicity dependent cross sections $\mathaccent "707E\relax {s}\mathaccent "707E\relax {u} [d\sigma (\mathaccent "017E\relax {e},e'p\gamma )- d\sigma ({e},e'p\gamma )]$ in 7 bins in $t$ at $\left =0.50$, weighted by Bethe-Heitler propagator. Statistics are for 400 hour at ${\@mathcal L}=10^{37}$/cm$^2$/s. The central values of the kinematics are listed on the figure.}}{83}} \newlabel{fig:asy-high-x}{{3.31}{83}} \@writefile{lof}{\contentsline {figure}{\numberline {3.32}{\ignorespaces Anticipated precision of the extraction of the leading twist $\mathop {\mathgroup \symoperators sin}\nolimits \phi $ and higher twist $\mathop {\mathgroup \symoperators sin}\nolimits 2\phi $ terms as a function of $t$, at $Q^2=7$ GeV$^2$, $s=8$ GeV$^2$ ($\left =0.5$). Statistics are for 400 hour at ${\@mathcal L}=10^{37}$/cm$^2$/s. The horizontal error bands are the widths of the bins. The ratio $B/A$ was fixed at 0.05 in the simulation. }}{84}} \newlabel{fig:AB-high-x}{{3.32}{84}} \citation{white} \citation{Br73} \citation{Br75} \citation{Ma73} \citation{lepage} \citation{gammad} \citation{schulte01} \citation{schulte01} \citation{krishni} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.6}Virtual Compton Scattering at Large $t$}{85}} \newlabel{vcs_rates}{{3.3.6}{85}} \@writefile{lot}{\contentsline {table}{\numberline {3.7}{\ignorespaces Kinematics and Rates for Virtual Compton Scattering. Rates are calculated assuming a luminosity of $4.0\cdot 10^{38}$/cm$^2$/s $\times 4$ GeV/$k_e$ (fixed total beam power of 100 $\mu $A $\times 4$ GeV$ = 0.4$ MW. For polarizabilities, only the Bethe-Heitler plus Born contribution is calculated. Based on calculations at $Q^2=4$ GeV$^2$, we expect actual rates to be a factor of 4 higher, with a factor of 2 sensitivity to the polarizabilities. The rates in the ``Soft-Overlap'' section assume $s^{-6}$ scaling, extrapolated from RCS, with a virtual photon flux factor.}}{85}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.7}Nucleon Photopion Production at 11 GeV in Hall A}{85}} \citation{crabb} \citation{correlation} \citation{brodsky_lipkin} \citation{landshoff} \citation{ct5} \citation{ct6} \citation{ralston} \citation{carlson} \citation{brodsky_de} \citation{crabb} \citation{correlation} \citation{schulte01} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.8}Polarization in Meson Photoproduction with MAD}{87}} \citation{gayou2002} \citation{RCSprop} \citation{barker75} \citation{chiangtabakin97} \citation{GiGr2002} \citation{liu68} \citation{kamae77} \citation{ikeda79} \citation{wije01} \citation{kang93} \citation{schwambarenhovel01} \citation{schwambarenhovel02} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.9}Deuteron Photodisintegration}{89}} \citation{fmss} \citation{bochna98} \citation{schulte01} \citation{napolitano88} \citation{freedman93} \citation{belz95} \citation{crawford96} \citation{kang93} \citation{tshlee} \citation{fmss} \citation{qgs} \citation{qgs01} \citation{brodskyhiller} \citation{radyushkinunpub} \citation{schulte01} \@writefile{lof}{\contentsline {figure}{\numberline {3.33}{\ignorespaces Virtual Compton Scattering in the ``soft-overlap'' region, with HRS-MAD-calorimeter coincidences. Kinematics are $Q^2 = 2.5$ GeV$^2$, $s=9$ GeV$^2$, and $\theta _{\gamma \gamma }^{\rm CM} = 155^\circ $. Except for the scatter plot, the vertical axis is counts per bin per hour at a luminosity of $2\cdot 10^{38}$. Upper left: Missing mass-squared in $p(e,e'p)X$; Solid is VCS, dashed is $\pi ^0$, divided by 10. Upper right, scatter plot of transverse coordinates (m) of VCS photons in a plane 1 m from the target, centered at 85 degrees from the beamline. Lower plots: Difference between expected and detected photon positions for VCS and $\pi ^0$ decay photons (solid) and $\pi ^0$ decay photons only (dash). Left plot is polar angle relative to beam axis. Right plot is (laboratory) azimuthal angle. In both plots, a cut $M_X^2 < 0.02$ GeV$^2$ is imposed. In the right plot, a cut of $\pm 0.015$ is imposed on the left plot.}}{92}} \newlabel{fig:bdvcs9}{{3.33}{92}} \@writefile{lof}{\contentsline {figure}{\numberline {3.34}{\ignorespaces The scaled differential cross-section for the $p(\gamma ,\pi ^+)n$ process at C.M. angle of 90$^\circ $, as a function of cms energy squared $s$ in GeV$^2$ along with the projected measurements for JLab at 11 GeV (blue solid points). The red solid points are the projected results from E02-010 and the green solid points show the completed E94-104 data points.}}{93}} \newlabel{lh2proj}{{3.34}{93}} \@writefile{lof}{\contentsline {figure}{\numberline {3.35}{\ignorespaces The scaled differential cross-section for the $p(\gamma ,\pi ^0)p$ process at C.M. angle of 90$^\circ $, as a function of cms energy squared $s$ in GeV$^2$ along with the projected measurements for JLab at 11 GeV (blue solid points).}}{93}} \newlabel{pi0_12gev}{{3.35}{93}} \@writefile{lof}{\contentsline {figure}{\numberline {3.36}{\ignorespaces Estimated uncertainties for the induced polarization in $ \mathaccent "017E\relax {\gamma } p \rightarrow \mathaccent "017E\relax {p} \pi ^0 $, for $E_{\gamma }$ $=$ 6.9 GeV, as a function of $\pi ^0$ angle. The value chosen for the polarizations is arbitrary. One day of beam time at each angle is assumed. Similar quality angular distributions would be obtained at at the same time for several additional 200 MeV bins in photon energy. See text for further details.}}{94}} \newlabel{fig:pgppi0-pol}{{3.36}{94}} \@writefile{lof}{\contentsline {figure}{\numberline {3.37}{\ignorespaces Induced polarization in deuteron photodisintegration at $\theta _{\rm cm} = 90^{\circ }$, as a function of photon energy.}}{95}} \newlabel{fig:dgppol}{{3.37}{95}} \@writefile{lof}{\contentsline {figure}{\numberline {3.38}{\ignorespaces High energy deuteron photodisintegration cross sections.}}{96}} \newlabel{fig:dgpsigmas}{{3.38}{96}} \@writefile{lof}{\contentsline {figure}{\numberline {3.39}{\ignorespaces Projected results for deuteron photodisintegration polarizations with MAD.}}{97}} \newlabel{fig:dgppolwMAD}{{3.39}{97}} \@setckpt{Sections/physics-exclu-all}{ \setcounter{page}{98} \setcounter{equation}{43} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{3} \setcounter{section}{3} \setcounter{subsection}{9} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{39} \setcounter{table}{7} }