\relax \citation{Cap01} \citation{Wh92} \citation{Me96} \@writefile{toc}{\contentsline {chapter}{\numberline {3}Physics Program}{21}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {3.1}Inclusive Structure}{21}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Valence Quark Structure of the Nucleon}{21}} \citation{Ku00} \citation{Bl70} \citation{Ni00} \citation{As88} \citation{La98} \citation{Cl73} \citation{Wh92} \citation{Bo81} \citation{Me96} \citation{Fr88} \citation{Wh92} \citation{Bo81} \citation{Me96} \citation{Fr88} \citation{Cl73} \citation{Fe72} \citation{Ca75} \citation{Is99} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Theoretical Predictions for Large-$x_{Bj}$ Distributions}{23}} \newlabel{pwfn}{{3.4}{23}} \newlabel{eq:wfsu6}{{3.4}{23}} \newlabel{eq:rnpsu6}{{3.5}{23}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Ratio $R^{np}$ of neutron to proton structure functions as a function of $x_{Bj}$, extracted from the SLAC data on the deep inelastic proton and deuteron structure functions. The left panel represents $R^{np}$ extracted according to different prescriptions for accounting for nuclear effects in the deuteron: Fermi smearing only (blue squares) \cite {Wh92,Bo81}, Fermi motion and nuclear binding corrections (red circles)\nobreakspace {}\cite {Me96}, and assuming the nuclear EMC effect in the deuteron scales with nuclear density (green triangles) \cite {Fr88}. The right panel shows the projected errors for the proposed $^3$H and $^3$He JLab experiment.}}{24}} \newlabel{fig:Rnp}{{3.1}{24}} \citation{Ko97} \citation{Fa75} \citation{Ru75} \citation{Me01} \newlabel{eq:rnpbroken}{{3.6}{25}} \newlabel{eq:rnppqcd}{{3.7}{25}} \newlabel{eq:duality}{{3.8}{25}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.3}Neutron to Proton Structure Function Ratio, $F_2^n/F_2^p$}{25}} \citation{Uc88} \citation{Ci90} \citation{Af00} \citation{Pa01} \citation{Sa01} \citation{Bi02} \citation{Sa01} \citation{Bi02} \citation{Go94} \citation{Da94} \citation{Ta96} \citation{Am94} \citation{Be89} \citation{Spin} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.4}Proton Spin Structure: $A_1^p$ at Large $x_{Bj}$}{26}} \newlabel{proton-a1p}{{3.1.4}{26}} \newlabel{tab:A3kin}{{3.1.3}{27}} \@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Helium/Tritium DIS Kinematics with ${\@mathbf E}$\nobreakspace {}=\nobreakspace {}11\nobreakspace {}GeV.}}{27}} \newlabel{eq:A1p}{{3.10}{27}} \citation{An00} \newlabel{tab:A3rates}{{3.1.3}{28}} \@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Cross sections, counting rates and beam times for $^3$He/$^3$H DIS measurements.}}{28}} \citation{Ab98} \citation{e99117} \citation{Fr90} \@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces List of proposed kinematics. Under Rates, the range of rates for the $x_{Bj}$ bins is shown in Fig.\nobreakspace {}3.2\hbox {}.}}{29}} \newlabel{tab:a1p_kin}{{3.3}{29}} \citation{Wo89} \citation{Ci93} \citation{Sa93} \citation{Bi01} \citation{Bi02b} \citation{Ni00} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.5}Neutron Spin Structure, $A_1^n$}{30}} \@writefile{lot}{\contentsline {table}{\numberline {3.4}{\ignorespaces Comparison of the figure of merit (FOM) for large $x_{Bj}$ measurements of the $A_1^n$ structure function at HERA, SLAC and JLab. }}{30}} \newlabel{tb:lcomp}{{3.4}{30}} \citation{Bl70} \citation{Ni00} \citation{Ru75} \citation{Ni00} \citation{Ca90} \citation{Ji95} \citation{Ji97} \citation{Cl01} \citation{Is01} \citation{Cl02} \citation{Li01} \citation{Ex94} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.6}Duality in Spin Structure Functions}{31}} \@writefile{toc}{\contentsline {subsubsection}{Measurement of neutron (polarized $^3$He) spin structure functions in the resonance region}{32}} \@writefile{lot}{\contentsline {table}{\numberline {3.5}{\ignorespaces Kinematics, rates and statistical uncertainties for the proposed measurements. A 100 MeV momentum bin has been used for the rate calculations. Due to the MAD momentum acceptance of $\sim \pm 15$\%, each momentum setting considered here contains 15-20 100 MeV bins. The rates and the uncertainties given are for the bin with the lowest rate of a given momentum setting. For the rate calculations we have assumed a beam current of 15 $\mu $A. }}{32}} \newlabel{rates}{{3.5}{32}} \citation{Wa77} \@writefile{toc}{\contentsline {subsubsection}{Measurement of proton spin structure functions in the resonance region}{33}} \@writefile{toc}{\contentsline {subsubsection}{Testing spin and flavor dependence of duality and its applications}{33}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.7}Higher Twists and the $g^n_2$ Structure Function}{33}} \citation{St95} \citation{Ab96} \citation{An02} \citation{Ad93} \citation{An02} \citation{Wa77} \citation{An02} \citation{d2n_bag1} \citation{d2n_bag2} \citation{d2n_bag3} \citation{d2n_qcd1} \citation{d2n_qcd2} \citation{d2n_qcd3} \citation{d2n_lattice} \citation{d2n_chiral} \citation{Go01} \citation{LH00} \newlabel{d2}{{3.13}{34}} \citation{Bj66} \citation{Ge66} \citation{Ba02} \citation{He02} \citation{Ba94} \citation{Cl94} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.8}High Energy Behavior of $g_1$}{35}} \newlabel{gdh}{{3.14}{35}} \newlabel{ggdh}{{3.15}{35}} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces \unhbox \voidb@x \hbox {$A_{1}^p$}{} from SLAC E143 and E155 experiments and projected errors for Hall\nobreakspace {}A with an 11\nobreakspace {}GeV electron beam and the MAD spectrometer. Only statistical errors are shown. The dashed red line on the right side of the graph shows the pQCD limit for \unhbox \voidb@x \hbox {$A_{1}^p$}{} as $x_{Bj}\rightarrow 1$; the solid line is the limit for SU(6) symmetry preserving models.}}{37}} \newlabel{fig:a1p_world}{{3.2}{37}} \@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces The proposed $Q^2$ and $W$ coverage for spin structure function measurements of the proton and the neutron in the resonance region using the 11\nobreakspace {}GeV beam and the MAD spectrometer.}}{38}} \newlabel{domain}{{3.3}{38}} \@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces The projected data for the proposed measurement in the three resonance regions. Note that the values of $A_1^n$ for the three resonance regions have been shifted by different offsets to ensure clarity. The solid circles show the projected data for DIS with 12\nobreakspace {}GeV beam at Jefferson Lab.}}{39}} \newlabel{xrange}{{3.4}{39}} \@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Projected data for a measurement of $A^n_1$ in the large $x_{Bj}$ region. The red filled circles are for the data in the DIS region ($W > 2$\nobreakspace {}GeV), while the filled diamonds show the possibility of extending the measurement to higher $x_{Bj}$ by relaxing the invariant mass cut.}}{40}} \newlabel{a1n_duality}{{3.5}{40}} \@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Projected data for a measurement of $A^p_1$ in the large $x_{Bj}$ region. The filled circles are for the data in the DIS region ($W > 2$\nobreakspace {}GeV), while the filled diamonds show the possibility of extending the measurement to higher $x_{Bj}$ by relaxing the invariant mass cut.}}{41}} \newlabel{a1p_duality}{{3.6}{41}} \@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces Measure values for $x_{Bj}^2 g_2^n$ from experiment E155x at SLAC and projected errors from a 12 GeV measurement at Jefferson Lab. Also shown is the twist-2 prediction, $g_2^{WW}$.}}{42}} \newlabel{fig:g2n_slac}{{3.7}{42}} \@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Various theoretical models for the neutron twist-3 matrix element $d_2^n$ along with the measured value from SLAC and the expected error from a measurement at 12 GeV at Jefferson Lab (shown at the value of the SLAC measurement).}}{43}} \newlabel{fig:d2n}{{3.8}{43}} \@setckpt{Sections/physics-inclu-all}{ \setcounter{page}{44} \setcounter{equation}{15} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{3} \setcounter{section}{1} \setcounter{subsection}{8} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{8} \setcounter{table}{5} }