\relax \@writefile{toc}{\contentsline {section}{\numberline {3.4}Hadrons in the Nuclear Medium}{98}} \citation{hnm} \citation{hallc} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.1}Studying Short-Range Correlations via A(e,e')X at $x_{B} > 1$}{99}} \@writefile{lof}{\contentsline {figure}{\numberline {3.40}{\ignorespaces Differential cross section for $^{27}Al(e,e')X$ as a function of $x_B$. Solid line is the sum of the quasielastic contribution (dotted line) and the inelastic contributions (dashed line).}}{100}} \newlabel{inclcrs.eps}{{3.40}{100}} \citation{hallc} \citation{hallc} \@writefile{lof}{\contentsline {figure}{\numberline {3.41}{\ignorespaces Predictions for the onset of scaling for $^{56}$Fe(e,e')X. Dotted line - mean-field predictions (no correlations) Solid line includes two-body correlations. Dashed line include two- and multi-body correlations. The data are from Jefferson Lab experiment E89-008\nobreakspace {}\cite {hallc}.}}{101}} \newlabel{fescale.ps}{{3.41}{101}} \@writefile{lof}{\contentsline {figure}{\numberline {3.42}{\ignorespaces Projected data for $d(e,e')X$.}}{103}} \newlabel{dex.ps}{{3.42}{103}} \@writefile{lot}{\contentsline {table}{\numberline {3.8}{\ignorespaces }}{103}} \newlabel{xg1-tab1}{{3.8}{103}} \citation{ref1} \citation{arun-ref1} \citation{arun-ref2} \citation{NE18} \citation{garrow} \@writefile{lot}{\contentsline {table}{\numberline {3.9}{\ignorespaces }}{104}} \newlabel{xg1-tab2}{{3.9}{104}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.2}Color Transparency in Few Body (e,e'p) Reactions}{104}} \citation{FS91} \citation{double} \citation{FGMSS95} \citation{Laget2} \citation{double} \citation{FGMSS95} \citation{Laget2} \citation{e89044} \citation{e89044} \citation{FLFS88} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.3}Recoil Polarization in $(e,e^{\prime }p)$ Reactions at Large $Q^2$.}{105}} \@writefile{lof}{\contentsline {figure}{\numberline {3.43}{\ignorespaces $^3 He(e,e'p)d$\nobreakspace {}\cite {e89044}}}{106}} \newlabel{e89044}{{3.43}{106}} \@writefile{lot}{\contentsline {table}{\numberline {3.10}{\ignorespaces Kinematics and Run Time Estimate for $R = \sigma (p=400\nobreakspace {}MeV/c) / \sigma (p=200\nobreakspace {}MeV/c) $ for $^2 H(e,e'p)n $ reaction. The total estimated running time is $\le $ 100 hours for a $\le 5\%$ uncertainty in the ratio R for all $Q^2$ points.}}{107}} \newlabel{arun-table}{{3.10}{107}} \citation{intf} \citation{nfilt} \citation{ct5} \citation{ct6} \citation{nfilt} \citation{brodsky_de} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.4}Pion Photoproduction in the Nuclear Medium}{108}} \@writefile{lof}{\contentsline {figure}{\numberline {3.44}{\ignorespaces Top: Estimated $\mu G_{Ep}/G_{Mp}$ as a function of $Q^2$. The solid line indicates the behavior determined by high $Q^2$ polarization measurements in Hall A, and extrapolates the data assuming $Q F_2 / F_1$ is constant. The dashed line indicates the effects of CT/NF which enhance $F_1$ relative to $F_2$. Bottom: The longitudinal polarization transfer is positive and largely independent of the form factor ratio at small $Q^2$, but will change sign once $G_E$ changes sign. The transverse polarization transfer is negative and depends strongly on the form factor ratio, thus it is greatly affected by CT/NF.}}{109}} \newlabel{fig:geest}{{3.44}{109}} \citation{ct1} \citation{ct3} \citation{jain} \citation{jain} \citation{gao} \citation{gao} \@writefile{lof}{\contentsline {figure}{\numberline {3.45}{\ignorespaces The projected results for nuclear transparency for photo-pions production from a $^{12}$C target. The lines are calculations from Ref\nobreakspace {}\cite {jain} using the two component model and and additional nuclear phase.}}{111}} \newlabel{hallanf}{{3.45}{111}} \@writefile{lof}{\contentsline {figure}{\numberline {3.46}{\ignorespaces The projected results for nuclear transparency for photo-pions production from a $^{4}$He target. The lines are CT calculations from Ref\nobreakspace {}\cite {gao}.}}{112}} \newlabel{hallanfhe4}{{3.46}{112}} \citation{emcnew} \citation{tmc3} \citation{osborne} \citation{hermes} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.5}Nuclear Effects in Hadronization by Deep Inelastic Electron Scattering}{113}} \citation{taylor} \citation{hermes} \citation{Bialas} \citation{hermes} \citation{Bialas} \citation{hermes} \citation{Bialas} \citation{Ca98} \citation{Ca97} \@writefile{lot}{\contentsline {table}{\numberline {3.11}{\ignorespaces Kinematic parameters in four different setups. }}{115}} \newlabel{tab:kin}{{3.11}{115}} \citation{Hu90} \citation{Ca98} \@writefile{lof}{\contentsline {figure}{\numberline {3.47}{\ignorespaces Shown are the tentative project results on the $\pi ^+$ multiplicity ratio as a function of $\nu $ from 10\% of the total events. The blue diamonds are for $z=0.5$ and nitrogen; the red boxes are for $z=0.5$ and argon; and the black 'X' are for $z=0.2$ and nitrogen. The blue circle are data from HERMES\nobreakspace {}\cite {hermes} for $z>0.2$ and nitrogen. All the other data points and the fitting curve are from the yellow diamond is the SLAC data on carbon. The curves are from a calculation\nobreakspace {}\cite {Bialas}, the dotted (black) is for $z=0.2$ and nitrogen, the dashes (blue) is for $z=0.5$ and nitrogen, and the solid (red) is for $z=0.2$ and argon. }}{116}} \newlabel{kebin-data}{{3.47}{116}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4.6}Few-Body Form Factors}{116}} \citation{Di89} \citation{Br73} \citation{Br83} \citation{Al99} \citation{Is84} \citation{Bo98} \citation{Sc91a} \citation{Ch78} \citation{Sc91a} \citation{Ch78} \citation{Am94} \citation{Sc91} \citation{Ch78} \citation{Ch78} \@writefile{lof}{\contentsline {figure}{\numberline {3.48}{\ignorespaces Projected data for the deuteron form factor $F_{d}(Q^2)$ with an 11\nobreakspace {}GeV beam}}{118}} \newlabel{fig:figx}{{3.48}{118}} \@writefile{lof}{\contentsline {figure}{\numberline {3.49}{\ignorespaces Projected data for the $^3$He elastic form factor $F_(Q^2)$ with an 11\nobreakspace {}GeV beam.}}{119}} \newlabel{fig:figy}{{3.49}{119}} \@setckpt{Sections/physics-nucl-all}{ \setcounter{page}{120} \setcounter{equation}{43} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{3} \setcounter{section}{4} \setcounter{subsection}{6} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{49} \setcounter{table}{11} }