HYP2003 – Jefferson Lab – October 03

Future Hypernuclear Program at Hall A

F. Garibaldi-INFN Roma-gr. Coll. Sanita'

- Physics
- Experimental challenge
 - Forward angle Septum magnets
 - Energy Resolution
 - PID : the RICH
- Targets, expeted rates
- Conclusions

Hypernuclear Phyisics

 \Box Create a laboratory to study $\Lambda - \mathcal{N}$ interaction

□ Extension of N-N physics to S≠0 systems

<u>Spectroscopy</u> of hypernuclear physics
 -Λ, Σ (?) coexist with nucleons,
 deeply bound hyperon (Pauli princ. work?)

Non-mesonic weak decays of hypernuclei
 (ΔI=1/2 rule, strength of Λp->np vs Λn->nn)

Bound state of Σ hypernuclei ?? (see ref. PRL 80(1998)1605)

Main experimental goals

Energy levels, splittings

cross sections weak decays (polarizations) Strange baryons may appear in neutral β-stable matter through processes like

 $n + e^- \rightarrow \Sigma^- + \nu_e$

as soon as the chemical potentials are such that

$$\mu_n + \mu_e > M_{\Sigma^-}$$

 The presence of <u>strange baryons in neutron stars</u> strongly affects their properties.
 Example: mass-central density relation for a nonrotating (left) and rotating (right) star

is growing evidence that hyperons There appears the first of the strange hadrons in around twice neutron starts at normal density.... The onset of the hyperon formation is controlled by the attactive hyperon-nucelon be extracted wich interaction can from hypernucleon scattering data and hypernuclear data (J. Shaffner-Bielich et al: Hyperstars: Phase Transition to (meta)-Stable Hyperonic neutron Stars. arXiv: matter in astroph/0005490

Additional experimental data from hypernuclei will be useful in establishing the foundations of high density matter models. This is especially relevant for the hyperonnucleon interactions, for which relevant systems are more likely to be produced in current accelerators than for hyperonhyperon interactions", in S. Balberg et al: Roles of hyperons in Neutron Stars, arXiv: astro-ph/9810361

- The <u>effect strongly depends</u> upon the poorly known interactions of strange baryons.
- More data needed to constrain theoretical models

ISS, April 19, 2002

recision A hypernuclear spectroscopy

Hypernuclear structure vs ΛN interaction

- hypernuclear data well described by weak coupling model

 $\Lambda (s-shell) + J A-1 \longrightarrow J = J A-1 \pm 1/2$ (A hyperon) (parent nucleus) (created doublet state)
(J state)

- many particle shell model :

(|s4 pA-5* sA; JT> configurations)

- Hypernuclear Hamiltonian:

 $\mathcal{H} = \mathcal{H}_{\mathcal{N}} + h_{\Lambda} + \mathcal{H}_{\mathcal{N}\Lambda}$

 $\begin{aligned} \mathcal{H}_{\mathcal{N}} &= hamiltonian \ for \ the \ \mathcal{N}UCLEAR \ CORE \\ h_{\Lambda} &= \ \mathcal{K}inetic \ term \ for \ the \ hyperon \\ \mathcal{H}_{\mathcal{N}\!\Lambda} &= \ \sum_{i=1}^{A-1} V_{\Lambda N} \left(\vec{r}_i - \vec{r}_{\Lambda} \right) \ \mathcal{R}esidual \ \Lambda \ \mathcal{N} \ interaction \end{aligned}$

• doublet splitting determined mainly by Δ , σ_{Λ} , T(σ_{N} affect the spacing between doublets)

----> new aspects of hypernuclear structure

* production of hypernuclei not available otherwise (7He_A,9Li_A)

* energy resolution ≈ 350 keV

 ${}^{12}C(\pi^+, K^+){}^{12}C_{\Lambda}$ data taken from M.Akei et al., NP A534 (1991) 478

Energy resolution 4 MeV

More recent **KEK data** INS-Rep.-1037, Univ. of Tokyo, 1994

Energy resolution 2 MeV

 $^{12}C(\pi^+,K^+)^{12}_{\Lambda}C, p_{\pi} = 1.06 \text{ GeV/c}$

Hall A - Two High Resolution Spectrometers

QDQ - Momentum Range: 0.3 -4 GeV/c $\Delta p/p$: 1 x 10-4 - Δp = =-5% - $\Delta \Omega$ = 5 -6 mr

E-94-107 - High Resolution 1p shell Hypernuclear Spectroscopy

F. Garibaldi, S. Frullani, J. LeRose, P. Markowitz, T. Saito

-> very forward angle detection capability is required

very good energy resolution forward angle reasonable counting rates very good PID unambiguous kaon identification

> $E_i = 4 \text{ GeV}$ $\omega = E\gamma \sim 2.2 \text{ GeV}$ $p_k = 1.9 \text{ GeV}$ $\theta_e = \theta_k = 6^\circ$ $Q^2 = 0.0789 \text{ Gev}^2$

Energy Resolution

- 1. △E/E : 2.5 x 10-5
- 2. $\Delta P/P$ (HRS + septum) ~ 10-4
- 3. Straggling, energy loss...

Forward angle - Septum magnets

- Meet the requirements of the 94-107 and all "possible"
 - Small scattering angle (12.5 --> 6)
 - No degradation in HRS performances
 - General purpose device
 - Continuous covering scattering angles (6 -->12.5)
 - Two independent arms

experiments in Hall A

Length	88 cm
Magnetic length	84 cm
Height of the gap	25 cm
Width of the gap	10.4 cm
central edge	
Width of the gap	18.4 cm
exit edge	
Angular acceptance	4.7 mr

	p (GeVc)	θ (degrees)	β (degrees)	R (cm)	∫ B. dl (Tesla .m)	B0 (Tes
	2	6	6.5	740.8	0.76	0.9
	2	12.5	11.9	404.6	1.39	1.65
	4	6	6.5	740.8	1.51	1.8
	4	12.5	11.9	4046	2.77	3.3
1						

E-97-110 JP. Chen, A. Deur, F. Garibaldi

Y target non optimized

The PID Challenge

Very forward angle ---> high background of π and p -<u>TOF and 2 aerogel</u> in <u>not sufficient</u> for <u>unambiguous K identification</u> !

Kaon Identification through Aerogels:

Figure 5: Same as fig 3 for the ${}^{9}Be(e, e'K){}^{9}Li_{\Lambda}$ reaction

 $\Delta \theta \rightarrow \Delta \theta / sqrt(N)$

- n fixed by the momentum(2GeV/c)
 C6 F14, transparent down to 160 nm
- compact (~ 50 cm)
- relatively thin (18% X0)
- $-310 \times 1820 \text{ mm}^2$
- quarz window 5 mm

N. of detected photoelectrons

$$N_{p.e.} = 370L\sin^2 \overline{\mathcal{G}}_c \prod_i \varepsilon_i \Delta E \approx 20 - 50$$

Reconstructed Angle with realistic PAD size

Angle Reconstruction (Freon= 1.4 cm, Gap= 10 cm, P=2 GeV/c) Particle Particle mass m₁ mass m₂ 2.5 $\sigma_{s}(mr)$ 1.9 1.7 $\vartheta_{maxn}\left(\mathbf{r}\right)$ 0.68 0.550.65 Cherenkov angle 2000 resolution 1000 $\frac{\sigma_{g}^{p.e.}}{N_{p.e.}}$ Minimize $\Delta \sigma_{\bullet}^{kn}$ 18.9 $\sigma_{g_c} = -$ ٥ 0.5250.7 0.50.550.575**a**.o 0.6250.650.675Maximize Emission Angle (not Reconstructed) θ_{cher} (rad) σ_0 (mr) 4.5 3.6 3.4 1500 π, K separated by 30 mrad $\vartheta_{mmn}\left(r\right)$ 0.550.65 0.691000 with 3 mrad: 10 σ 500 $\Delta \sigma_0^{\kappa_0}$ 9,9 Simulation (spectra) done with 6 σ ⁰ 0.5 0.6250.675 0.7 0.5250.550.5750.6 0.65Recostructed Angle with 0 PAD size θ_{cher} (rad) good enough 5,7 5 mrad $\sigma_{e}(mr)$ 4.4 4.1 $\vartheta_{mean}(r)$ 0.5510.65 0.68 1000 check the # p.e. 500 check the sinlge photon ang. res. ${{{\Delta \sigma_a}^{^{{\rm Kn}}}}}$ 8.0 (FPP tracking would help) ٥ 0.50.5250.550.575**0.6** 0.6250.65 0.6750.7

θ_{cher} (rad)

Separation power

 $\vartheta_2 - \vartheta_1 = n_\sigma \sigma_{\vartheta_2}$

Many parameters affect the detector performances (# p.e.)

- quartz transparency in the v.w. region of interest (160 220 nm)
- freon purity to not absorb the emitted Cherenkov light
 - freon purity circuit + continuously monitoring
- CsI photocathode
 - evaporation + on line QE absolute measurement
 - QE is strongly affected by oxygen and moisture
 - Careful handling of photocathodes after evaporation
 - Continuous monitoring of gas "purity"

CERN tests 11/01

CERN tests

7 GeV/C p bear Argon CH4 (25/75)2 photocathodes Rome and CERN Equal performances ~ 12 = Can be be

extrapolated to ~ 14 with CH

CERN November 2000

Cosmics Jlab September 2003

70 h210 Nent = 1227 Mean = 14.43 60 RMS = 7.93350 # p.e 40 30 20 10 0 'n 50 100 150

Num. of Cluster per Ring

Evaporation system

 10^{-6} mbar vacuum, 2 nm/s CsI deposition at T = 60 °C (CERN experts indications). Vacuum - heating conditions start 15 - 24 h before evaporation. A post-evaporation heat treatment s done for 12 hours.

Rotating mirror (CaF₂)

- PhotoCathode crucibles plane distance: 42 cm
- 4 μm Ni 1 μm Au support
- crucible quantity: 0.8 g weight each one,

corresponding to ~ 320 nm thickness (expected and measured)

Targets

d'orderdagedan (nb/sr 4/GeV)

Kinematics

Counting rates

 $E_i = 4 \text{ GeV}$ $\omega = E\gamma \sim 2.2 \text{ GeV}$ $p_k = 1.9 \text{ GeV}$ $\theta_e = \theta_k = 6^\circ$

 $Q^2 = 0.0789 \text{ Gev}^2$

Energy resolution

SOURCE	BECOLUTION	-	
SUUKLE	RESOLUTION	Error FWHM (kev)	
beam	10 ⁻⁴ of 4 GeV (4 σ)	235	
e'	10-4 of 1.8 GeV	180	
k	10-4 of 1.9 GeV	190	
k straggling	40 KeV	40	
Total		≈ 350	

Beam Current: $i = 100 \ \mu A$

Target thickness = 100 mg/cm²

	E (MeV)	J	(e,e'K) nb/GeV/sr ²	Rate hr-1	Error (120 H
⁷ Li	0.0	1/2+	0.796	10.2	2.0
	1.59	5/2+	0.181	2.3	6.5
	1.94	3/2+	0.138	1.7	8.2
	15.46	3/2-	0.345	4.25	4.3
	17.67	3/2-	1.14	14.6	2.4
⁹ Be	0.0	3/2+	0.179	1.78	8.
	0.69	5/2+	0.975	0.7	3.
	1.42	1/2+	0.196	0.95	7.6
	1.71	3/2+	0.282	2.8	11.5
	2.43	5/2+	0.108	2.07	7.3
	2.78	7/2+	0.306	(3.04)	5.8

^{12}C	0.0	1-	0.789	5.89	4
	0.03	2-	4.57	34.6	1.6
	2.54	1-	2.0	14.9	2.4
	5.46	2-	0.599	4.47	4.6
	6.05	3+	0.12	0.98	14
	10.03	3+	0.778	5.81	4
	10.63	3+	3.58	27.1	1.8
	11.22	2+	0.609	4.54	4.6
	11.93	2+	0.293	2.18	7.3
160	0.0	1-	2.78	20.7	2.0
	0.44	0-	0.26	1.91	7.8
	6.89	1-	2.01	050	6.6
	7.03	2-	5.28	(39.4)	1.5

- ^{1.} ¹²C: comparison with present data, better understanding of the data with hadronic probes (additional peaks found with respect to the predictions).
- 2. ⁹Be: spin doublets, s-s potential parameter clarification.
- 3. ⁷Li: large neutron excess
- 4. ¹⁶O: "simple" structure, ground state doublet investigation

⁵²Cr ? : due to the stability of ⁵¹V core, the level structure should be rather simple. Expectation supported by spectroscopy on ⁵¹V. Tipically the cross section for heavier target are lower. It is observed that this suppression is dependent to 2J+1. For this reason the cross section for elettroproduction of ⁵²V_A should be comparable with ¹²C -> ¹²B_A or ⁹Be -> ⁹Li_A cases

Expected spectra for ⁵²Cr

Calculations (M. Sotona) from Woods-Saxon potential with two different hypotesis:

- 1. $V_{LS} = 0.4 \text{ MeV}$, to fit splitting measured in γ spectroscopy
- 2. $V_{LS} = 2.0 \text{ MeV}$, to fit widening of d peak in ${}^{51}V_{\Lambda}$ found by hadronic probes (Hotchi et al., Phys. Rev. C64, 2001, 044302).
- Note: this 2-nd widening may be partially attributed to other structure effects

(e,e'K) Expected resolutions

	Waterfall Target	Waterfall Target	Waterfall Target	Waterfall Target
	100 mg/cm^2	100 mg/cm^2	100 mg/cm^2	100 mg/cm^2
	0.10 m	0.10 m	0.10 m	0.10 m
				Thicker Be windo
Electrons				
P MeV/c	2300	1800	1500	1800
Θ	6.0 °	6.0 °	6.0 °	6.0 °
T MeV	2299.5	1799.5	1499.5	1799.5
dT/dP	1.000	1.000	1.000	1.000
op/p tgt and window multi scat	3.7E-06	4.6E-06	5.5E-06	5.7E-06
σp/p exit multi scatt	4.5E-05	4.5E-05	4.5E-05	4.5E-05
quad sum	4.5E-05	4.5E-05	4.5E-05	4.5E-05
σP (MeV/c)	0.104	0.081	0.068	0.082
σT total	0.104	0.081	0.068	0.082
FWHM Total	245 KeV	192 KeV	160 KeV	192 KeV
Kaons				
P MeV/c	2020	1900	1710	1900
0	6.0 °	6.0 °	6.0 °	6.0 °
	0.0	0.0	0.0	
T MeV	1585.8	1469.4	1286.2	1469.4
dT/dP	0.971	0.968	0.961	0.968
op/p tgt and window multi scat	3.9E-06	4.1E-06	4.6E-06	5.2E-06
σp/p exit	4.5E-05	4.5E-05	4.5E-05	4.5E-05
quad sum	4.5E-05	4.5E-05	4.5E-05	4.5E-05
σP (MeV/c)	9.1E-02	8.6E-02	7.7E-02	8.6E-02
σ I total (MeV)	0.089	0.083	0.074	0.083
FWHM Total	209 KeV	196 KeV	175 KeV	196 KeV
Beam				
E (MeV)	4600	4000	3500	4016
Spot size (o)	50 microns	50 microns	50 microns	75 microns
σE/E (from spot)	1.00E-05	1.00E-05	1.00E-05	1.50E-05
σE/E	2.00E-05	2.00E-05	2.00E-05	2.00E-05
σΕ	1.03E-01	8.94E-02	7.83E-02	1.00E-01
FWHM E (MeV)	0.242	0.211	0.184	0.236
Straggling Be window FWHM (MeV)	0.004	0.004	0.004	0.004
Total Beam (FWHM)	242 KeV	211 KeV	184 KeV	236 KeV
StragglingTarget (FWHM)	123 KeV	123 KeV	123 KeV	123 KeV
Missing Mass Resolution (FWHM)	421 KeV	367 KeV	325 KeV	383 KeV

June 2002 optics tests (Target (${}^{12}C$): 114 mg/cm²) Kinematics: E_i= 4.7 GeV P_e= 3.8 GeV/c

P_{hadr}=1.5 GeV/c

Resolution 720 KeV

with our setup (no windows) and kinematics

> $E_i = 4 \text{ GeV}$ $\omega = E\gamma \sim 2.2 \text{ GeV}$ $p_k = 1.9 \text{ GeV}$ $\theta_e = \theta_k = 6^{\circ}$ $Q^2 = 0.0789 \text{ Gev}^2$

~ 350 keV

Conclusions

- very good energy resolution hypernuclear spectroscopy
 experiment on 1p shell nuclei will be performed in Hall A
- first septum magnet used for GDH: performances as expected
- second septum being installed
- challenging PID
 - aerogel and RICH performing as expected
- we are ready!