Electromagnetic two-body currents of one- and two-pion range *

S. Pastore - Cake seminar @ Jlab

December 3, 2008

* with R. Schiavilla and J.L. Goity - Phys. Rev. C in press; arXiv:0810.1941

- Nuclear two-body electromagnetic currents in non-relativistic χ EFT
- Calculation up to one loop
- Nuclear electromagnetic observables: results
- Summary and outlook

Electromagnetic two-body currents

- 1-body: describes the current of a free nucleon
- 2-body: includes the effect of the NN interaction on the currents of a nucleon pair

EM current operator related to the transition amplitute via

$$T_{fi} = \langle N'N' \mid T \mid NN; \gamma \rangle = -\frac{\hat{\mathbf{e}}_{\mathbf{q}\lambda}}{\sqrt{2\,\omega_q}} \cdot \mathbf{j}$$

Relevant degrees of freedom:

- non relativistic nucleons (N)
- pions (π); mediators of the NN interaction at large interparticle distances
- non relativistic Delta-isobars (Δ) $m_{\Delta} \sim m_N + 2m_{\pi}$

Transition amplitude in time-ordered perturbation theory

$$T_{fi} = \langle N'N' \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i\eta} H_1 \right)^{n-1} \mid NN; \gamma \rangle$$

 $H_0 = \text{free } \pi, \text{ N}, \Delta \text{ Hamiltonians}$ $H_1 = \text{interacting } \pi, \text{ N}, \Delta, \gamma \text{ Hamiltonians}$ In practice, insert complete sets of eigenstates of H_0 between successive terms of H_1

$$T_{fi} = \langle N'N' \mid H_1 \mid NN; \gamma \rangle + \sum_{|I\rangle} \langle N'N' \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid NN; \gamma \rangle + \dots$$

The contributions to the T_{fi} are rapresented by time ordered diagrams

Example: seagull pion exchange current

 H_1 's are derived from the Chiral Effective Field Theory Lagrangians (\mathscr{L}_{eff}) S. Weinberg, Phys. Lett. **B251**, 288 (1990); Nucl. Phys. **B363**, 3 (1991); Phys. Lett. **B295**, 114 (1992)

- QCD is the underlying theory of strong interaction; on this basis π , N, and Δ interactions are completely determined by the underlying quark-gluon dynamics
- At low energies perturbative techniques (expansion in α_S) cannot be applied to solve QCD and we are far from a quantitative understanding of the low-energy physics by ab initio calculations from QCD
- χ EFT exploits the χ symmetry exhibited by QCD at low energy to restrict the form of the interactions of pions among themselves and with other particles

χ EFT Interacting Hamiltonians

• The pion couples by powers of its momentum $Q \to \mathscr{L}_{eff}$ can by systemtically expanded in powers of Q/M

$$\mathscr{L}_{e\!f\!f} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \dots$$

 $M \sim 1$ GeV is the hard scale where χ EFT will break down and characterizes the convergence of the expansion \rightarrow we are limited to kinematic regions with $Q \ll M$

- χ EFT allows for a perturbative treatment in terms of Q as opposed to a coupling constant expansion
- The coefficients of the expansion, Low Energy Constants (LEC's) are unknown and need to be fixed by comparison with exp data

χ EFT Interacting Hamiltonians

• The pion couples by powers of its momentum $Q \to \mathscr{L}_{eff}$ can by systemtically expanded in powers of Q/M

$$\mathscr{L}_{e\!f\!f} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \dots$$

 $M \sim 1$ GeV is the hard scale where χ EFT will break down and characterizes the convergence of the expansion \rightarrow we are limited to kinematic regions with $Q \ll M$

- χ EFT allows for a perturbative treatment in terms of Q as opposed to a coupling constant expansion
- The coefficients of the expansion, Low Energy Constants (LEC's) are unknown and need to be fixed by comparison with exp data
- Due to the chiral expansion, T_{fi} can be expanded as

$$T_{fi} = T^{LO} + T^{NLO} + T^{N^2LO} + \dots$$

$$T^{NLO} \sim \frac{Q}{M}T^{LO}$$

 $T^{N^2LO} \sim \left(\frac{Q}{M}\right)^2 T^{LO}$

• The power counting scheme allows us to arrange the contributions of *T*_{*fi*} in powers of a small momentum *Q*

Each contribution to the T_{fi} scales as

$$H_{1} \text{ scaling} \sim \underbrace{\mathcal{Q}^{1} \times \mathcal{Q}^{-1/2}}_{H_{\pi N \Delta}} \times \underbrace{\mathcal{Q}^{1} \times \mathcal{Q}^{-1}}_{H_{\pi \pi N N}} \times \underbrace{\mathcal{Q}^{0} \times \mathcal{Q}^{-1/2}}_{H_{\pi \gamma N \Delta}} \sim e \mathcal{Q}^{0}$$

N = number of vertices N - 1 = number of intermediate states L = number of loops $(Q^{3L}$ takes in account $\int d^3 Q$)

$$\frac{1}{E_i - H_0} |I\rangle \sim \frac{1}{2m_N - (m_\Delta + m_N + \omega_\pi)} |I\rangle = -\frac{1}{m_\Delta - m_N + \omega_\pi} |I\rangle \sim \frac{1}{Q} |I\rangle$$

$$\underbrace{e\left(\prod_{i=1}^{N} \mathcal{Q}^{\alpha_{i}-\beta_{i}/2}\right)}_{e \mathcal{Q}^{0}} \times \underbrace{\mathcal{Q}^{-(N-1)}}_{\mathcal{Q}^{-2}} \times \underbrace{\mathcal{Q}^{3L}}_{\mathcal{Q}^{3}} = e \mathcal{Q}^{1}$$

N = number of vertices N - 1 = number of intermidiate states L = number of loops $(O^{3L}$ takes in account $\int d^3 O$)

• Energy denominator scales as Q^{-1} in the static limit $E_N = m_N + \frac{p^2}{2m_N} \sim m_N$; $E_\Delta = m_\Delta + \frac{p^2}{2m_\Delta} \sim m_\Delta$ $m_\Delta - m_N \sim Q$ $\omega_\pi \sim Q$

$$\frac{1}{E_i - H_0} |I\rangle \sim \frac{1}{2m_N - (m_\Delta + m_N + \omega_\pi)} |I\rangle = -\frac{1}{m_\Delta - m_N + \omega_\pi} |I\rangle \sim \frac{1}{Q} |I\rangle$$

π , N and Δ Vertices

H_{πNN}: (m_{πgA}/F_π)² 1/4π = 0.075 from Nijmegen analysis on NN scattering data
 H_{πNΔ}: h_A ~ 2.77 fixed by reproducing the width of the Δ resonance

- *H*_{CT,1} : 4-nucleons contact terms, 2 LEC's
- $H_{CT,2-5}$: contact terms involving one or two Δ 's, 5 LEC's
- H_{CT2D} : 4-nucleons contact terms with two derivatives acting on N, 14 LEC's

$$T_{fi}^{LO} = \langle N'N' \mid H_{\text{CT},1} \mid NN \rangle + \sum_{|I\rangle} \langle N'N' \mid H_{\pi NN} \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_{\pi NN} \mid NN \rangle$$

Leading order NN potential in χEFT

$$v_{NN}^{L0} = C_S + C_T \,\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 - \frac{g_A^2}{F_\pi^2} \frac{\boldsymbol{\sigma}_1 \cdot \mathbf{k} \,\boldsymbol{\sigma}_2 \cdot \mathbf{k}}{\omega_k^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$$

EM Vertices

• EM H_1 obtained by minimal substitution in the π - and N-derivative couplings

$$\begin{array}{cccc} \nabla \pi_{\mp}(\mathbf{x}) & \to & [\nabla \mp i e \mathbf{A}(\mathbf{x})] \, \pi_{\mp}(\mathbf{x}) \\ \nabla N(\mathbf{x}) & \to & [\nabla - i e e_N \mathbf{A}(\mathbf{x})] N(\mathbf{x}) \,, \qquad e_N = (1 + \tau_z)/2 \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

• EM H_1 of individual N's and Δ 's obtained by non-relativistic reduction of the effective Hamiltonians

*H*_{γNN} : μ_p = 2.793 n.m. and μ_n = −1.913 n.m. anomalous magnetic moments
 *H*_{γNΔ} : μ^{*} ≃ 3 n.m. from γNΔ data

• Up to N^2LO

• One-loop corrections to the one-body current (absorbed into μ_N , $\langle r_N^2 \rangle$)

• One-loop corrections at N³LO (*eQ*)

• Currents from (*NN*)(*NN*) contact interactions with two gradients involving a number of LEC's

• One-loop renormalization of to the tree-level currents

...

N²LO reducible and irreducible contributions in TOPT

• Recoil corrections to the reducible contribution obtained by expanding in powers of E_N/ω_{π} the propagators

Recoil corrections to the reducible diagrams cancel irreducible contribution

Recoil corrections at N³LO

Reducible contributions

$$\mathbf{j}_{\text{red}} \sim \int \upsilon^{\pi}(\mathbf{q}_2) \frac{1}{E_i - E_I} \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) - \int 2 \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

Irreducible contributions

$$\mathbf{j}_{\text{irr}} = \int 2 \frac{\omega_1 + \omega_2}{\omega_1 \,\omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) + \int 2 \frac{\omega_1^2 + \omega_2^2 + \omega_1 \,\omega_2}{\omega_1 \,\omega_2(\omega_1 + \omega_2)} [V_{\pi NN}(2, \mathbf{q}_1), V_{\pi NN}(2, \mathbf{q}_2)]_{-} V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

 Observed partial cancellations at N³LO between recoil corrections to the reducible diagrams and irreducible contributions

ODU

• We constructed the NN potential v_{ij} generated by the χ EFT Hamiltonians and verified whether the continuity equation is satisfied

$$\mathbf{q} \cdot \mathbf{j} = \left[\frac{p_1^2}{2m_N} + \frac{p_2^2}{2m_N} + \upsilon_{12}, \rho \right]_{-}$$

• We found that the inclusion of recoil corrections (at N²LO and N³LO) in the evaluation of the NN potential and the currents ensures that the continuity equation is satisfied

18/29

- Expressions of NN up to N³LO in agreement with those obtained with the method of unitary transformations
 - -E. Epelbaum et al. Nucl. Phys. A637, 107 (1998)

- The calculation of EM observable is carried out in r-space
 → we need configuration-space representation of the current operators
- At NLO and N²LO the operator present 1/r² and 1/r³ singularities
 → regularize them by introducing a momentum cutoff

$$C_{\Lambda}(p) = \mathrm{e}^{-(p/\Lambda)^2}, \qquad \Lambda \leq M$$

● <u>∧</u>=(500–800) MeV

Hybrid approach

The current operator is used in transition matrix elements between w.f.'s obtained from realistic Hamiltonians with two- and three-body potentials

- $\triangleright A = 2$ w.f.'s from AV18 or CDB potentials
 - long-range NN interaction via OPE
 - fitted to reproduce NN scattering data
 - reproduce d properties
- ▷ A = 3 w.f.'s (HH) from AV18-UIX or CDB-UIX^{*} potentials
 - reproduce ³H binging energy and a variety of N-d scattering data

- Isoscalar observables
 - μ_d deuteron magnetic moment
 - μ_S isoscalar combination of the trinucleon magnetic moments

$$\boldsymbol{\mu}_{S} = \frac{1}{2} \left[\boldsymbol{\mu}(^{3}\mathrm{He}) + \boldsymbol{\mu}(^{3}\mathrm{H}) \right]$$

• *d* magnetic moment (μ_d) and isoscalar combination (μ_s) of ³H/³He magnetic moments

	μ_d (n.m.)	μ_{S} (n.m.)		
	AV18 CDB		AV18/UIX	CDB/UIX*	
LO	+0.8469	+0.8521	+0.4104	+0.4183	
N ² LO-RC	-0.0082	- 0.0080	- 0.0045	-0.0052	
EXP	+0.8574		+0.426		

• N²LO contribution (cutoff Λ independent) is 1% of LO, but of opposite sign

- Isovector observables
 - $n + p \rightarrow d + \gamma$ cross-section at thermal neutron energies, $v_n \sim 2200$ m/s
 - μ_V isovector combination of the trinucleon magnetic moments

$$\mu_V = \frac{1}{2} \left[\mu(^3 \text{He}) - \mu(^3 \text{H}) \right]$$

Electromagnetic observables at N²LO

• ${}^{1}\mathrm{H}(n,\gamma)^{2}\mathrm{H}$ x-section

- N²LO- Δ_c gives no contribution to the x-section, ($\mu_{\Delta_c}^{N^2LO}|\Psi_{NN}; l = \text{even} \rangle = 0$)
- C_{Δ} : h_A from Δ width, μ^* from $N \gamma$ data

	<i>m.e.</i> (mb ^{1/2})
	AV18
Λ (MeV)	600
LO	17.45
NLO	+0.42
N ² LO-RC	-0.05
$N^2LO-\Delta$	+0.16
Sum	17.99
EXP	18.24

• x-section is underpredicted by ~ 2.5 %: fix $C_{\Delta}(\Lambda)$ by reproducing the exp values of ${}^{1}H(n,\gamma){}^{2}H$ x-section

ODI

Electromagnetic observables at N²LO

• μ_V in ³H/³He

• with C_{Δ} (Λ) fixed to reproduce $\sigma(np \rightarrow d\gamma)$

/18
-
00
.159
.197
.029
.253
.580
.533

- N²LO correction larger than NLO
- μ_V underpredicted by $\sim 2 \%$
- N²LO current completely determined with C_{Δ_c} (A) fixed by reproducing μ_V

- $n + d \rightarrow {}^{3}\text{H} + \gamma \text{ cross-section } (\sigma_{T})$ at thermal neutron energies
- $\vec{n} + d \rightarrow {}^{3}\text{H} + \gamma$ photon circular polarization factor R_c

 \mathbf{P}_N = neutron polarization P_γ = photon circular polarization

$$P_{\Gamma} = \frac{\sigma(\mathbf{P}_N, P_{\gamma} = 1) - \sigma(\mathbf{P}_N, P_{\gamma} = -1)}{2\sigma_T} = R_c \mathbf{P}_N \cdot \hat{\mathbf{q}}$$

	$\sigma_T (mb)$			R_c		
Λ (MeV)	500	600	800	500	600	800
LO	0.229	0.229	0.229	- 0.060	- 0.060	- 0.060
LO+NLO	0.272	0.260	0.243	-0.218	- 0.182	- 0.123
LO+NLO+N ² LO	0.450	0.382	0.315	- 0.437	- 0.398	- 0.331
EXP	0.508 ± 0.015			-0.42 ± 0.03		

• LO < 50% exp: 1-body currents suppressed due to pseudo-orthogonality between initial final and states (well known)

$$\mu_z^{LO} \mid \Psi({}^3\mathrm{H}) \rangle \simeq \mu_p \mid \Psi({}^3\mathrm{H}) \rangle \rightarrow \langle \Psi({}^3\mathrm{H}) \mid \mu_z^{LO} \mid \Psi(n,d) \rangle \simeq \mu_p \langle \Psi({}^3\mathrm{H}) \mid \Psi(n,d) \rangle$$

		$\sigma_T (mb)$		R_c		
۸ (MeV)	500	600	800	500	600	800
LO	0.229	0.229	0.229	- 0.060	- 0.060	- 0.060
LO+NLO (seagull only)	0.425			- 0.425		
LO+NLO (full)	0.272	0.260	0.243	- 0.218	-0.182	-0.123
LO+NLO+N ² LO	0.450	0.382	0.315	- 0.437	- 0.398	- 0.331
EXP	0.508 ± 0.015			-0.42 ± 0.03		

• NLO seagull- and in-flight-contributions nearly cancel out

	$\sigma_T (mb)$			R_c		
Λ (MeV)	500	600	800	500	600	800
LO	0.229	0.229	0.229	- 0.060	- 0.060	- 0.060
LO+NLO	0.272	0.260	0.243	-0.218	-0.182	- 0.123
LO+NLO+N ² LO	0.450	0.382	0.315	- 0.437	- 0.398	- 0.331
EXP	0.508 ± 0.015			-0.42 ± 0.03		

• N²LO theory $\sim 25\%$ smaller than exp: strong A-dependence

▷ mainly due to short-range behavior of N²LO- Δ_c contact current governed by a Gaussian of half-width 2/ Λ

	$\sigma_T (mb)$			R_c		
Λ (MeV)	500	600	800	500	600	800
LO	0.229	0.229	0.229	- 0.060	- 0.060	- 0.060
LO+NLO	0.272	0.260	0.243	-0.218	-0.182	- 0.123
LO+NLO+N ² LO	0.450	0.382	0.315	- 0.437	- 0.398	- 0.331
EXP	0.508 ± 0.015			-0.42 ± 0.03		

• N²LO theory $\sim 25\%$ smaller than exp: strong A-dependence

- ▷ mainly due to short-range behavior of N²LO- Δ_c contact current governed by a Gaussian of half-width 2/ Λ
- N²LO contribution much larger than NLO
 - NLO cancellations
 - ▷ N²LO makes up for missing loop corrections at N³LO

- Currents up to N³LO have been derived in χ EFT
- Currents up to N²LO have been completely determined by reproducing exp values of the 1 H $(n, \gamma)^{2}$ H x-section and μ_{V}
- At N²LO the ²H(n, γ)³H x-section and R_c are unpredicted by theory
- A strong cutoff dependence has been observed

Outlook

- ▷ Incorporate the N³LO operators into the calculations of the captures and the magnetic moments of light nuclei (A < 8)
- ▷ Fix the LEC's by fitting the NN potential

$$v_{\rm NN} =$$

N³LO 3-body currents also need to be derived

