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The unexpected simplicities of hadrons

The spectra and interactions of hadrons reveal some surprising features.

These suggest that perturbation theory may be applicable even at low Q2.

The strong interaction and confinement effects would then be limited to
an O(o,Y) sector of QCD.
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What if: Can such a scenario be ruled out?

Lecture notes: arXiv:1402.5005

1 Pinch Technique

Running charge m =500 MeV
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Os may freeze
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A. C. Aguilar, D. Binosi, J. Papavassiliou,
J. Rodriguez-Quintero, PRD 80 (2009) 085018
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"The J/y is the Hydrogen atom of QCD"
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Dichotomy of
Proton structure

o

Parton Picture Valence Picture
DIS and QFT require an The hadron spectrum shows

valence quark
degrees of freedom only.

infinite # of constituents:
Sea quarks and gluons

Relativistic bound states have
multiparton Fock states
and
a valence quark spectrum
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Okuba-Zweig-Tizuka Rule

— AE Br
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$(1020) —» KK

“Connected diagram”

26 MeV  83.1 %

o~

String breaking caused by confining potential

»(1020) » 7w

“Disconnected diagram T 610 MeV 153 %

Perturbative gluon contributions are suppressed, even at low Q2
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Bloom-Gilman Duality

W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

0.4 .3 £ JlabHallC - Resonance contributions
ep —> eN*

build DIS scaling in
ep —> eX

Hadron wave functions describe ultra-relativistic (plane wave) partons.

We must consider bound states in an arbitrary frame.
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Positronium from QED

The Coulomb potential AY may be expressed in terms of the electron fields,

€

Yip(t,y)

~V2A ) = el (t, @)y(t, @) = A'(t,x) = / Y e —y

In the rest frame we may neglect A (at lowest order in o).
The Hamiltonian can then be expressed in terms of the fermion fields only:

Horp(A =0) = /dgzmﬁ(—iv -y + %eyoflo + m)y
An e*e state at rest can be expressed as
ete 1) = /d3w1 d°xo Yo (t, 1) Pog(T1 — 22)15(t, 2) |0)

where ®qp(x1 — x2) 1s a 4 X 4 c-numbered, equal-time wave function.
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Positronium from QED (cont.)

Denoting the binding energy by F), the positronium state satisfies

Hokep ‘e+e_,t> = (2m + E) ‘e+e_,t>

Using {4} (t, ), ¥s(t, y) } = 0apd’(x —y) this gives the BSE for ®(xi— x2)

iV A, (z)} +m 17, ®(x)] = [2m + B, — V()| D(x)

O Pyo ]

Writing the wave function in 2 x 2 block form: O =
Qo1 Doy

and taking the non-relativistic limit as in the Dirac equation,

m = O (a) V=0 (a) Ey,, V=0 (a”)

v2
we find the Schrodinger equation: (— — + V) Qo = LpPy2
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Positronium at relativistic CM momentum ’

For Positronium in motion wave functions defined at equal time 7 (IF)
differ from the frame independent, equal LF time x* = 7+z wave functions.

The IF wi’s are (classically) expected to Lorentz contract.

In QFT their boost dependence is non-trivial (dynamical).
M. Jarvinen, hep-ph/0411208

Coulomb (AY) exchange dominates the kernel only in the rest frame, P = 0.

When P # 0 also transverse photon exchange contributes:

et ——
EAO = .A + %Afi %
e— 1

P=0 P+0
Positronium in motion 1s thus described by two ET Fock states:

[Pos., P=0)=® |ete” )+ D, |eTe )

Positronium in the P — oo frame might serve as a model for LF spin effects.



Hamiltonian formulation of the Dirac state

Similarly to Positronium, M, t) = / d°x @N (t, )W (x)|0)

define the Dirac state as T

c-numbered spinor

The QED Hamiltonian for a fixed external field A% is
H(t) = [ dail(t.2)] - iV % + eaY (@) + mr ot )
MY = [ de [H.!(t.2)] U(@)l0) = MM
— (—iV "y +eA) + my")U(x) = MU(xz) Dirac eq. for ¥

This required: H|0) = 0 No pair production in vacuum!

Nevertheless: The Dirac state contains ete- pairs (cf. Klein paradox)
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Dirac equation from Feynman diagrams

lime
—

Crossed, instantaneous Coulomb :
exchange corresponds to intermediate _ 5
states with particle pairs. 5

For states with M > 0 the ie prescription at the p® < 0 pole of the electron
propagator is irrelevant: We may use retarded boundary conditions |0)r

p+me Also p° < 0 components

p’ — E, +1ie)(p® + E, + i€) move forward in time
!

Sr(p’,p) = Z(

—> ¢ Only single electron intermediate states: H|0)p = 0

o UiW(x)is an inclusive particle density.

The 1nfinite number of pairs 1s described by a single electron wave function.
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Dirac vs. Schrodinger wf's in D=1+1 2

Representing the Dirac matrices as 2x2 Pauli matrices, the Dirac eq. 1s:
. 12 p(r) | _ ()
[ 1010, + 5€°|7] +m03} { () } = M \ () }

The wi’s ¢(x), x(x) are given by 1F-functions. For large m, they approach
the Schrodinger wi’s in the region of x where V(x) << m.

Pair contributions are manifest for V(z) = 1e”|z| > 2m
"y (a)
0.75
0.5
0.25/

For polynomial potentials the
mm=  Dirac ¢(X) Dirac wave function 1s not

= = Schrédinger p(x) normalizable, and the mass
spectrum M 1s continuous.

Its normalizability for the
V(r) = —a/r potential in D=3+1
1S an exception.

-0.25§
0.51

Paul Hoyer LC2014 V=2m



13
AUGUST 1, 1932 PHYSICAL REVIEW VOLUME 41

The Dirac Electron in Simple Fields*

By MiLtoN S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polynomial of any degree
in x, a continuous energy spectrum characterizes the solutions. 1f the potential is a
polynomial ot any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energy numerically less than the rest-energy are barred. When the potential
i1s a polynomial of any degree in 7, all values of the energy are allowed. For poten-
tials which are polynomials 1n 1/7 ot degree higher than the first, the energy spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.

See also: 3\ oth. Oxford (2), 12 (1961), 227.

Paul Hoyer LC2014



Constant particle density for x — «

U(z — 00) ~ exp(Fiz®/4) = UiU(z — )~ const.

T
We expect a constant particle density
for the (virtual) pairs created q
by a linear potential. v JT
VAVAVAVAVA (

m:l

The above approach allows also to discuss T
relativistic et e~ bound states (without an external potential)

I first consider D = 1+1 dimensions, where the Coulomb potential is linear.
In contrast to the Dirac states, we can define momentum eigenstates,

and they are found to have discrete mass spectra.
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f f bound states in D=1+1

A state with two fermions of energy £ and momentum P! = P ;

|E, P) = /dwldxg U(t, 1) exp | 2iP(x1 4+ x2) | ®(z1 — 22)Y(, 22)|0)

With PH |0) = 0, these are eigenstates of the translation generators:

PYE, P) = P|E, P) Bound state has momentum P (by construction)
PY |E/, Py = FE|FE,P)  Gives bound state equation for ®(x) :

10y {01, ®(x)} + |—2 Poy + mos, ®(z)| = |[E— V(x)|®(x)

where V' () = %62’$’ and 70 = 03, 71 = 102, 7Y = 01

Here the CM momentum P is a parameter, thus £ and ¢ depend on P .
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Boost covariance

It 1s essential and non-trivial that the state 1s covariant under boosts:

E 4+ d¢P, P+ dEE) = (1 — ideMOY) B, p) M isthe QED:

boost generator

This holds only for a linear potential and ensures that F/(P) = \/ P? + M?

The correct dependence E(P) also holds in D = 3+1, for the linear potential.

The P-dependence of the wave function @ can be explicitly given:
oF (o) = eYom ¢/2 g (P=0) (o)e™ YoM C/2

do P

dr — — -
where X E— V() and tanh ¢ T
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Solutions of the bound state equation (D=1+1, mi=my)
° (X b 29 —_— H2
For a linear V(x) the “invariant length O —

where the “kinetic 2-momentum” is 11" (z) = (P — eA)" = (F — V(x), P)
andthus II° =0 =(E—-V)? - P>=M?—-2EV 4 V?

Expanding the 2x2 wave function as @ = ©p+0;D+02DP>+03P3 the bound
state equation reduces to two coupled, frame-independent equations:

—2i0,®,(0) = Do) 210, By (0) — [1 - 4_7”2] 5, (o)

o

with the general solution

Oy (0) =ce ?a F1 (1 —im? 2,i0) + bU(1 —im?,2,i0)

If b # 0 the wi @ 1s singular at 0 = 0. Requiring b = 0 the spectrum is discrete.

Note: This constraint only applies for m # 0.
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Some numerical results

— Nearly non-relativistic case: m = 4.0e

— Schrodinger (Airy fn.) wi. o(x).

Oscillations for V(x) > 2m
reflect virtual pair production

@, (x) (m=4)
p(x) (m=2)

In the limit of small 5 5
fermion mass m: anﬂn+0(m ) : n=0,1,2,...

Paul Hoyer LC2014 Par ity = (— 1)n+1 No parity doublets for m # 0



Infinite Momentum Frame (IMF)

The wf 1s frame invariant as fn of o = (£-V)2-P2. Since V(x) = lxl :

ac:2(Ei\/P2+a)

AP+ o /P
M? —0o)/P

O

For P — « at fixed o: QJEQ(Eﬂ:P)iFS { (

Upper solution: x = 4P — o Pair production moves to infinite x.

Lower solution: x o« 1/P Lorentz-contracted “valence” region.

P :
Perturbatively: “Z-diagrams” get infinite /é

energy (k — ) in the P — o limit. E
k § 5 §
This seems related to /10) = 0 in LF quantization. E
e - + —i0/2 -2 '
Explicitly: ®p_,oo(0) = 2am Py "e 1 F1(1 —9m*,2,i0)
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Frame (P) dependence of the solutions ( mizmy)

Comparison of ground and excited state wave functions
for P=0 (CM frame) and for P = Se.

mi=1.0e my=1.5¢ Moves away in IMF (P — o limit)
D[ HD, [ P=0 D[+ D, [
[ I\ 1.2 '|
0.8 l ,l\ '
0.6
o4y | m=3.151 |
0.21 \ ’
M
5 10 15 20 25 X 30
(b)

Note: In the IMF limit, only the normalizable, low x part of the wi remains.
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Quark - Hadron duality

The wave functions of highly excited (large mass M) bound states can be
normalized by comparison with free parton loop contributions to current
propagators. All currents give consistent results.

-
S
N
U
@w

—  |Dy(x=0)12 = |D;(x=0)I2 = 11/2

Consistency with Bloom-Gilman duality:

At large M, and for V(x) << M,
the wave function reduces to a free ff pair
with momenta k = +M/2 (in the CM).

B-G Duality

Paul Hoyer LC2014
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EM Form Factor

FZB(Z) = (B(Pp);t = +o0|j"(z) |A(Pa);t = —00) A, B: in & out states

EM current;
j(2) = ()7 (=) = 7% (0)e T

Using anticommutators of fields:

Fhp(z) = c(Po—Pa)s

« [ doeThor T 0 (a)°0 4 (@)] ~ nanaTr [0a(e)’y @) (2)]

Gauge 1nvariance is valid: 8MF Z B (2) =0 (alsoin D =3+1)

The invariant form factor is frame independent (was checked numerically):

1 — b 1
Fap(Q?) = —4i ;“”B / da sin (1)
0

X [(I)SB(@CI)OA@) + ®1p(7)P1a(2) (1 * L ILa - HB)}

Paul Hoyer LC2014 OA0B



Parton Distribution: y*A — B »

TR = fixed
%1 94 g
2 2 1
J

From analogy to D=3+1:

For large Mp use asymptotic form of ®p .

Result scales in v = xQ/2 (Breit frame) oa~My — —— =17y

Q*Fap(ng = —) ~ —4iv2r(1 4 na)

xlwdv Sinv[cos(Qv )i(I)OA(TA)—SiH< Y )<I>1A(TA)(1—|— 2m” )]

L Bj 2333]' TB;TA

An analytic/numerical evaluation shows a sea quark distribution at low xa;
Paul Hoyer LC2014



Result for the parton distribution
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The parton distribution of the ground state has a sea component at low /e :

xg;f (xB;)
10¢

N A

(a)

0.2

04

0.6

0.8

1.0

xgif (xB;)

M xBj

m/e = 0.1

1

12}
10§

(b)

0.001

0.01

a X
0.050.1

(log scale in xp))

The red curve 1s an analytic approximation, valid in the xg; — 0 limiat.

Note: Enhancement at low x is not due to P

Paul Hoyer LC2014
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A linear potential in D=3+1 QCD »

Dokshitzer: Confinement in QCD 1s governed by classical fields (2013)
Zwanziger: No confinement without Coulomb confinement (2003)

Gribov:  Coulomb interaction rearranges the vacuum for o > ot (1997):

. 2 1
crit(QED) = 1 — \[ ~ 0.58 —
a“* (QED) 7T< 3> > 137

" (QCD) = gF (1 - ﬁ) ~043 > ag(m ) ~ (.33

The Coulomb field 1s instantaneous, thus consistent with valence Fock states.

Gauss’ law allows to express AY in terms of the propagating fields.
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A homogeneous solution of Gauss' law

AQ(t, ) o / Py (L y) TPyt y) ey VAL =0

This solution is of O(g%), and has no Feynman diagram equivalent.

Only color singlet bound states are invariant under space translations.

Much of the analysis in D=1+1 can be repeated (work in progress).
The above A leads to a linear potential for color singlet mesons:
VM(azl—azg 1\/CFgA ‘$1—$2’

The corresponding potential for color singlet baryons is:

VB(mla L2, 333 Q\f V CF 9A2\/ 35‘1 — $2 (ZU2 — $3)2 =+ (35‘3 — $1)2

Note: VB(ml,mg,wg) = VM(CBl — wz)
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The Meson state 2

A meson state of CM momentum P is expressed as

M B, P) = / Py Py P @2 (1 0 VOB () — a0Vt 22) |0)

1
with the color structure (I)AB(wl — 5132) = 5AB(I)M($1 — 5132)
M Ne

H|M;E, P) = E|M;E, P) forthe O(g) Hamiltonian imposes the BSE:
= |E = V()| ()

In the rest frame (P = 0) the radial and angular variables can be separated.
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String breaking: A — B+C

The linear potential induces “string breaking” B
at large separations of the quarks. The
Poincar€ invariant amplitude 1s given by

the wave functions: 5
1

A ]

N

27)3

vNe

N

(B,C|A) = — 6° (P4 — Pp — P()

¥

C

X /d51d52 6i61'PC/2_i52'PB/2TT [WO(I)E((Sl)(I)A((Sl + 52)(13]5(52)]

When squared, this gives a hadron loop unitarity correction.
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