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Ôparameter sÕ of a lattice computation

discretised charm & light quark actions 
various varieties available (clover, Fermilab scheme, domain-wall, overlap, staggered, HISQ, ...)

lattice spacing a (might be differing as , at)   -   a! 0 desired
certain actions designed to speed this approach, 
e.g. domain-wall fermions:   X(a) = X(0) + O(a2)

current lowest ~0.06fm  -  perform extrapolations 

mass of light & strange quarks Ôin the seaÕ, mq,s    -   mq !  mqphys ~0 desired

dynamical lattices, current lowest mπ ~ 200 MeV
quenched lattices neglect these quarks altogether

volume of spatial lattice box, L3     -   L! ∞ desired 

sensitivity to this depends upon the states under study

inclusion of disconnected diagrams (OZI)
usually just connected diagrams - effects probably small
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whic h quantities can be computed?

ÒeasyÓ & approaching maturity:
spectrum of states below open charm decay threshold
leptonic decay constants

relatively ÒeasyÓ but only recently begun:
radiative transitions between charmonium states
two-photon decays of charmonium states

ÒhardÓ:
hadronic decays of charmonia
accurate determination of state masses above threshold when they can decay
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lightest Þv e states

have been studied the most
relatively easy to extract

use simple interpolators

can get masses and leptonic decay constants

relative ease of computation means can devote effort to dealing with lattice 
systematics
many groups have worked on this - no time to summarise them all

a single recent example: Phys.Rev.D75:054502,2007 (HPQCD & UKQCD)

highly improved action 
(small effect in extrapolating a! 0 )
Þne dynamical lattice 
a~0.09fm , mπ ~ 250 MeV 
decay constant analysis is underway
(C.Davies private communication)
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higher spectrum

higher spectrum results not at the same level of  ÔminimisedÕ lattice systematics
need larger set of interpolating Þelds (to get spin!2 and exotics)

e.g. derivative based operators

recent study in quenched lattice QCD
somewhat improved Clover action
anisotropic lattice action as = 3at 
establish if sophisticated analysis method can extract multiple excited states 
from lattice correlators
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excited states

an example of the difÞculty in analysis
the charmonium vector channel below and close to threshold:

need a reliable excited state extraction procedure
variational method utilises the orthogonality of states

3097

3686

3770 near deg. states 
are tough to Þt

1−−

even worse on
a cubic lattice

3097

3686

3770

T−−1 = (1, 3, 4 . . .)−−

3!!
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excited states

Þrst results are promising
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dim=1 dim=3 dim=3 dim=2 dim=1〈0|(ψ̄ Γ
←→
Dk ψ)T2 |J〉 = ZJ áKJ

T2

〈0|(ψ̄ Γ
←→
Dk ψ)E |J〉 = ZJ áKJ

E

a ! 0

quenched aniso clover results

to my knowledge, the first time this has been seen
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PC = ++
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PC = +-
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PC = -+
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radiati ve tr ansitions

real photon transitions (Q2=0)

lattice method will yield transition 
form-factors (at multiple Q2)

will extrapolate back to Q2=0
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radiati ve tr ansitions

extract from three-point functions involving the vector current

overlaps and energies come from the spectrum analysis (two-point functions)

matrix element related to the decay width
e.g. J/y !  hc g

Γ(tf , t; !p, !q) =
∑

!x, !y

e−i !p·!x ei !q·!y !ϕf (!x, tf )jµ (!y, t)ϕ(!0, 0)"

!
!

n,m

e−Ef n (tf −t)"0|! f (0)|f n("p)#

×〈i m (!p + !q)|" i (0)|0〉e! E i m t

!" fn (!p)| jµ (0) |im (!p + !q)#

! ! c("p ′)|j µ (0)|# ("p, r )" =
2V (Q2)

mηc + mψ
$µαβγp′

αpβ$γ("p, r )

Γ(ψ → ηcγ) = αem
|%q|3

(m! c + m" )2

64
27

|V̂ (0)|2
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J/! "# c $  tr ansition

statistically most precise channel, but very sensitive to the hyperÞne splitting which 
is not correct on this quenched lattice (" mlat. " 80 MeV,  " mexpt. "  117 MeV)

the Crystal Ball experimental value needs conÞrmation
all eyes turn to Matt Shepherd & Ryan Mitchell at CLEO

physical

lattice

phase space ( |q|3 )

! (! → " c#) =

! |!q|3

(m ! + m " c )2
64
27 | öV (0)|2 V (Q2) = V (0)e−

Q2

16! 2
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%c0" J/!  $  E1 tr ansition

not used 
in the fit

PDG

CLEO
lat.

E1(Q2) = E1(0)
!

1 + Q2

ρ2

"
e
− Q2

16β2
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1P" 1S transitions

Þt form inspired by potential models with spin-dependent corrections

χc0 → J/ψγE1

β = 542(35) MeV

ρ = 1.08(13) GeV

! c1 → J/ " #E 1

$ = 555(113) MeV

%= 1.65(59) GeV

hc ! ! c" E 1

# = 689(133) MeV

$ ! "

simplest quark model has all # equal and $(%c0) = 2 #,    $(%c1) = #2 $ $(%c0),     $(hc) ! %

E1(Q2) = E1(0)
!

1 + Q2

ρ2

"
e
− Q2

16β2
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two-photon deca ys

this is non-trivial in Euclidean lattice QCD
the photon is not an eigenstate of QCD
how do we ÔmakeÕ one on the lattice

solution is to realise that it is a suitable sum of QCD eigenstates
like a Ôvector dominanceÕ picture
exactly expressed in the LSZ reduction of Þeld theory

explained carefully in Ji & Jung PRL86, 208 & Dudek & Edwards PRL97, 172001

the ÔextraÕ integral becomes a sum of a correlator over timeslices on the 
lattice 

〈γ(q1, λ1)γ(q2, λ2)|M (p)〉 =

− lim
q!
1! q1

q!
2! q2

ε"
µ(q1,λ1)ε"

! (q2,λ2) q#2
1 q#2

2

!
d4xd4y eiq!

1.y+ iq!
2.x〈0|T

"
Aµ(y)A! (x)

#
|M(p)〉

! e2 ! (1)!
µ ! (2)!

ν

!
d4y e" iq 1.y "0|T

"
jµ (0)jν(y)

#
|M (p)#
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What can lattice do for the onia?

a lot, in principle
but it is a long way behind established techniques like potential models
many lattice groups calculate charmonium spectra

but not all are primarily interested in charmonium physics
use ÔpreciseÕ comparison with the lower part of the spectrum to set the 
charm quark mass for D-meson ßavor physics

smaller number of groups trying to compute quantities beyond the spectrum
new techniques take time to get working
will initially not use Òthe best lattice systematicsÓ

US lattice groups have to beg for computing time every year 
decided by a committee of lattice QCD theorists
explicit support from experimentalists is always helpful
if you think weÕre computing the right quantities and want better 
calculations, please cite us

im
por tant

physic
s

also

im
por tant

physic
s
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Mank e & Liao

earlier study with similar operators
less sophisticated analysis
somewhat heavier 1-+ reported
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lattice tec hnique

fairly straightforward application of three-point correlators
similar to pion, proton form-factor, N↔D ... calculations

compute three-point functions with sequential-source technology
completely specify the sink (operator & momentum)
can insert any momentum

obtain correlators at various values of photon Q2

!0, t0 !

∑

!y

ei!q·!y
!y, t

∑

!x

e−i!pf ·!x øψΓfψ("x, t f )
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radiati ve tr ansitions

usually expressed in terms of multipoles
covariant expressions can be derived

e.g. cc0 !  J/y g

the multipole form-factors can be obtained from the three-point functions as an 
overconstrained linear problem

need the EÕs and ZÕs from two point function Þts
deals with all the data at a given Q2 simultaneously - in principle can 
simultaneously extract excited state transitions

! ! c0("p! )|V µ (0)|#("p" , r)" = Ω! 1(Q2)

!

E1(Q2)
"
Ω(Q2)! µ("pψ, r )− ! ("pψ, r ) · pχ

#
pχ · pψ pµ

ψ −m2
ψ pµ

χ

$%

+
C1(Q2)√

Q2
m! ε("p! , r) áp"

[
p" áp! (p" + p! )µ −m2

" pµ
! −m2

! pµ
"

] )

P = Z f Z i

4E f E i
e! E f t f e! (E i! E f )t

Γ(pf , pi ; t) =
!

n

P (pf , pi ; t) · Kn (pf , pi ) · fn (Q2)




Γ(a; t)
Γ(b; t)
Γ(c; t)

...




=





P(a; t)K 1(a) P(a; t)K 2(a) . . .
P(b; t)K 1(b) P(b; t)K 2(b)
P(c; t)K 1(c) P(c; t)K 2(c)

...
. . .








f 1(Q2)[t]
f 2(Q2)[t]

...



 ,
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Þr st r esults

quenched, anisotropic lattice
as = 0.1 fm, x = 3.0, 123x48

domain wall fermions (L5=16)
charm quark mass tuning is not perfect (5% low)

ground state to ground state transitions only
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(a) (b) (c)
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%c1" J/!  $  tr ansition

derived the covariant multipole decomposition

E1(Q2) - electric dipole - experimentally measured at Q2 = 0
M2(Q2) - magnetic quadrupole - experimentally measured (via photon angular 
dependence) at Q2 = 0
C1(Q2) - longitudinal - goes to zero at Q2 = 0

this lattice " m(%c1 - J/&) close to experiment, so small phase-space ambiguity

〈A(!pA, rA)|jµ(0)|V (!pV , rV )〉 = i
4
√

2Ω(Q2)
εµνρσ(pA − pV )σ×

×

[

E1(Q2)(pA + pV )ρ

(

2mA[ε∗( !pA, rA).pV ]εν( !pV , rV ) + 2mV [ε(!pV , rV ).pA]ε∗ν(!pA, rA)
)

+ M2(Q2)(pA + pV )ρ

(

2mA[ε∗( !pA, rA).pV ]εν( !pV , rV ) − 2mV [ε(!pV , rV ).pA]ε∗ν(!pA, rA)
)

+
C1(Q2)

√

q2

(

− 4! (Q2)ε∗ν(!pA, rA)ερ(!pV , rV )

+ (pA + pV )ρ

[

(m2
A − m2

V + q2)[ε∗(!pA, rA).pV ] εν(!pV , rV ) + (m2
A − m2

V − q2)[ε(!pV , rV ).pA] ε∗ν( !pA, rA)
])

]

.
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%c1" J/!  $  tr ansition

no Q2 < 0 points owing to kinematical structure of matrix element
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