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In Memoriam: John Tjon (7 Dec 1937 -- 20 Sept 2010)

 7 Dec 1937 - Paramaribo, the capital of
Surinam, in Northern South America

 1964 - PhD from Utrecht (statistical
physics)

 1969 (with Rudi Malfliet) - 1st solution of
the Faddeev equations using a local potential

 1971- full professor at Utrecht

 1980 (with Zuilhof) - Deuteron and BS
equation with OBE

 1993 (with Simonov) - Feynman-Schwinger
representation for 2-body amplitude

 1996 (with Nieuwenhuie) - generalized
ladder graphs in ϕ2χ theory

 1997 - elected membr of the Royal
Netherlands Academy

 2003 (with Blunden and Melnitchouk) - 2
photon exchange

 20 Sept 2010 - Bilthoven, NL

1993 -- during the Few Body conference in Amsterdam (age 55)
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1978 - Meet John at the Graz conference
         Learn about the singularities in my eq.

1990 (summer) - Five months at Utrecht

1989 - first paper with John (and S. Wallace) 
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1999-2005 - FS calculations with John and 
                Cetin Savkli
                



John Tjon’s physics (as I understood it)

 John believed that relativistic field theory was the best tool for
the development of Few-Body physics

 He always sought out new directions, and liked doing something no
one had tried before; he was an excellent calculator and applied his
skills to physics problems of interest

 John favored using the Bethe-Salpeter equation in the ladder
approximation, but was quite willing to make approximations -- his
favorite was what he called the Equal-Time (ET) approximation

 He was selected several times to give the standard “relativistic
effects” talk that used to have a place at all Few-Body conferences

 He was very honest in his assessment, and was careful not to
oversell his work.



Non-perturbative physics in RFT (I)
and our dispute between

Bethe Salpeter equation, and the

Covariant Spectator Theory© (CST)
(1970 - 1990)



Why go relativistic? (My words, but I think John would agree)

 Intellectual: to preserve an exact symmetry (Poncare’ invariance)

 Practical: to calculate boosts and Lorentz kinematics consistently to
all orders (essential when energies are of the order of 1 GeV)

 Consistent:  to use field theory for guidance in the construction of
• forces (2⇔3 body consistency)
• currents consistent with forces

 Conceptual: for “phenomenological economy”, and to understand the
non relativistic limit:
• spin 1/2 particles (Dirac equation)
• interpretation of L•S forces (covariant scalar-vector theory of N

matter)
• efficient one boson exchange models of NN forces (?)
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 Step 2: Divide the sum into irreducible and 2-body reducible terms, and collect
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 Step 3: Field theory becomes field dynamics when the kernel is phenomenological

 Spin 1/2 particles have a Dirac structure
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When is it necessary to sum diagrams to all orders?

 In schematic form, the integral equation looks like

 must sum when gV ≈ 1 (even ifV is small, g might be large)
• example: atomic states

 to describe bound states
• A bound state is a new particle (not in the Lagrangian).
• shows up as a pole in the scattering matrix (i.e. gV = 1)
• generated non-perturbatively from the sum of an infinite number of

diagrams

 to describe unitarity

 

M = V +VgM = V +VgV +VgVgV + i i i =
V

1− gV

M =
V

1− igV
⇒ ImM =

gV 2

1+ (gV )2
= g M 2



Relation between the BS and CST two-body equations

 The Bethe-Salpeter (BS) propagator depends on all four components of the
relative momentum, {k0,k}.  For two spinor particles it is

 The Covariant Spectator Theory© propagator depends on only three
components of the relative momentum, k.  One particle is on-shell

 Diagrammatic notation for 2-body CST equations:

 
GBS (k;P) =

1
m1 − p1 − Σ p( ) − iε( ) m2 − p2 − Σ p2( ) − iε( )   with  

p1 = 1
2 P + k

p2 = 1
2 P − k

⎧
⎨
⎪

⎩⎪

GCS (k;P) =
2πiδ+ m1

2 − p1
2( ) m1 + p̂1⎡⎣ ⎤⎦

m2 − p2 − Σ p2( ) − iε( ) =
2πiδ p0 − E1( )

m2 − p2 − Σ p2( ) − iε( )
m1

E1
u(p1, s)u (p1, s)

s
∑

on-shell 
particle

M
× ×

+= M
× × ×××

=
× ×

ΓΓ
×

on-shell projection
operator

CST: must 
explicitly 
(anti)symmetrize 
the kernel[ ]= +

1

2
× × ×× × ×

BS

CS



BS and CST are equivalent when both are solved exactly

 To 6th order, the generalized ladder sum is
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BS and CST are equivalent when both are solved exactly

 To 6th order, the generalized ladder sum is

 In the BS theory, these terms require the following irreducible kernel:

 In the CS theory, the kernel is

M
m

M > m

2nd order 4th order 6th order

cancels

If M → ∞
these cancel



The One-Body limit

 The One-Body limit is the following principal:

A relativistic equation for the interaction of  heavy scalar particle
(mass M) with a light particle (mass m) must reduce, in the limit of
M→∞ to

 a Dirac equation for the light particle, if it has spin 1/2;
 a Klein Gordon equation for the light particle, if it has spin 0

 The CS equation has this limit, and in fact

 The BS equation (in ladder approximation) does not.

× × × ×M
m

M→∞



The debate:  BS vs CS (an example only)

 Franz: I have the one-body limit!

 John: That is true only if one particle is scalar, and M » m.  The physical
world, and particular the NN system does not have this property.

 Franz: Yes, but surely it motivates the use of my equation!

 John: Your equation has spurious singularities!

 Franz: Yikes! I did not know that.  You must publish that (he did, and I have
spent years trying to find the best way to fix this).

 John: Your equation has spurious bound states when the total rest energy
W→ 0.

 Franz: Yes, but it is not meant to be used in that region, and if it is, this can
be fixed by adding more channels (as was done in applications to the study of
the pion as a qq system in the m# → 0 limit).



Applications to the NN and 3N systems (selected results)

 CST OBE model gives an excellent quantitative fit to the NN data below 350
MeV
• χ2/datum ~ 1 (1.06) for the 2007 np data set (3788 data points)
• simplest model (WJC-2) with only 15 parameters fits with χ2/datum =1.12
• interesting differences from the Nijmegen 93 phase shift analysis -- we have a new

phase shift analysis!
• we use off-shell couplings, for example the σNN coupling is:

 Three body binding energy
• correctly predicted without any irreducible 3-body forces

 Deuteron form factors
• were calculated using older models
•  give a very good explanation of the data to the highest Q2

• results for newer models now be calculated

 3N form factors
• good qualitative results but no exchange currents yet

Λ(k, p) = gs + ν s θ(k) +θ(p)[ ] θ(p) =
m − p
2m vanishes on-shellwhere

k      p



J=0, 1, 2 Phases



Deuteron wave functions

u S-state

vt P-state
   spin triplet

w D-state

vs P-state,
   spin singlet

                            WJC-1                        WJC-2
Probability     exact        scaled        exact         scaled

PS       97.3876      92.3330    95.7607     93.5985
PD      7.7452        7.3432      6.5301       6.3827
PVt                   0.1180        0.1119        0.0103       0.0101
PVs                   0.2234       0.2118       0.0090       0.0088
∑P              105.4743     100.0000   102.3101    100.0000
〈V’〉               -5.4743         -----         -2.3101       ------
total           100.0000                       100.0000

dr
0

∞

∫ u2 + w2 + vt
2 + vs

2{ } + V ' = 1

Normalization condition



Deuteron Form Factors (comparisons)

CST-IIB (van Orden, Devine, FG)

LF-HD (Huang and Polyzou)
MW (Phillips, Mandelsweig and Wallace)

QCB (Dijk and Bakker)

B structure function
most sensitive



How well can the CST OBE model predict the 3H binding energy?

WJC-1
(2008)

WJC-2
(2008)

W16
(1997)

 Recall the off-shell scalar coupling

 In ALL three cases we found that
the best value of νσ also gave the
correct binding energy for 3H !

Λ(k, p) = gs + ν s θ(k) +θ(p)[ ]



 Off-shell couplings
remove the off-shell
propagator, contracting
the interaction to a point

 In the 2-body space, off-
shell couplings are
equivalent to effective
non-OBE type interactions
with loops

 In the 3-body space, off-
shell couplings are
equivalent to 3-body
forces

The right binding with NO irreducible 3-body force?  HOW?

νσ
m − k
2m

1
m − k

⎛
⎝⎜

⎞
⎠⎟
gσ gσ

1
m − k

⎛
⎝⎜

⎞
⎠⎟
m − k
2m

νσ+ =
gσνσ

m

k
νσ

gσkνσ

gσ

gσνσ

X X

+

X

X X

X



 The equivalence is very complicated !!

Equivalence theorem

OBE with off-shell
couplings

OBE without off-shell couplings
PLUS

a specific set of N-meson exchange
and N-body forces

OBE with off-shell
coupling

X X

X

X

X

X

X X

X X

 
+ i i i

X

XX X

XX

 
+ i i i

++ + +

+ +

+ + +

No off-shell coupling



Discussion with John

 John:  the off-shell couplings might produce very large effects in nuclear
matter

 Franz: maybe a new doubly off-shell term might provide stability.  The most
general off-shell sigma coupling is

The κ term has a very small effect in the NN sector, but might be important
in the AN sector(?).  We need a nuclear matter calculation (which is easier
than the 3N calculation already done).

 John: in the three body sector, when the energy of the off-shell particle
gets very large, you are forced to a region where the mass W of the
interacting NN pair is zero, and then imaginary.

How do you handle this?

 Franz: I cut off the energy integral at the critical point where the mass W
goes to zero (the integrand is zero there anyway)

Λ(k, p) = gs + ν s θ(k) +θ(p)[ ] +κ sθ(k)θ(p)

W 2 = PT − k1( )2 = MT
2 + m2 − 2MT m2 + k2

k1 W 2 + k2 , 0, 0, k{ }

m W



Non-perturbative physics in RFT (II)
lessons from the 

Feynman-Schwinger calculations
(1993 - 2005)



Scalar χ2 φ  theory -- an example

 Fields:

 Lagrangian and Action (in Euclidean space)

 Two-body Green’s function for the transition from an initial state Φi= χ*(x)χ(x’)
to final state Φf= χ*(y)χ(y’) is

 Integrate over the “matter” fields χ and χ*, exponentiate the propagator, and
integrate over the “photon” field (after working out some subtleties) to get
the final answer.

χ(x) charged scalar particles of mass m:  the “matter” field
φ(x) massive neutral "photon" field with mass µ

 
LE (z) = χ* m2 − ∂2 + gφ⎡⎣ ⎤⎦ χ +

1
2
φ µ2 − ∂2( )φ

 
SE[φ,χ] = d 4zLE (z)∫

 G y, y ' | x, x '( ) = N Dχ *∫ Dχ Dφ Φ f
*Φi e

−SE∫∫



Feynman-Schwinger -- Final result

 Assembling the final result gives

G(yy ' xx ') = ds ds '
0

∞

∫0

∞

∫ Dz[ ]∫∫ yx
Dz '[ ]y ' x ' exp −K(z, s) − K(z ', s ') + W (C){ }

integrate over all possible
trajectories of the two particles

� 

K(z,s) = m2s +
1
4s

dτ ˙ z 2(τ)
0

1

∫
with

W (C) = 1
2 g

2ss ' dτ
C
∫ dτ

C
∫ 'Δ(z(τ ) − z '(τ '),µ)

(kinetic energy term)

(interaction term)

 

Δ(x,µ) = d 4 p
(2π )4

eipix

p2 + µ2 =
µ

4π 2 x
K1 µ x( )∫ (“photon” propagator)

z(s) : z(0) = x; z(1) = y
z '(s ') : z '(0) = x '; z '(1) = y ' z(s)

x (s=0)y (s=1)



Feynman-Schwinger -- interpretation of final result

Interpretation of the result (z →z1 and z’ →z2)

(i)  The action is integrated over ALL closed trajectories C

(ii) Because of the exponent, all orders are computed.
(iii) Self-energies come if z1 and z2 are limited to the same “side” of C.

(iv) Exchange interactions come if z1 and z2 are limited to different “sides”

        of C.  This gives the sum of all ladders and crossed ladders.
(v) If z1 and z2 are unrestricted the result gives

self-energy, exchange, and vertex corrections (everything).

e
dz1

dz2

z1 z2

Δ(z1-z2)

C

[Dzi] = e-C1 + e-C2 +… 



Results 1: ladders and crossed ladders in scalar χ2 φ  theory

 The generalized ladder sum in scalar χ2 φ  theory can be evaluated exactly

 Crossed ladders are important
*Taco Nieuwenhuis, Ph. D. thesis; PRL 77 (1996) 814
  Cetin Savkli, FG, and J. Tjon, Phys.Atom. Nucl. 68 (2005) 842

Exact

Binding
energy

m1 = m2
Bethe-Salpeter equation 
in ladder approximation

CS (with retardation)

CS (without retardation)

Tjon’s equal time approximation

The strange behavior of the
CS equation when m0 → 0 is 
due to a insularity in the 
propagator (removed when 
a second channel is added).



 Two results are equal:

• exact answer, and
• sum of generalized ladders

with constant dressed mass
and no vertex corrections

 Dressed mass is linear in e2

 vertex corrections and self
energies cancel 1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

0 20 40 60 80 100 120
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Binding energy

Results 2: Cancellations of vertex corrections in SQED*

=
m M

*Cetin Savkli, FG, and John Tjon, 
   PLB 531, 161 (2002)

results for 1+3 dimensions and µ/m =0.15
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Result (that dressed mass is linear in e2) is remarkable!

 One body propagator - dressed masses up to 4th order

4th order irreducible

2nd order: all irreducible

p
4th order: reducible (iteration of 2nd order)

Dyson-Schwinger "rainbow” approximation

Σ(p2) 



 One body propagator - dressed masses up to 4th order

4th order irreducible

2nd order: all irreducible

p
4th order: reducible (iteration of 2nd order)

Dyson-Schwinger "rainbow” approximation

Σ(p2) 

  Forget the partial sums!  The best result is simply Σ(m2)

Σ(m2) =   lim
p2->m2

Result (that dressed mass is linear in e2) is remarkable!



Result 3: Three-body bound state wave functions*

 Bound state wave function
can be determined by looking
at the distribution of
probabilities at t = tfinal

 These figures show the
distribution of the third
particle when the other two
are fixed at various
separations along the z axis

 This work was just started --
there is a LOT more to do!

*C. Savkli, Czech.J.Phys.
   51, B71 (2001)



Insights from FS calculations

 Other results
• famous instability of χ2 φ type theories is due to the production of an

infinite number of χχ  loops and hence generalized ladder sums, including
Z diagrams, are not unstable.

 Great insight from the exact FS calculations
• Many cancellations occur between different perturbative diagrams; it is dangerous

to ignore these cancellations:
 crossed ladders and crossed bubbles are important
 vertex corrections are less important

• Quasi-potential equations can represent RFT, at least in certain cases

 MUCH to be done -- an excellent area for new study
• spin 1/2 particles
• many body systems (three body forces?)

 In my view, one of John Tjon’s signature programs; untimely interruption !

 There is still room for creative new ideas on how best to treat non-
perturbative physics in RFT



Conclusions

 The practical solution of nonperturbative problems in RFT is very challenging

 John Tjon was a major force in understanding the issues, and made
substantial contributions
• His practical program of Feynman-Schwinger calculations is certainly among his

most original contributions to this area

 The use of quasi-potential equations, either his ET or my CS, are both very
effective, practical ways to address these problems.

 However, we probably can do better!  (Some would say light cone methods
are the answer, but … )

 He is greatly missed
• He showed me many ways to calculate more efficiently
• He always provided an honest assessment, and his insight was helpful

 I thank the organizers for recognizing him at this conference.


