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Introduction

Generalized Parton Distributions (GPDs) of a hadron (nucleon, pion, nucleus)
parameterize response of the target to well-defined QCD quark and gluon operators
(probes) on the light-cone.

Quark GPDs of the nucleon:

P̄+
∫

dz−

2π
eixP̄

+z−〈P ′|ψ̄(−
z−

2
)γ+ψ(

z−

2
)|P 〉z+=0, z⊥=0 = Hq(x, ξ, t)N̄(P ′)γ+N(P )

+ E
q
(x, ξ, t)N̄(P

′
)
iσ+µ∆µ

2mN

N(P )

P̄+
∫

dz−

2π
eixP̄

+z−〈P ′|ψ̄(−
z−

2
)γ+γ5ψ(

z−

2
)|P 〉z+=0, z⊥=0 = H̃q(x, ξ, t)N̄(P ′)γ+γ5N(P )

+ Ẽ
q
(x, ξ, t)N̄(P

′
)
γ5∆

+

2mN

N(P )
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It is instructive to compare GPDs to usual parton distributions (PDFs):

x longit. momentum fraction, x = xB
µ2 factorization scale

P̄ = (P + P ′)/2
x ± ξ longit. momentum fractions
ξ = xB/(2 − xB)
t = (P ′ − P )2

enters via convolution !

GPDs contain more microscopic information about the parton structure of the
target than PDFs and form factors.
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GPDs can be accessed in hard exclusive reactions such as Deeply Virtual Compton
Scattering (DVCS) and Hard Exclusive Meson Production (HEMP):

γ∗γ∗ γ
M

HEMPDVCS

• QCD factorization theorems for DVCS and HEMP allow to express the
corresponding scattering amplitudes as convolution of coefficient functions with
the GPDs

T
µν
DVCS(ξ, t, Q

2
) = −

1

2
g
µν
⊥

∫ 1

−1

dxC
+
(x, ξ)[H(x, ξ, t, Q

2
)N̄(p

′
)n̂N(p)

+ E(x, ξ, t, Q
2
)N̄(p

′
)iσ

kλnk∆λ

2mN

N(p)] + . . .
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• Corollaries of factorization

– GPDs are universal (process-independent)
– GPDs have a well-defined dependence on the factorization scale (virtuality Q2)

• DVCS experimental observables (cross section, asymmetries) expressed in terms
of the Compton Form Factors

H(ξ, t, Q2) =
∑

e2
q

∫ 1

0

dxHq(x, ξ, t, Q2)

(

1

x − ξ + iǫ
+

1

x + ξ − iǫ

)

• Since GPDs enter via convolution and depend on three variables, extraction from
the data is difficult/impossible

• At the present stage, models of GPDs are necessary
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Dual parameterization of nucleon GPDs

• The essence of the dual parameterization of GPDs is the assumption of duality
between the s and t-channel description of the quark-hadron scattering amplitude

• In hadronic physics, duality is realized by the Veneziano model. The dual
Veneziano amplitude is given as an infinite series of infinitely narrow resonances
in either s or t channel.

The series is formally divergent to provide singularities of the amplitude ⇒ same
in the dual parameterization of GPDs.

•

In the dual parameterization, a GPD
is given by infinite series of generalized
light-cone distribution amplitudes in the
t-channel

n

n
=Σ
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• Derivation:

– Two-pion distribution amplitude ΦI(z, ξ, w2) is expanded in terms of
eigenfunctions of QCD evolution and in partial waves of produced pions

ΦI(z, ζ, w2, µ2) = 6z(1 − z)
∞
∑

n=0

n+1
∑

l=0

BI
nl(w

2, µ2) C3/2
n (2z − 1) Pl (2ζ − 1)

∗ I = 0, 1 isospin
∗ p1 and p2 momenta of final pions, P = p1 + p2

∗ z = k+/P+ quark light-cone fraction
∗ ζ = p+

1 /P+ distribution of light-cone momenta between pions
∗ w2 = (p1 + p2)

2
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– Consider Mellin moments of ΦI

∫ 1

0

dz(2z − 1)
N−1

Φ
I
(z, ζ, w

2
) =

1

[p+
1 + p+

2 ]N
〈p1p2|ψ̄γ

+
(
←→
∇

+
)
N−1

ψ|0〉

– As matrix elements of a local operator, the Mellin moments can be continued
to the crossed, GPD channel,

〈p1p2|ψ̄γ
+(
←→
∇ +)N−1ψ|0〉 = 〈p2|ψ̄γ

+(
←→
∇ +)N−1ψ|−p1〉

– Changing appropriately the kinematic variables, we have

ξN
N−1
∑

n=0

n+1
∑

l=0

BI
nl(t)Pl

(

1

ξ

) ∫ 1

0

dx
3

4
(1− x2)xN−1C3/2

n (x) =

∫ 1

0

dxxN−1HI(x, ξ, t)

– The quark GPDs of the pion are reconstructed as a formal divergent series

HI(x, ξ, t, µ2) =
∞
∑

n=0

n+1
∑

l=0

BI
nl(t, µ

2) θ (ξ − |x|)

(

1 −
x2

ξ2

)

C3/2
n

(

x

ξ

)

Pl

(

1

ξ

)
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• Shuvaev and Polyakov (2002) postulated similar dual parameterization for nucleon
GPDs,

H
i
(x, ξ, t, µ

2
) =

∞
∑

n=1
odd

n+1
∑

l=0
even

B
i
nl(t, µ

2
) θ (ξ − |x|)

(

1−
x2

ξ2

)

C
3/2
n

(

x

ξ

)

Pl

(

1

ξ

)

Ei(x, ξ, t, µ2) =
∞
∑

n=1
odd

n+1
∑

l=0
even

Ci
nl(t, µ

2) θ (ξ − |x|)

(

1−
x2

ξ2

)

C3/2
n

(

x

ξ

)

Pl

(

1

ξ

)

• i the quark flavor

• Bi
nl and Ci

nl unknown form factors

• Formula is written for singlet combinations of the GPDs, Hi(x, ξ, t) ≡ Hi(x, ξ, t)−
Hi(−x, ξ, t) and Ei(x, ξ, t) ≡ Ei(x, ξ, t) − Ei(−x, ξ, t)

• The important property of polynomiality is by construction
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Main features of dual parameterization

• Easy QCD evolution to leading order accuracy

Bi
nl(µ

2) = Bi
nl(µ

2
0)

(

ln(µ2
0/Λ

2)

ln(µ2/Λ2)

)γn/B

– γn anomalous dimension
– B = 11 − (2/3)nflav

• Simple expression for the Compton Form Factors to the LO accuracy (see later)
→ use the dual parameterization of the GPDs as a LO parameterization.

• The formal series diverge → cannot be used in this form to study GPDs themselves.
However, the series can be decomposed over other orthogonal polynomials on
x ∈ [−1, 1] (Belitsky et al., 1997) or it can actually be summed using the trick of
Polyakov and Shuvaev.
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Polyakov-Shuvaev trick

Let us introduce of a set of generating functions Qi
k and Ri

k

B
i
n n+1−k(t, µ

2
) =

∫ 1

0

dx x
n
Q
i
k(x, t, µ

2
)

C
i
n n+1−k(t, µ

2
) =

∫ 1

0

dx x
n
R
i
k(x, t, µ

2
)→

Hi(x, ξ, t, µ2) =
∞
∑

k=0
even

[ξk

2

(

Hi (k)(x, ξ, t, µ2)−Hi (k)(−x, ξ, t, µ2)

)

+

(

1−
x2

ξ2

)

θ (ξ − |x|)

k−3
∑

l=1
odd

C
3/2
k−l−2

(

x

ξ

)

Pl

(

1

ξ

)
∫ 1

0
dy yk−l−2Qik(y, t, µ

2)
]

H
i (k)

(x, ξ, t, µ
2
) =

1

π

∫ 1

0

dy

y

[(

1− y
∂

∂y

)

Q
i
k(y, t, µ

2
)

]
∫ 1

−1
ds

x1−ks
√

2xs − x2s − ξ
2
θ(2xs − x

2
s − ξ

2
)

− lim
y→0

Q
i
k(y, t, µ

2
)

∫ 1

−1
ds

x1−ks
√

2xs − x2s − ξ
2
θ(2xs − x

2
s − ξ

2
)
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Minimal model of the dual parameterization (t = 0)

Essence of the minimal model: GPDs Hi and Ei are expressed in terms of the
forward parton distributions, unknown forward limit of Ei and Gegenbauer moments
of the D-term.

• Keep only Qi
0 and Qi

2 for Hi and Ri
0 and Ri

2 for Ei.
In the HERA kinematics (ξ < 0.005), the contribution of Qi

k and Ri
k with k ≥ 2

is kinematically suppressed by ξk.
In HERMES kinematics (ξ < 0.1), we keep Qi

2 and Ri
2 as a first correction.

• Relation between Mellin moments of Hi and form factors Bi
nl in the ξ → 0 limit

Bi
nn+1(t, µ

2) =
2n + 3

2n + 4

∫ 1

−1

dx xnHi(x, 0, t, µ2) ≡
2n + 3

2n + 4

∫ 1

0

dx xn
(

qi(x, t, µ2) + q̄i
)

C
i
nn+1(t, µ

2
) =

2n + 2

2n + 4

∫ 1

−1

dx x
n
E
i
(x, 0, t, µ

2
) ≡

2n + 3

2n + 4

∫ 1

0

dx x
n
(

e
i
(x, t, µ

2
) + ē

i
)
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• Since all Bi
nn+1 and Ci

nn+1 are fixed, the generating functions Qi
0 and Ri

0 can be
restored

Q
i
0(x, t, µ

2
) = q

i
(x, t, µ

2
) + q̄

i
(x, t, µ

2
)−

x

2

∫ 1

x

dz

z2

(

q
i
(z, t, µ

2
) + q̄

i
(z, t, µ

2
)
)

Ri
0(x, t, µ

2) = ei(x, t, µ2) + ēi(x, t, µ2)−
x

2

∫ 1

x

dz

z2

(

ei(z, t, µ2) + ēi(z, t, µ2)
)

In t → 0 limit , qi(x, t, µ2) + q̄i(x, t, µ2) become the singlet singlet combination of forward

quark distribution and ei(x, t, µ2)+ ēi(x, t, µ2) become the unknown forward limit of the singlet

combination GPDs Ei

Therefore, up to the t-dependence, the leading functions Qi
0 and Ri

0 are
completely constrained by the forward parton distributions and the forward
limit of the GPDs Ei.

GPD Working Group Mini-Workshop, JLab, Aug 6-7, 2008 14



• Since the GPDs Ei decouple in the forward limit, the functions ei + ēi are
unconstrained. We followed the simple model of Goeke et al., 2001

ei(x, µ2) = Ai(µ
2) qival(x, µ2) +

Bi(µ
2)

2
δ(x)

ēi(x) =
Bi(µ

2)

2
δ(x)

where

Ai(µ
2
) =

2J
i(µ2)−M i

2(µ
2)

M i,val
2

Bu(µ
2) = ku − 2Au(µ

2) , Bd(µ
2) = kd −Ad(µ

2)

• Similarly to the construction of the GPD H, the GPD H̃q can be constructed
using the forward polarized PDFs ∆q.

GPD Working Group Mini-Workshop, JLab, Aug 6-7, 2008 15



• Functions Qi
2 and Ri

2 are not so well-constrained, only their Mellin moments are
known. From

Bi
nn−1(t, µ

2) =
n

n+ 1
Bi
nn+1(t, µ

2) +
din(t, µ

2)

Pn−1(0)
,

where dn are Gegenbauer moments of the D-term, we find

Qi
2(x, t, µ2) = Qi

0(x, t, µ2) −

∫ 1

x

dz

z
Qi

0(z, t, µ2) + Q̃i
2(x, t, µ2)

where
∫ 1

0

dxxn Q̃i
2(x, t, µ2) =

din(t, µ
2)

Pn−1(0)

The Gegenbauer moments din are taken from the chiral quark soliton model.

• Since the D-term contribution to the GPDs Ei and Hi are equal and opposite in
sign,

Ri
2(x, t, µ2) = Ri

0(x, t, µ2) −

∫ 1

x

dz

z
Ri

0(z, t, µ2) − Q̃i
2(x, t, µ2)
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Models of t-dependence

• Factorized exponential t-dependence

Hi(x, ξ, t, µ2) = exp

(

B(µ2) t

2

)

Hi(x, ξ, t = 0, µ2)

Ei(x, ξ, t, µ2) = exp

(

B(µ2) t

2

)

Ei(x, ξ, t = 0, µ2)

with Q2-dependent slope

B(µ2) = 7.6
(

1 − 0.15 ln(µ2/2)
)

GeV2

– The value of the slope is chosen to reproduce the only measurement of
differential DVCS cross section by H1 at HERA fitted to the exponential form:
B(µ2 = 8 GeV2) = 6.02 ± 0.35 ± 0.39 GeV−2, Aktas et al., 2005.

– The slight decrease of the slope is expected on general grounds.
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• Non-factorizable Regge-motivated t-dependence

qi(x, t, µ2
0) − q̄i(x, t, µ2

0) = qival(x, t, µ2
0) =

(

1

xα
′
valt

)

qival(x, µ2
0)

qi(x, t, µ2
0) + q̄i(x, t, µ2

0) =

(

1

xα′t

)

[

qi(x, µ2
0) + q̄i(x, µ2

0)
]

g(x, t, µ2
0) =

(

1

xα
′
gt

)

g(x, µ2
0)

α′val = 1.1(1 − x) GeV−2 , α′ = 0.9 GeV−2 , α′g = 0.5 GeV−2

Note that the data on σDVCS forces us to take α′, α′g > αIP = 0.25 GeV−2.

• For the D-term, we use the results of the lattice calculations, Gockeler et al.,
2003

d
u,d
i (t) = d

u,d
i (t = 0)

1

(1− t/M2
D)2

, MD = 1.11± 0.20 GeV
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Improved model of t-dependence (due to M. Diehl)

The value α′g = 0.5 GeV−2 is unrealistically large. It probably comes from the
too rigid model of the Regge-motivated t-dependence.

A more general form:

g(x, t, µ2
0) = eBgt

(

1

xα
′
gt

)

g(x, µ2
0)

with Bg ∼ 1 GeV−2, should lead to a much smaller α′g.
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DVCS cross section in HERA kinematics

• The DVCS cross section on the photon level

σDVCS(xB, Q2) =
πα2x2

B

Q4
√

1 + 4m2
Nx2/Q2

∫ tmax

tmin

dt |ADVCS(ξ, t, Q
2)|2

– In the small-ξ limit, |ADVCS(ξ, t,Q
2)|2 ≈ |H|2(1 − ξ2)

–

H(ξ, t,Q2) =
∑

i

e2
i

∫ 1

0

dxHi(x, ξ, t,Q2)

(

1

x − ξ + i0
+

1

x + ξ − i0

)

• One appealing feature of the dual parameterization is that the convolution integral
can be easily taken

H(ξ, t, Q2) = −
∑

i

e2
i

∫ 1

0

dx

x

∞
∑

k=0

xkQi
k(x, t, Q

2)







1
√

1− 2x
ξ + x2

+
1

√

1 + 2x
ξ + x2

− 2δk0






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• Moreover, in the HERA kinematics, only Qi
0 which is given by forward PDFs, is

important → parameter-free∗ predictions for the DVCS cross section.
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• The differential DVCS cross section

dσDVCS(xB, t, Q2)

dt
=

πα2x2
B

Q4
√

1 + 4m2
Nx2/Q2

|ADVCS(ξ, t, Q
2)|2

 0.1

 1

 10

 100
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σ
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/d

t 
[n

b
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2
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Beam-spin asymmetry in HERMES kinematics

• The approximate expression for the sinφ-moment of the beam-spin asymmetry,
Belitsky et al., 2001

Asinφ
LU ≈

(

xB
y

)

8 K y (2 − y)(1 + ǫ2)2

[

F1(t)ImH(ξ, t) + |t|

4m2
N

F2(t)Im E(ξ, t)
]

cBH
0,unp

• The dual parameterization predictions compare very well to the HERMES
measurement at 〈xB〉 = 0.11, 〈Q2〉 = 2.6 GeV2 and 〈t〉 = −0.27 GeV2

Asinφ
LU = −0.22 . . . − 0.24 , exponential t − dependence

Asinφ
LU = −0.27 . . . − 0.29 , Regge t − dependence

Asinφ
LU = −0.23 ± 0.04 ± 0.03 , HERMES (Airapetian, 2001)

The range of theoretical prediction comes from varying 0 ≤ Ju ≤ 0.4.
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• Comparison of the dual parameterization predictions for the Asinφ
LU dependence on

t, Q2 and xB in the HERMES kinematics, F. Ellinghaus, Ph.D. thesis, 2004.
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• The calculation is done with Ju = Jd = 0, but the sensitivity to the model for the
GPD E is weak.

• Apart from the last point, the data is described by both models fairly well.
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Beam-spin asymmetry in CLAS kinematics

The 2001 average kinematic point of the CLAS kinematics: E = 4.25 GeV,
〈Q2〉 = 1.25 GeV2, 〈xB〉 = 0.19 and 〈t〉 = −0.19 GeV2, experimental value,

Asinφ
LU = 0.15 . . . 0.17 , exponential t − dependence

Asinφ
LU = 0.18 . . . 0.20 , Regge t − dependence

Asinφ
LU = 0.202 ± 0.028 , CLAS (Stepanyan, 2001)

The range of theoretical prediction comes from varying 0 ≤ Ju ≤ 0.4.
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Calculations of Asinφ
LU in the present CLAS kinematics: E = 5.7 GeV, Q2 = 1.5

GeV2 and xB = 0.25.
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Note that our model becomes unstable starting from xB = 0.2 − 0.3.
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Beam-charge asymmetry in HERMES kinematics

• The approximate expression for the cosφ-moment of the beam-charge asymmetry,
Belitsky et al., 2001

Acosφ
C ≈

(

xB
y

)

8 K (2−2y+y2)
(

1 + ǫ2
)2

[

F1(t) ReH(ξ, t) + |t|

4m2
N

F2(t) Re E(ξ, t)
]

cBH
0,unp

• The dual parameterization predictions in the average HERMES kinematics,
〈xB〉 = 0.12, 〈Q2〉 = 2.8 GeV2 and 〈t〉 = −0.27 GeV2

Acosφ
C = 0.010 . . . 0.030 , exponential t − dependence

Acosφ
C = 0.19 . . . 0.23 , Regge t − dependence

Acosφ
C = 0.11 ± 0.04 ± 0.03 , HERMES (2002, unpub.)

The range of theoretical prediction comes from varying 0 ≤ Ju ≤ 0.4.
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• Also for the 2006 HERMES kinematics: 〈xB〉 = 0.10, 〈Q2〉 = 2.5 GeV2 and
〈t〉 = −0.12 GeV2

Acosφ
C = 0.013 . . . 0.022 , exponential t − dependence ,

Acosφ
C = 0.080 . . . 0.092 , Regge t − dependence ,

Acosφ
C = 0.063 ± 0.029 ± 0.026 , (HERMES, 2006)
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• Comparison of the dual parameterization predictions for the Acosφ
C dependence

on t, Q2 and xB to the analysis (F. Ellinghaus, Ph.D. thesis, 2004) and to new
HERMES data (Airapetian, 2006).

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

A
c
o

s
φ

C

-t [GeV2]

Regge
exponential

HERMES
New HERMES

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8

A
c
o

s
φ

C

Q2 [GeV2]

Regge
exponential

HERMES

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2  0.25  0.3

A
c
o

s
φ

C

xB

Regge
exponential

HERMES

• The calculation is done with Ju = Jd = 0.

• The Regge model of the t-dependence gives a much better description of the
data.
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Transversely-polarized target asymmetry in HERMES kinematics

• The sinφ-cosϕ-moment of the transversely-polarized target (unpolarized beam)
asymmetry is sensitive to the GPD E, Belitsky et al., 2001

Asinφ cosϕ
UT = A

sin(φ−φS) cosφ
UT ∝ F2(t) ImH(ξ, t) − F1(t) Im E(ξ, t)

• Can be used to discriminate between different models of the GPD E

• Can be used to determine the total angular momentum carried by quarks,
Ellinghaus, Nowak, Vinnikov, Ye, 2005.

• The dual parameterization predictions for A
sin(φ−φS) cosφ
UT can be compared to the

preliminary HERMES data, Ye, 2005. However, because of large experimental
errors, no quantitative conclusion from the comparison can be made.
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GPDs and the proton spin crisis

1

2
= Jq + Jg =

1

2
∆Σ + Lq + ∆G + Lg
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Future GPD measurements with transverse target at JLab
H. Avakian et al., JLab proposal PR-08-021 (2008)
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Dual parameterization of nuclear GPDs

Three roles of nuclear GPDs and nuclear DVCS:

• To give information of the nucleon GPDs (neutron) complimentary to experiments
on the protons

• To access novel nuclear effects not present in DIS and in elastic scattering on
nuclei

– Non-nucleonic degrees of freedom
– Off-forward EMC effect
– Nuclear shadowing and antishadowing in the real and imaginary parts of the

nuclear DVCS amplitude

• To provide constraints on theoretical models of nuclear structure

– Relativistic description is important for polynomiality
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A simple constituent model for nuclear GPDs

• Assume that the nuclear GPDs is a sum of the free nucleon GPDs (spin-0 nucleus)
A. Kirchner and D. Mueller, Eur. Phys. J. C 32 (2003) 347 [arXiv:hep-ph/0302007].
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The simple model of nuclear GPDs

• Ignores nuclear modifications and uses free nucleon GPDs (dual parameterization)

• Has the correct forward limit and the nuclear form factor

• Does not satisfy polynomiality
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Coherent and incoherent contributions

• When the recoiled nucleus not detected, DVCS observables receive
coherent and incoherent contributions.

γ

A

γ∗

A

γ

A

γ∗

A-1

• Coherent dominates at small t; Incoherent dominates at large t

• One can write an interpolation formula between the two regimes
V. Guzey and M. Strikman, Phys. Rev. C68 (2003) 015204
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Nuclear beam-spin asymmetry ALU

ALU (φ) =
Z(A− 1)F2

A(t){IA}+ FN (t)
(

Z{Ip}+N{In}
)

Z(Z − 1){BHA}+ Z(A− 1){IA}+ A(A− 1){DVCSA}+ Z{BHN}+ Z{IN}+ A{DVCSN}
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Nuclear beam-spin asymmetry ALU (keep the neutron)
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V. Guzey, ArXiv:0801.3235 [nucl-th] (2008)

• Use incoherent DVCS to measure the neutron GPDs
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Nuclear DVCS on 4He at JLab
K. Hafidi et al., JLab proposal PR-08-024 (2008)

• Measure coherent DVCS on 4He using the BoNuS Detector;
for the first time and with large accuracy
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• In addition, the incoherent measurement ~e 4He → epX will probe nuclear
modifications of the proton GPDs.

S. Liuti and S. K. Taneja (2005)
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Conclusions and discussion

• Dual parameterization of nucleon GPDs is a new LO parameterization of GPDs
H and E which

– Has a simple QCD evolution
– Allows for an economical and good description of all available data on DVCS
– Works best for xB < 0.1 − 0.2

• Recent theoretical and phenomenological work on the dual parameterization:
twist-3, reconstruction of GPDs using the DVCS amplitude, dispersion relations.

• Nuclear DVCS is a new tool to study microscopic structure of nucleons and nuclei.

– A wide-open field for theorists (relativistic description of nuclear structure,
small-x nuclear GPDs, FSI)

– The future high-precision JLab data on DVCS on 4He will be an important step
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