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ABSTRACT

We repropose the approved JLab experiment E00-118 on measurements of elastic electron
scattering off the 3He and *He few-body systems up to the highest momentum transfers
possible, limited by cross section sensitivity. E00-118 was approved in 2000 for one month
of beam time with A~ scientific rating. The measurements will extend our knowledge of the
elastic form factors of the helium isotopes down by more than one order in magnitude and
out in Q? possibly by more than a factor of two. The experiment will use the Hall A Facility
of JLab. Scattered electrons will be detected in the Electron High Resolution Spectrometer.
Recoil nuclei will be detected in coincidence with the scattered electrons in the Hadron High
Resolution Spectrometer. Electron-recoil nucleus coincidences will be identified by double-
arm time-of-flight. The effective double-arm solid angle and radiative corrections for the
evaluation of the cross sections will be determined by means of a Monte Carlo simulation.
The results are expected to play a crucial role in establishing a consistent standard model
describing the structure of few-body nuclei in terms of nucleons and mesons, and in possibly
providing evidence for its break-down at “large” momentum transfers, where the quark-gluon
degrees of freedom are expected to dominate. We request 36 days of beam time at a beam

current of 100 pA for helium production data and hydrogen calibrations.



1 Introduction

Elastic electron scattering off >He and *He is one of the simplest reactions between an elec-
tromagnetic probe and the few-body nuclear systems [1]. The electromagnetic form factors
of 3He and *He are observables very sensitive to the choice of the nucleon-nucleon interaction
potential, to the treatment of meson-exchange currents and relativistic corrections, and to a
possible admixture of multi-quark states. In fact, these factors are, along with the deuteron
elastic structure functions, the “observables of choice” [2] for testing the nucleon-meson
standard model [3] of the nuclear interaction and the associated current operator. At large
momentum transfers they may offer a unique opportunity to uncover a possible transition in
the description of elastic electron scattering off the few-body systems from meson-nucleon
to quark-gluon degrees of freedom as predicted by quark-dimensional scaling [4].

Experimentally, the *He charge, Fi-, and magnetic, Fy;, form factors and the *He charge
form factor, Fi, are determined from elastic electron scattering studies with high-density
targets and magnetic spectrometer systems capable of resolving elastic events with only
scattered electron detection or detecting recoil nuclei also in coincidence. There have been
extensive experimental investigations of the helium form factors over the past 40 years at
almost every electron accelerator laboratory [5].

The cross section for elastic electron scattering from the spin one-half 3He nucleus is

given, in the one-photon exchange approximation, by:
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where « is the fine-structure constant, Z is the nuclear charge, £ and E’ are the incident
and scattered electron energies, © is the electron scattering angle, Q> = 4EE'sin*(©/2) is
the squared four-momentum transfer, and A(Q?) and B(Q?) are the 3He elastic structure

functions, given in terms of the charge and magnetic form factors as:
F2(Q%) + (1 + k)?7F%,(Q?
+7
B(Q*) = 27(1 + k)" Fy (Q%), (3)

where 7 = Q?/4M? with M being the mass of the target nucleus, and & is the anomalous

magnetic moment of the nucleus. The two form factors of 3He are determined by measuring



the elastic cross section at several angles using variable beam energies for the same fixed Q?
(Rosenbluth separation).
The cross section for elastic electron scattering from the spin zero *He nucleus is free of

a magnetic contribution and is given, in the one-photon exchange approximation, by:

do B (Za)?E' cos? (%) Y
m(E’ @) - AES sin? (%) FC(Q ) (4)

The *He charge form factor is determined at a given Q?> by a single angle cross section

measurement, using, to maximize the counting rate, the highest possible beam energy.

2 Theory and Data Review

The 3He and *He form factors have been theoretically investigated using different methods to
solve for the nuclear ground states: the Faddeev-Yakubovsky, the correlated-hyperspherical-
harmonics (CHH) and the Monte Carlo method [3]. All three methods provide a solution
of the Schrodinger equation for non-relativistic nucleons bound by a given nucleon-nucleon
interaction. The Faddeev-Yakubovsky decomposition for the three- or four-body problem
rewrites the Schrodinger equation as a sum of three or four equations, in which only one pair
of nucleons (for two-nucleon interactions, at least) interacts at a time. The resulting equa-
tions are solved in either momentum [6, 7] or coordinate [8, 9] space. The CHH method [2]
is based on the expansion of the wave function on a suitable basis of hyperspherical har-
monic functions multiplied with strong state-dependent correlations, which are induced by
the nucleon-nucleon interaction. The expansion coefficients are then determined applying
the Rayleigh-Ritz variational principle. The two principal Monte Carlo schemes developed
to study the nuclear structure of light nuclei are the variational and Green’s function Monte
Carlo. The variational Monte Carlo method (VMC) [10, 11, 12, 13] uses Monte Carlo tech-
niques to perform standard numerical quadratures, while the Green’s function Monte Carlo
method (GFMC) [12, 14] employs Monte Carlo techniques to evaluate the imaginary-time
path integrals relevant for a light nucleus.

In the simple description of the interaction between light nuclei and electromagnetic

probes, the nuclear electromagnetic current operators are expressed in terms of those associ-



ated with the individual protons and neutrons [the so—called impulse approximation (IA), see
Figure 1(a)]. Such a description is clearly incomplete, since the meson-exchange mechanisms,
which mediate the nucleon-nucleon interaction, naturally lead to effective many-body cur-
rent operators [15]. Theoretical studies of the electromagnetic form factors of the deuteron
and few-body nuclei have conclusively proven that a satisfactory qualitative description of

these form factors requires the inclusion of meson-exchange currents (MEC).
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Figure 1: Selected diagrams contributing to elastic electron-3He scattering: (a) impulse approxima-
tion; (b,c) “model-independent” meson-exchange currents; (d) “model-dependent” meson-exchange

current; (e) “model-dependent” excitation of the A-isobar; (f,g) three-body currents [3].



The two-body meson-exchange currents fall into two categories. The first one includes
those operators which are required by gauge invariance. Since they are directly determined
from the nucleon-nucleon interaction and contain no free parameter, they are denoted as
“model-independent” [isovector currents associated with “m-like” exchange, see Figure 1(b)
and 1(c)]. The second category includes currents which are purely transverse and therefore
are not constrained by the continuity equation. Among these operators, denoted as “model-
dependent”, there are the ones associated with the pry and wm~y transition mechanisms [see
Figure 1(d)], as well as those due to excitation of intermediate nucleon resonances, specifically
the A-isobar [see Figure 1(e)]. The introduction of isobar configurations in the description
of the few-body systems is accomplished by approximate perturbative techniques [15], by
solving the coupled-channel Schrédinger equation [16], or by a generalization of the corre-
lation operator technique [17] in the context of variational methods. Isobar configurations
have only small effects on the calculated few-body form factors [2].

The question whether three-body currents arising from the three-body interactions [18]
[see Figure 1(f) and 1(g)] influence the trinucleon form factors has been re-examined in detail
by Marcucci and collaborators [2]. Their study has reconfirmed that the effect of these three-
body contributions on the *He form factors is rather small. A similar conclusion has been
drawn by Katayama and collaborators for the charge form factor of *He [19].

An important question is whether mesonic and nucleonic degrees of freedom are sufficient
for a quantitative understanding of the three- and four-body systems at large momentum
transfers, where the nucleonic substructure and dynamics are generally recognized to make
an increasing contribution and probably dominate. In an attempt to simultaneously incor-
porate the quark- and gluon-exchange mechanism at short distance and the meson-exchange
mechanism at long and intermediate distances, several groups [20, 21, 22, 23, 24] have devel-
oped composite meson-nucleon and multi-quark superposition approaches in the calculation
of the *He and *He form factors.

Typical models, which incorporate both nucleonic-mesonic and quark degrees of freedom
are 1) a hybrid quark-hadron model [23] in which the main parameter is the separation
ro ~ 1 fm between the “internal” quark-cluster region of overlapping nucleons and the “ex-

ternal” hadronic region, where the nucleons have little overlap and solutions to the Faddeev
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Figure 2: Elastic electron->He scattering in the dimensional-scaling quark model of Brodsky and
Chertok [25]: democratic nine-quark chain (top); nucleon-dinucleon quark interchange (bottom

left); three-nucleon quark interchange (bottom right).

equations are used, and ii) a multiple-quark compound model based on the relativistic har-
monic oscillator quark model [22]. The hybrid models are in general able to reproduce the
existing data but are still in a phenomenological stage and with sufficient freedom in the
choice of elementary parameters used. The hope is that the hybrid models could provide
a basis for a quantitative description of the short-distance quark structure of the few-body
systems and a bridge for treating short-range phenomena with a more fundamental quantum
chromodynamics prescription.

Another approach trying to incorporate the quark-gluon substructure of the helium iso-
topes is, as for the deuteron case, the dimensional-scaling quark model [25]. The principal

idea of this model is dimensional scaling of high energy amplitudes using quark count-
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Figure 3: *He charge form factor data from Stanford [26, 27], Orsay [28], SLAC [35], Saclay [30],
Mainz [34] and Bates [32] experiments, and theoretical IA+MEC calculations by Schiavilla et
al. [11], Hadjimichael et al. [9], Strueve et al. [7], Wiringa [12] and Marcucci et al. [2] (see text).

ing, leading to i) the prediction for the “helium form factor” Fy.(Q?) = /A(Q?) that
Fie ~ (Q*)'734, where A = 3 (4) for *He (“He), respectively, and ii) the dominance of
the constituent-interchange force between quarks of different nucleons to share Q/A. The
contention is that this quark-interchange model contains the important dynamics for the
helium form factors at large % and is similar to, if not the same, as particular meson-
exchange diagrams. The three relevant diagrams: i) democratic 9-quark chain model, ii)
nucleon-dinucleon quark interchange, and iii) three-nucleon quark interchange are shown in
Figure 2. Similarly the *He form factor can be described as a chain of twelve quarks or a

skeletal four-nucleon structure, neutron->He or deuteron-deuteron with quark interchanges.
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Figure 4: 3He magnetic form factor data from Stanford [26, 27], Saclay [29],[30], Mainz [34],
Orsay [28] and Bates [31, 33] experiments, and theoretical IA+MEC calculations by Schiavilla et
al. [10], Hadjimichael et al. [9], Strueve et al. [7], Wiringa [12] and Marcucci et al. [2] (see text).

Figures 3 and 4 show all the experimental data for the 3He charge and magnetic form
factors in the @? range 0 to 35 fm 2 from Stanford [26, 27], Orsay [28], Saclay [29, 30],
Bates [31, 32, 33], Mainz [34] and SLAC [35] experiments. The data demonstrate the pres-
ence of an expected diffraction minimum for both form factors. They are compared to
four “full” older calculations by Hadjimichael and collaborators [9], Strueve and collabo-
rators [7], Schiavilla and collaborators [10, 11] and Wiringa [12], and a newer calculation
by Marcucci and collaborators [2]. All calculations include, in addition to the impulse ap-
proximation, meson-exchange currents and genuine three-body force effects. The theoretical

impulse approximation, not shown in the Figures, totally fails to describe the data. It
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Figure 5: Diagrammatic description of the three-body bound form factor in the covariant spectator
model of Gross and collaborators [39]. The shaded box, sandwiched between the half circles denoting
the initial and final bound states, represents the “core” diagrams of the photon interaction with

the three-body system as pictured in Figure 6.

grossly overestimates (underestimates) the location of the diffraction minimum and under-
estimates (overestimates) the secondary maximum of Fg (F)/), necessitating the need for
inclusion of meson-exchange currents. The above calculations describe fairly well the charge
form factor data, but fail to reproduce the position of the magnetic form factor minimum.
Some authors [36] have attributed this disagreement to the need for fully relativistic calcu-
lations [37, 38] for the three-body form factors.

Gross and collaborators have initiated a serious effort to calculate the three-body form
factors in a consistent relativistic framework. Their initial work [38] has been followed by a
recent paper [39] where they derived a complete Feynman diagram expansion for the elastic
form factor of the three-body bound state using the covariant spectator theory [40]. Their
diagrammatic techniques have resulted in a three-nucleon current consistent with the three-
body spectator equations and explicitly conserved. Their study of current conservation is
based on a generalization of the work of Gross and Riska [41] requiring satisfaction of the
Ward-Takahashi identities and a consistent inclusion of photon-nucleon couplings and in-
teractions. The covariant spectator formalism has been applied very successfully to the
description of nucleon-nucleon scattering and the deuteron bound state, the deuteron elastic

form factors, and the electrodisintegration of the deuteron [42, 43]. It is the only formal-
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Figure 6: The “core” diagrams for the photon interaction with the three-body system in the
covariant spectator model of Gross and collaborators [39] (see text). The half circles in the initial

and final state can be either the bound state, or part of a three-body scattering amplitude.

ism that describes well both the electric and magnetic deuteron form factor data at large
momentum transfers.

In their model, the three-body bound state form factor, shown diagrammaticaly in Figure
5, is constructed by a “core set” of diagrams, shown in Figure 6, which apply for both elastic
and inelastic electron scattering off a three-nucleon system via the mediation of a virtual
photon. The half circles in the initial and final state of Figure 6 can be either the bound state,
or part of a three-body scattering amplitude. The crosses on the nucleon lines represent on
mass-shell particles. The spectator nucleon is the one that connects to the small dot inside a
half circle. Diagrams (b) through (ey) represent direct couplings of the virtual photon to an
on- or off-shell nucleon with or without exchange of the other two nucleons, and are referred to

as the complete impulse approximation (CIA). Diagrams (f;) through (f;) showing photon
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couplings inside shaded rectangles represent two-body interaction current diagrams. The
calculation of the three-body form factors using the derived currents is in progress. This
approach may lead to a unified consistent hadronic theory describing all electromagnetic
interactions with the deuteron and the few-body nuclear systems and in particular at large
momentum transfers where the non-relativistic impulse approximation framework ultimately
breaks down.

Figures 7 and 8 show the predictions for the *He charge and magnetic form factors of
selected IA+MEC theoretical calculations at higher momentum transfers, accessible by JLab.
All calculations predict the presence of a second diffraction minimum for the *He form factors
that can be observed in a JLab experiment. The location of this minimum and the height
of the following maximum are very sensitive to the details of the calculations.

Figure 9 shows the available experimental data up to date for the *He charge form factor
from Stanford [27, 44], Mainz [34] and SLAC [35] measurements. The data, which clearly

2 are compared to the

demonstrate the presence of a diffraction minimum at ~ 10 fm™
impulse approximation and complete (IA+MEC) calculations by Wiringa [12], Schiavilla
et al. [11] and Marcucci et al. [45]. As in the case of *He, the impulse approximation
alone cannot describe the data, overestimating the location of the diffraction minimum and
underestimating the height of the secondary maximum. Although the inclusion of meson-
exchange currents brings the theory in fair agreement with the data, it should be noted that
none of the full calculations can describe, at the same time, both the Stanford and SLAC
data.

Hadjimichael and collaborators [9] calculated the 3He form factors solving the coupled-
channel Faddeev equations in coordinate space, with several nucleon-nucleon potential mod-
els, and in particular with the Paris and Reid Soft Core potentials. The calculation included
T, p, w, pry and wny meson-exchange currents plus isobar admixtures in the initial ground
state wave function. Also included are the one-body Darwin-Foldy (DF) and spin-orbit (SO)
relativistic corrections to the charge operator. Three-body force effects have been accounted
by including in the calculation the two-pion exchange three-body interaction, via A-isobar

excitation.
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Figure 7: 3He charge form factor data from Stanford [26, 27], Orsay [28], SLAC [35], Mainz [34],
Saclay [30] and Bates [32] experiments, and theoretical IA+MEC calculations, for large Q?, by
Schiavilla et al. [11], Hadjimichael et al. [9], Wiringa [12] and Marcucci et al. [2] (see text).

Strueve and collaborators [7] calculated the *He form factors solving the Faddeev equa-
tions in momentum space, and using the Paris nucleon-nucleon potential modified to include
A-isobar excitations via m and p meson-exchanges. The presence of the A thus accounted
for the most important part of three-body force effects. The calculation included 7, p, and
pry meson-exchange contributions, as well as the DF and SO relativistic corrections to the
charge operator.

Schiavilla and collaborators [10, 11] calculated the *He and *He form factors using VMC
wave functions computed with the Argonne wvy4 two-nucleon and the Urbana-VII three-

nucleon interactions. The leading isovector meson-exchange currents, the “m-like” and “p-
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Figure 8: 3He magnetic form factor data from Stanford [26, 27], Saclay [29],[30], Mainz [34],
Orsay [28] and Bates [31, 33] experiments, and theoretical IA+-MEC calculations, for large Q?, by
Schiavilla et al. [10], Hadjimichael et al. [9], Wiringa [12] and Marcucci et al. [2] (see text).

like”, have been derived consistently with the nucleon-nucleon interaction used. The calcu-
lation included, in addition to the DF and SO relativistic corrections, contributions from w
and w7y meson-exchange charge operators.

Wiringa’s calculations [12] for the 3He form factors were based on the same MEC model
used by Schiavilla et al., and on the Argonne v;4 potential. The *He wave functions were
determined with the Faddeev equations and three-body force effects were accounted with
the Urbana-VIII three-nucleon force model. The *He charge form factor was evaluated with
a Monte Carlo variational wave function and a Green’s function Monte Carlo wave function.

The latter wave function is a v14 potential upgraded calculation by Carlson [14].
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Figure 9: *He charge form factor data from Stanford [27, 44], Mainz [34] and SLAC [35], and varia-
tional Monte Carlo (VMC), Green’s Function Monte Carlo (GFMC) and correlated-hyperspherical-
harmonics variational method (CHH) calculations by Schiavilla et al. [11], Wiringa [12] and Mar-

cucci et al. [45], respectively.

The most recent calculation by Marcucci and collaborators for 3He [2] and *He [45] used
the CHH variational method to construct high-precision wave functions obtained with the
Argonnne vg two-nucleon [46] and Urbana-IX three-nucleon interactions model [47]. In this
calculation, the two-body MEC operators have been constructed by the same method of the
earlier calculation by Schiavilla et al. [10, 11] and significant new advances have been made
in the construction of the irreducible three-nucleon exchange current operator and in the

systematic treatment of A-isobar configurations in the nuclear bound states.
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3 The Proposed Experiment

The objective of this proposal is to improve the quality of the existing data, where possible,
and most importantly to extend the measurements of the 3He and *He form factors to higher
momentum transfers, where the standard meson-nucleon model predicts the presence of a
second diffraction minimum for all three form factors in the kinematic regime accessible
by the JLab Hall A Facility. The theoretical calculations are increasingly sensitive with
(Q)? to the details of the nucleon-nucleon force and to the contributions of meson-exchange
currents. Precision measurements of the helium form factors at large momentum transfers
will be critical in establishing the parameters of the few-body standard model, testing our
knowledge of the nucleon-nucleon potential, possible three-body force effects and the nature
of meson-exchange currents. The measurements can also uncover a possible transition from
the standard meson-nucleon model to a quark-gluon description of the few-body form factors,
as predicted by quark-dimensional scaling, if it occurs in the four-momentum range accessible
by this experiment. It should be noted that measurements of the helium form factors are
an integral part of the recent NSF/DOE Long Range Plan which calls explicitly for their
extension to the highest possible values of momentum transfers [48]. The luminosity of the
experiment will be sufficient to discover the predicted second diffraction minima of the form
factors or track an asymptotic fall off in their absence.

We propose to measure using the two Hall A High Resolution Spectrometers (HRSs)
and a cryogenic helium target system i) elastic electron scattering off 3He at forward and
backward electron scattering angles and perform a two-point Rosenbluth separation, with
the wider possible angular range, to extract the charge and magnetic form factors of *He
up to the maximum momentum transfer possible, and ii) forward elastic electron scattering
off *He to extract the charge form factor of “He up to the maximum momentum transfer
possible. The elastic cross section is expected to be as low as 4 x 10! cm?/sr for 3He and
4 x 107*2 ¢cm?/sr for *He, comparable to the lowest elastic cross section 8 x 107*? c¢m?/sr
measured in the JLab Hall A deuteron elastic experiment E91-26 [49]. The inelastic threshold
break-up is 5.4 MeV for 3He and 20 MeV for *He. For the 3He case, to ensure separation

between elastic and inelastic scattering events, recoil nuclei must be detected in coincidence

18



with the scattered electrons. The “He measurements could in principle rely on detection
of only scattered electrons provided that the electron HRS is masked from the target end-
caps. As a precaution, since the cross section is expected to be extremely low, we plan to
also detect recoil nuclei in coincidence and take simultaneously both single- and double-arm
data. This strategy will allow us to cleanly identify, at the cost of a reduced solid angle,
elastic events in the presence of an unexpected single-arm background. The identification of
the electron-helium coincidences will rely on double-arm time-of-flight (TOF) measurements
as in the E91-26 experiment on the deuteron. It is our expectation that the double-arm TOF
spectra for this experiment will be free of background as for the electron-deuteron spectra
of E91-26. Figure 10 shows a representative sample of these TOF spectra (after standard
timing corrections) including the lowest and highest @? kinematics [50].

The natural place to perform such measurements is the Hall A Facility with its two large
solid angle, high resolution spectrometers. Beam energies in the range of 0.8 to 4.4 GeV
are required for the *He measurements and 2.2 to 4.4 GeV for the *He measurements. The
scattered electron energy E’ will be in the range of 0.5 to 4.1 GeV for the 3He case and 2.1
to 4.1 GeV for the *He case. The recoil nucleus momentum P, will be in the range of 0.9 to
1.9 GeV/c for the 3He case and 0.6 to 1.7 GeV/c for the *He case. The electron scattering
angle © will be in the range 13° to 146° for the *He case and 16° to 25° for the *He case.
The recoil angle ©, will be in the range 13° to 75° for the *He case and 66° to 78° for the
“He case. An indicative detailed kinematic list is given, along with the ratio of the electron
to recoil nucleus solid angle Jacobian, (AQ)./(AR),, in appended Tables 1, 2 and 3.

The electron detection system will use the electron HRS detector package consisting of a
drift chamber set for the momentum and angular reconstruction of the scattered particles,
a Cerenkov counter and a segmented electromagnetic calorimeter for electron identification,
and two planes of scintillation hodoscopes for triggering and TOF measurements. The can-
didate electron signal used for triggering and for double-arm TOF measurements will be the
coincidence of the signals of the two scintillator hodoscopes.

The recoil nucleus detection will require a subset of the full hadron HRS detector package.
The two planes of scintillators and the drift chambers will suffice for TOF measurements

and for the reconstruction of the recoil nucleus momentum and recoil angle. The candidate

19



4000

Counts

2000

1000

750

500

250

10

7.5

25
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applying standard timing corrections [50].

helium signal used for triggering and for double-arm TOF measurements will be formed by
the coincidence of the signals of the two scintillator planes. To minimize absorption of recoil

nuclei, not-needed detectors will be pushed to the side of the detector hut as was done in

the elastic electron-deuteron measurements of E91-26.
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The target system assumes three 20 cm long cells, two filled with 5 K/15 atm gas *He and
‘He, and one filled with liquid hydrogen. Such cells have been constructed and successfully
tested by the California State University Hall A group. The *He and *He densities under these
operating conditions are 0.09 g/cm® and 0.15 g/cm?, respectively. The resulting luminosities
for a canonical beam current of 100 pA are 2.2 x 103 cm™2s7! for 3He and 2.8 x 10?® cm=2s~!
for “He. To eliminate background electrons from quasielastic scattering off the Al end-caps of
the He target cell, two adjustable tungsten collimating slits will be mounted on the support
frame of the target cell towards the electron spectrometer side. The slits will mask the
spectrometer from the end-caps and at the same time they will define the effective target
length seen by the spectrometer.

The calibration of the single- and double-arm experimental setup will be checked and
monitored with single-arm and double-arm electron-proton elastic scattering. The most im-
portant check will be the confirmation of our knowledge of the double-arm solid angle for
the elastic helium measurements. Elastic electron scattering from hydrogen will be mea-
sured at every kinematical point of elastic electron-helium scattering. The electron-proton
kinematics for the double-arm scattering will be such as to match as closely as possible the
electron-helium solid angle Jacobian. This will constitute a powerful means of controlling
the normalization of the double-arm electron-helium scattering.

The double-arm effective solid angle for the determination of the cross sections will be
determined by means of a Monte Carlo simulation method of elastic electron-nucleus scat-
tering [51] with the two HRS spectrometers. A brief essential description of the simulation
method is given in the Appendix. The elastic cross section for the central values F, and ©,

will be determined as:

do— Ner
BE7EN EO; o) = 9
dQ( ©:) Ny, N, C F(Q*,T) Pyc (5)

where N, is the number of electron-recoil nucleus coincidence events, N, is the number of
incident beam electrons, NV, is the number of target nuclei per cm?, C'is a factor correcting for
electronics and computer dead-time effects, detector inefficiencies, and absorption of recoil
nuclei in the target and the detectors. The function F(Q? T) is the portion of radiative

corrections that is independent of the momentum acceptances of the spectrometers, with 1T'
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Figure 11: The excitation energy peak from our Monte Carlo simulation for the highest single-arm

elastic electron-*He Q? setting (Q? = 74 fm~2). The inelastic break-up threshold is at 20 MeV.

being the total average radiator path length of the incident and scattered electrons in the
target. The factor Py is the effective double-arm solid angle:
Purc = <//G(E,E’,@,t)deE’> , (6)
E,L
where the function G(F, E', ©,t) includes the momentum acceptance dependent internal and
external radiative effects for the incident and scattered electrons, ionization energy losses
by the electrons and the recoil nuclei, and multiple scattering effects for all particles (see

Appendix). The parameter ¢ is the position of the scattering vertex of the elastic event along
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the target length L. The bracket enclosure indicates that the integral is averaged over the

energy distribution of the incident beam and over the length of the target.

This Monte Carlo simulation has shown that the elastic electron-*He peak of the single-

arm measurements will be clearly separated from the inelastic background, as can be seen in

Figure 11. Plotted in the Figure is, for the highest Q* kinematics (worst case), the excitation

energy, w = W — M, spectrum of scattered electrons, where W is the invariant mass of the

final hadronic state, W = [M? + 2M(E — E') — Q*]'/2. The excitation energy resolution

will be dominated by Landau straggling in the target. Contributions from the beam energy

spread and the spectrometer angular and momentum resolutions will be negligible.
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Figure 12: 3He charge form factor projected data from this experiment. Also shown are data from

Stanford [26, 27], Orsay [28], SLAC [35], Saclay [30], Mainz [34] and Bates [32] experiments, and

the theoretical IA+MEC calculation by Schiavilla et al. [11].
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Any possible contribution to the >He double-arm cross sections coming from the Al target

end-caps will be measured in special runs with an empty replica target. It is expected, as in

the case of the elastic electron-deuteron E91-26 experiment, that the hydrogen and aluminum

runs will require 20% of the total running time.
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Figure 13: 3He magnetic form factor projected data from this experiment. Also shown are data

from Stanford [26, 27], Saclay [29, 30], Mainz [34], Orsay [28] and Bates [31, 33] experiments, and

the theoretical IA+MEC calculation by Schiavilla et al. [10].

To calculate counting rates, projected statistical uncertainties and required beam times,

we used the above stated luminosities and the full available solid angle of the two HRS

spectrometers for each single- or double-arm kinematics (without using their collimators).

Figures 12 and 13 show the quality of the projected data for the *He charge and magnetic

form factor measurements, assuming (arbitrarily) that they are described, at large Q?, by the
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model of Schiavilla and collaborators [10, 11]. The estimated cross sections, counting rates,
running times and projected statistical uncertainties in the extraction of the *He charge and

magnetic form factors are given in appended Table 4.
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Figure 14: The sensitivity limit (~ +30% measurement in four days of beam time at a given Q?)
of this experiment for the “3He form factor”. Also shown are existing data from Stanford [26,
27], Orsay [28], SLAC [35] and Saclay [30] experiments, and theoretical predictions based on the
IA+MEC (Schiavilla et al. [10, 11]) and the dimensional-scaling quark model (DSQM, Brodsky and
Chertok [25, 52]). The DSQM curve is arbitrarily normalized at Q% = 50 fm 2.

Figure 14 shows the sensitivity limit for the 3He F(Q?) A(Q?) form factor. The

sensitivity limit is defined as the lowest form factor value that can be measured with ~ +30%
statistical error in four days of beam time at a given % kinematics. The experiment will

be able to provide precise F(Q?) data for He over the Q? range of the previous SLAC
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measurements and beyond. The latter measurements [35] were performed at a single forward
scattering angle (© = 8°) and were not able to separate the two form factors. Shown also
in the Figure are the complete (IA+MEC) calculation of Schiavilla and collaborators [10,
11], and the prediction of the dimensional-scaling quark model (DSQM) of Brodsky and
Chertok [25], arbitrarily normalized at ~ 50 fm~2. The existing F/(Q?) data for *He strongly
suggest a change of slope at about Q? = 55 fm~2, that can be attributed to a possible
diffraction minimum, or to the onset of quark-dimensional scaling as argued by Chertok [52].

Figure 15 shows the quality of the projected data for the He charge form factor, assuming
(arbitrarily) a linear extrapolation of the existing data, along with theoretical predictions
at large momentum transfers. The variational Monte Carlo calculations by Wiringa [12]
and Schiavilla et al. [11] and the correlated-hyperspherical harmonics variational method
calculation by Marcucci et al. [45], shown in the Figure, predict a second diffraction minimum
that would be measurable by this experiment. Also shown in the Figure is the asymptotic
prediction of the dimensional-scaling quark model by Brodsky and Chertok [25], arbitrarily

normalized at ~ 40 fm 2.

The estimated cross sections, counting rates, running times
and projected statistical uncertainties in the extraction of the *He form factor are given in
appended Table 5.

It is evident, from Figures 12, 13, 14 and 15, that this experiment will significantly
advance our knowledge of the form factors of the three- and four-body systems. The expected
data will extend our 3He and “He form factor knowledge down by one to two orders in
magnitude and out in Q? by possibly more than a factor of two. The run plan scenarios of
Tables 4 and 5 amount to a required beam time, for each form factor measurement, of 12
days (including 2 days of proton calibrations and empty target runs). The total requested
amount of beam time for the experiment is 36 days. The proposed measurements will be
able to uncover the predicted second diffraction minima of the *He and *He form factors

or explore a possible asymptotic fall off indicative of a transition from meson-nucleon to

quark-gluon degrees of freedom in the few-body form factor description.
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Figure 15: “He charge form factor projected data from this experiment along with the exist-
ing Stanford [27, 44], Mainz [34] and SLAC [35] data. Also shown are variational Monte Carlo
(VMC), Green’s Function Monte Carlo (GFMC) and correlated-hyperspherical harmonics varia-
tional method (CHH) calculations by Schiavilla et al. [11], Wiringa [12] and Marcucci et al. [45],
respectively, along with the prediction of the dimensional-scaling quark model (DSQM) of Brodsky
and Chertok [25, 52]. The DSQM curve is arbitrarily normalized at Q? = 40 fm=2.

4 Summary

In summary, this is a proposal to measure the charge and magnetic form factors of 3He and
the charge form factor of *He up to the largest momentum transfers possible in the JLab
Hall A Facility. We request 36 days of beam time with beam energies between 0.8 and 4.4

GeV and beam current of 100 pA for helium production data, and hydrogen calibrations and
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monitoring. The expected data will extend our three- and four-body form factor knowledge
down by one to two orders in magnitude and out in @? by possible more than a factor of
two. The experiment will produce data of fundamental importance for our understanding
and advancement of modern few-body nuclear physics, provide invaluable input for the estab-
lishment of a consistent hadronic model for the description of the electromagnetic interaction
with the few-body systems, and test long-standing predictions of quark-dimensional scaling

for the few-body form factors.
Acknowledgement: We are grateful to Professors F. Gross, A. Stadler and M. T. Pena for

the kind communication of their paper on the three-body covariant spectator theory prior

to submission for publication.
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3He Forward Kinematics

Q* E E' S} P, 0, (AQ)./(AQ),
(fm~2) (GeV) (GeV) (deg.) (GeV/c) (deg.)

20.0 4.0 3.861 129 0.893 4.7 0.20
30.0 4.0 3.792  16.0 1.101 71.2 0.26
39.5 4.0 3.726 185 1.270 68.5 0.32
48.0 4.4 4.067 18.6 1.407 67.2 0.31
59.0 4.4 3.991  20.8 1.570 64.7 0.36
66.0 4.4 3.942 222 1.667 63.3 0.40
75.5 4.4 3.877  24.0 1.793 61.4 0.45
85.0 4.4 3.811  25.7 1.912 29.7 0.50

Table 1: Incident beam, scattered electron and recoil nucleus kinematics for the forward He

measurements (the kinematical variables are defined in the text).
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3He Backward Kinematics

Q* E E' S} P, 0, (AQ)./(AQ),
(fm~2) (GeV) (GeV) (deg.) (GeV/c) (deg.)

20.0 0.80  0.661 4.7 0.893 45.6 2.61
30.0 0.80  0.592 103.5 1.101 31.5 4.06
39.5 0.80  0.526 145.8 1.270 13.5 5.99
48.0 0.90  0.567 146.2 1.407 13.0 6.31
59.0 1.10  0.691 120.7 1.570 22.2 5.58
66.0 1.10  0.642 144.9 1.667 12.8 6.90
75.5 1.20  0.677 144.1 1.793 12.8 7.20
85.0 1.30  0.711 142.3 1.912 13.1 7.43

Table 2: Incident beam, scattered electron and recoil nucleus kinematics for the backward He

measurements (the kinematical variables are defined in the text).

30



‘He Kinematics

Q* E E' S} P, 0, (AQ)./(AQ),
(fm~2) (GeV) (GeV) (deg.) (GeV/c) (deg.)

9.0 2.2 2153 156 0.594 7.7 0.36
14.0 3.3 3.227  13.0 0.742 77.9 0.25
24.0 3.3 3.175 17.2 0.975 74.1 0.34
34.0 3.3 3.122  20.7 1.164 71.0 0.43
39.0 3.3 3.096  22.2 1.249 69.7 0.47
44.0 3.3 3.070  23.7 1.329 68.4 0.51
49.0 3.3 3.044 252 1.405 67.2 0.55
54.0 4.4 4.118  19.6 1.477 69.3 0.37
59.0 4.4 4.092  20.6 1.547 68.4 0.39
64.0 4.4 4.066  21.5 1.614 67.5 0.41
69.0 4.4 4.040 224 1.678 66.6 0.44
74.0 4.4 4.013 233 1.741 65.8 0.46

Table 3: Incident beam, scattered electron and recoil nucleus kinematics for the *He measurements

(the kinematical variables are defined in the text).
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3He Run Plan

Q*  [do/dQ)]; Ny Ty [do/dQ)], N, T, Fo AF. Fy AFy
(fm™2)  (nb/sr) (h)  (nb/sr) (h) (£%) (£%)
200  1.7E-1 131072 2  27E-3 131072 45 47E-3 02 16E-3 13
30.0  1.6E-2 8192 1  1.3E4 2048 13  22E3 0.7 89E4 15
39.5  LI1E-3 2048 3 2.2E-6 128 18  80E4 12 29E4 12
480  8.4E-5 512 12 1.5E-7 32 68 25E4 24 T73E5 26
50.0  2.2E-6 32 23  6.3E-8 16 130 27E-5 50 T7.4E-5 15
66.0  4.9E-6 64 18 9.0E-8 8 28 62E5 23 10E4 19
755 4.0E-6 64 20 7.6E-8 8 34 68E5 20 9.5E5 20
850  2.0E-6 32 18 4.5E-8 8 58 54E5 26 T.6E5 20

Table 4: A run plan scenario for the >He forward (f) and backward (b) measurements, assuming that

the charge and magnetic form factors follow a model by Schiavilla and collaborators [10, 11]. Here,

N and T denote the expected number of elastic events and the required beam time, respectively.

The form factor errors represent statistical uncertainties.
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‘He Run Plan

Q>  do/d) T N F. AF.
(fm=2) (nb/sr)  (h) (£%)

9.0 3.0E-1 0.1 128000 5.0E-3 0.1
14.0  9.1E-1 0.1 390000 9.0E-3 0.1
24.0  3.4E-2 0.3 43000 3.1E-3 0.2
34.0 9.2EA4 0.5 18000 7.4E-4 0.4

39.0 1.6E-4 1 700 3.6E-4 2
44.0  3.0E-5 2 200 1.8E-4 4
49.0  5.6E-6 4 100 8.7E-5 5
54.0  2.1E-6 8 70 4.3E-5 6
59.0  4.2E-7 16 30 2.1E-5 9
64.0 8.3E-8 38 14  1.0E-5 13
69.0 1.7E-8 68 5 5.1E-6 22
74.0  3.5E-9 102 2 25E-6 35

Table 5: A run plan scenario for the He measurements, assuming that the charge form factor is
described by a linear extrapolation of the existing SLAC data [35]. Here, N and T denote the
expected number of single-arm elastic events and the required beam time, respectively. The form

factor error is statistical.
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APPENDIX
A1l: The Coincidence Elastic Cross Section

In a single-arm elastic electron-nucleus experiment, where only the scattered electron is
detected, the number N, of elastically scattered electrons in the interval AE' = E! ~—E'

maz min

around the elastic peak is:

N, = NbNtC;l—g(Eo, 0.)explS(AE Y (AE)AQ, (7)

where do(E,, ©,)/d is the elastic cross section of interest for the central values of F, and
©,, N, is the number of incident beam electrons, N, is the number of target nuclei per cm?, C
contains all applicable corrections including the detector inefficiencies and dead-time effects,
and AQ is the electron spectrometer solid angle. The factor exp[d(AE")] accounts for losses
due to radiation effects (radiative correction factor) and it is calculable analytically when
the spectrometer energy acceptance AE’ is independent of the electron scattering angle ©.
The factor x(AE’) (ionization factor) accounts for losses due to ionization effects and for
high energies becomes approximately multiplicative and equal to (1 — £/AE’), where the
parameter £ is characteristic of the target material (see below).

In a double-arm experiment, the number of electrons N,, in coincidence with recoil nuclei

detected in a recoil spectrometer in the interval AP, = (P,)maz — (Pr)min 1

d
N, = NbNth—g(Eo, 0.)exp[d(AE', AP)|X(AE', AP,)AQ,,, (8)

where in this case the radiative correction factor and the ionization factor depend on both
AE" and AP,, the solid angle becomes the effective double-arm solid angle A2, and the
correction factor C includes also losses due to absorption of recoil nuclei in the target and the
detectors. The radiative correction factor is calculable only if one of the two spectrometers
is the limiting aperture defining the double-arm solid angle, and if the recoil spectrometer
momentum acceptance AP, is independent of the recoil angle ©,. In practice, even if the
latter condition is met, in a realistic experiment where counting rate limitations dictate use
of the maximum solid angle available from a double-arm spectrometer system, the effective

double-arm solid angle is in many kinematics defined, as it is the case for this experiment,
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by both spectrometers. The resulting convolution of the solid angles of the two spectrome-
ters, coupled by elastic kinematics and radiative and ionization effects makes impossible the
calculation of the product exp[d(AE’, AP.)|x(AE', AP,)AQ,, analytically. The product, in
this case, has to be calculated by means of a Monte Carlo simulation.

To express the above convolution, one has to write down the coincidence counting rate

as:

Ao exp , ,
e,_NbNtC<//deE, (B, E',0,1)AQAE >EL, 9)

where do..,(E, E',0,t)/dQdE" is the differential experimental cross section, which depends
also on the position, ¢, of the scattering vertex of the elastic event along the target length L.
The experimental cross section is integrated over the effective angular and scattered electron
energy acceptances of the double-arm spectrometer system for detection of scattered electrons
in coincidence with recoil nuclei. The bracket enclosure indicates that the resulting integral
is averaged over the energy distribution of the incident beam and over the length of the

target.

A2: Monte Carlo Simulation

The above averaged integral has to be calculated by simulating the entire elastic electron-
nucleus scattering process, starting with the arrival of the beam electrons at the target, and
ending with the arrival of the scattered electrons and of the recoil nuclei at the detectors of the
electron and recoil spectrometer, respectively. The simulation requires complete knowledge of
all physical processes happening in the target, in addition to the elastic scattering process in
question, and transportation of scattered and recoil particles through reliable optical models
of the spectrometers used for their detection. Among all processes present, the dominant one
is radiation by the incoming and scattered electrons, which is inextricably interwind with

the scattering process.

A2.1: Internal and External Bremsstrahlung

There are two kinds of radiation effects. The first one is from real and virtual photons
emitted during the elastic scattering (referred to as internal bremsstrahlung and vertex

corrections respectively). The second one is from real photons emitted by electrons when
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passing through the target material before and after the scattering (referred to as external
bremsstrahlung).

Following the seminal papers by Mo and Tsai [53, 54], and neglecting for the time being
ionization energy loss effects, the cross section for electrons of incident energy F to scatter
at an angle O to a final energy E’ from a target of T radiation lengths including all radiation

effects is given by:

Ao ezp T dt rE mE do
B E/ E L(E, Ey,t) —2(E,,E,0) L(E,,E',T — |
dOdE" / T/T,fEfd U @B LB B ) goim (B B, ©) L(Ey BT = 1), (10)

where I.(E, Ey,t) is the probability of finding an electron starting at initial energy E
and straggling down to energy E; after passing through ¢ radiation lengths in the target,
I.(E}, E', T —t) is the probability of finding an electron after the scattering at energy E’ and
straggling down to energy E’ through the rest of the target, and do(E, E}, ©)/dQdE" is the
cross section for elastic scattering with incident energy E to final energy E] and at an angle
O including internal radiation and vertex corrections. The lower limit of integration for F} is
n'E' and the upper limit of integration for E} is n, E1, where i/ = [1 — 2(E'/M) sin®(0/2)]
and n; = [1 + 2(E;/M)sin?(0/2)] . The difference E — 'E’ is the maximum energy of a
photon which can be emitted along the direction of the incident electron. Similarly the max-
imum energy of a photon which can be emitted along the direction of the scattered electron
is nE — E', where n = [1 + 2(E/M)sin?(0/2)]7".

It is customary, in addition to using the angle peaking approximation, to assume that
the shape of the internal bremsstrahlung is the same as that of the external bremsstrahlung,
and that the internal bremsstrahlung has approximately the same effect as that given by two
“external equivalent radiators” with one placed before and one after the scattering, each of

thickness:!

teg = 7 lln— - 1], (11)

where m, is the electron mass, and the small terms proportional to Z and Z? from radiation

'For clarity of the formulation a factor b~" has been included in the definition of the equivalent radiator.

36



by the target nucleus with atomic number Z are neglected. The quantity b is approximately
equal to 4/3 and depends only weakly on Z:

(Z+1)

(Z+C)][ln(183Z*§)] } (12)

4 1

b= {1+ -
3{ + 9[
where: )
 In(1440Z73)
In(1832°3)

The vertex corrections are included in the factor F'(Q? 0) = 1 + ¢', where:

(13)

20 14 13, Q? « E. ofn? 0
FOXT) =1+ 057707 + 2|22 4 22| - 222y - 2T g(cos?~ 14
(Q°.T) =1+0.577 +7r[ 9+12nmg] o () le (cos 2)]’ (14)

with ® [Cosz(%)} being the Spence function. The first two terms of the right-hand side come
from a Gamma function normalization factor 1/I'(1407") ~ 14 0.5772bT". The third term is
the sum of the vacuum polarization and the non-infrared part of the vertex correction. The
fourth term can be regarded as a correction to the peaking approximation in the internal
bremsstrahlung. The fifth term comes from the non-infrared divergent part of the soft photon
emission cross section.

The probability of a small energy loss F; — E; due to bremsstrahlung by an electron with
incident energy E; > 100 MeV in a target of ¢ radiation lengths is given by:

bt (E;— E;
L(E;, By t) =
(B By, 1) F(1+bt)< E; )

it
E, — E;

(15)

Application of Equation 10 for an effective radiator of length T, = t, + t.,, before the
scattering, and an effective radiator of length T, = ¢, +t.,, after the scattering, where ¢, and
t, are the real radiator lengths before and after the scattering, and insertion of the vertex

correction factor (1 + ¢') results to:

A0 ezp E do
= E\I(E, By, Ty) 2 (B, ©)(1 + 8 I'(mEy, E', T |
G0dE ~ Sy IE BLT) 50 (B O) (Lt ) L(m By, B T, (16)

where the function I(E;, Ef,T;) is given (for j = a,b) by:

bT; E,— F
[I Ez E T — J ( 1 f)
e( y Hf .7) 1—\(1 +bt]) Ez

iy
E,— EB;

(17)
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The calculation is straightforward but messy and uses the presence of a delta function for

elastic scattering:

do , _do
m(EhEl,@) = @(

2F,E! O
A} 1 sin2(5)

E
EI,@)F} 5 |E — B, —
1

(18)
Setting do(E1,©)/dQ = w(E,, ©)do(E,, O,)/dS?, and using basic properties of the Gamma
function, the experimental cross section becomes:

dOep  do

haad 2 i
dQdE" - dQ (Em@o)F(Q 7T)G(E7E7@7t) (19)
where T = t, + t; and:
E
G(BE,E',0,1) :/ dE\g(E, E', E,,0,1) (20)
nIE‘l
with:
bT; N 0T,
bT, E—-F, b bT, mFE, — F
E.E'.FE t) = ( > E 21
g( ) ) 1767) E—E1 E 'UJ( 17@)E1_EI< E ) ( )

where the factor F(Q? T) is a very slow varying function of @? and has been pulled out of
the integral.

Direct substitution of Equation 19 into Equation 9 results in Equation 5 of the main text:

da NBT‘
E(E"’ ) = NyN,CF(Q? T)Pyc' (22)
where:
Pyc = <//G(E,E’,@,t)deE’> . (23)
E,L

The above analysis indicates that the determination of the product of the double-arm
solid angle and the radiative corrections is reduced to a simulation of the complex integral
of Equation 20. Equation 21 suggests that the internal and external bremsstrahlung of an
incident or scattered electron, with initial energy Fj, in a total (real and equivalent) radiator
thickness T, follows a probability distribution of the functional form:

b1’

I (AE;;

where AFE;; is the energy loss by the electron. The term w(E;, ©) dictates that a simulation

of an electron-nucleus scattering event must be weighted by a probability distribution defined
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by the elastic cross section. Since the elastic cross section is to be measured, one has to use a
model for it, then determine P,;c and subsequently the elastic cross section, and after that
iterate. The procedure converges very quickly.

The factor Pys¢ is essentially a number that can be determined from a Monte Carlo model
that can simulate in the nuclear target material not only energy losses due to internal and
external bremsstrahlung of the incident and scattered electrons, but also ionization energy
losses and multiple scattering effects for the incident and scattered electrons and for the

recoil nuclei.

A2.2: Ionization Energy Losses

The energy loss of charged particles due to ionization or excitation of the atoms of the
material they traverse is subject to appreciable fluctuations about the most probable energy
loss AE,,q. Ionization energy losses by the incident and scattered electrons, and by the
recoil nuclei cannot be neglected in this experiment. The most probable energy loss is given

by [55]:

2mnet 2t 4rnetz?t
n

me2Bp | 21— )

where n is the volume density of electrons in the material, p is the density of the material,

AE,op = — B3 +0.198—-6-U (25)

I is the mean excitation potential of the material, z is the charge of the incident particle in
unis of the electron charge e, t is the path length of the particle in the material, and 8 = v/c,
where v is the velocity of the particle. The term ¢ is the correction for the density effect,
which is due to the polarization of the medium. The term U is due to the nonparticipation
of the inner shels (K, L,...) for very low velocities of the incident particle.

The shape of the ionization energy loss distribution depends on the value of the parameter

K =&/ ¢mas [56, 57], where:
2w z2etnt

€=

and ¢q. is the maximum energy transfer in the collision from the incident particle to the

(26)

mev?

atomic electrons, approximately given by 2m,v?/(1 — %) for incident heavy particles and
by T./2 for incident electrons, where T, is the kinetic energy of the electron.
There is no absolute K demarcation defining the shape of the energy loss distribution.

For the needs of this experiment it is sufficient to consider that for K > 0.2 the energy
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loss follows a Gaussian distribution and for K < 0.2 it follows the Landau distribution [58]
(in reality, for 0.01 < K < 1.0 the energy loss follows the Symon distribution [59, 60], but
application of his theory to a specific case is difficult without considerable manipulation and
extrapolation of his unpublished results).

The variance, o2, of the Gaussian distribution is given in terms of the path length ¢ of

the particle in the material as [56]:
02 = 4dme*n2’t. (27)

The Landau distribution is asymmetric with a long high-energy loss tail and a broad peak.

If AFE is the observed energy loss, Landau has described the distribution as:

d(N) = /Hoo exp[Au + ulnuldu (28)

—100
where the parameter )\ is given in terms of the parameter £ and the most probable energy

loss as A = (AE — AE.q) /€.

A2.3: Multiple Scattering Effects

Another effect that has to be taken into account in a simulation of electron-nucleus
scattering is the multiple scattering of the incident and scattered electrons and of the recoil
nuclei in the Coulomb field of the nuclei of the target materials. It contributes to the value
of the integral Py, and to a larger extend to the shape of the observed distributions of the
scattered electrons and of the recoil nuclei at the detectors. A reliable comparison between
observed and simulated detector distributions would not be possible without incorporation
of multiple scattering in the Monte Carlo model.

The resultant distribution of the net space angle # between the incoming and outgoing
directions of the particle, after passing a material of thickness ¢, is a Gaussian-type distribu-
tion with a long non-Gaussian tail below the 5% level. The mean square value of # is given

by [61]:

0.157Z(Z + 1)z 2
(Z 11z [1.13><104Z%z2tA1ﬁ2}] (29)

A(pv)?
where p is the momentum of the incident particle and A is the mass number of the mate-

<92>% —

rial. The multiple scattering angular distribution is in practice approximated by a Gaussian

function. There is no unique parametrization for the standard deviation, o,,,, of such a
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Gaussian distribution. The best approximate formula, working very well, especially for
small-Z materials, is given by Lynch and Dahl as [62]:
19.2z [ X 2
Oms =
BV Xo

l1 +0.088 logy, (= (30)

Bk

where X and X, are the thickness and radiation length of the material, respectively.

A2.4: Transportation of Particles through the Spectrometers

The Monte Carlo model, after simulating the production of elastic events in the target,
raytraces the scattered electrons and the recoil nuclei all the way to the detectors, through
the electron and recoil spectrometers, respectively. This requires knowledge of the optical
properties of the two magnetic spectrometers as determined from detailed magnetic measure-
ments of their elements, and of the apertures of the elements as determined from surveys.
The scattered electrons and the recoil nuclei are transported through the spectrometers in
our model by means of exact raytrace or forward TRANSPORT matrix elements [63]. Exact
raytrace (good to all orders in the TRANSPORT coordinates) is applied for the motion of
the particles in the quadrupoles of the High Resolution Spectrometers. The raytrace uses

the Lorentz force equation:
dp”
dt
where ¢ is the charge of the particle and B is the magnetic field. The 3-dimensional magnetic

field B is provided by the measured field maps By (x,y,2), By(x,y, 2), B,(x,y, ) of the HRS

¢(7 x B), (31)

quadrupoles. The propagation of the particles through the quadrupoles is done in small
steps. At the end of each step a check is made to see whether the particles are lost on
the physical apertures of the quadrupoles. For the transportation of the particles through
the HRS dipoles this exact method cannot be applied due to the lack of a complete field
map of the dipoles. Instead a TRANSPORT model for each dipole was created based on a
combination of limited magnetic measurements and TOSCA simulations. The HRS dipole
has been divided in 10 pieces, and 10 sets of 3rd-order forward matrix elements have been

provided by the TRANSPORT code [64].
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The forward matrix elements of a magnetic element are the coefficients of a Taylor ex-
pansion about the central trajectory of the coordinates x, 8, y, ¢ of the particle at the exit of

the element in terms of its coordinates x,, 0., ¥, ¢ at the entrance of the element:

T = T (T ]| T5Y208$L08) k2046108 (32)
0= e (0| 25y2080L0%) x5yl 08 9205 (33)
Y= Zurume (U | 75y2050L0%)x5y208 108 (34)
O = Tiauwme (0| T5y2050L0%)xly08505 (35)

where the order n of the expansion is : n = K+ A+ p+ v+ & (=3 in this case). The
coordinates = and y represent, respectively, the horizontal and vertical positions of the
particle, and § = dz/dz and ¢ = dy/dz are the associated angles. The quantity J, =
(p — po)/po is the fractional deviation of the momentum of the particle from the central
design momentum, p,, of the system.

Each one of the 10 sets corresponds to a magnetic element starting at the entrance of the
dipole and ending at a location mL/10 inside the dipole, where m = 1,2, ...,10, and L is the
effective length of the dipole. Each set is used to transport the particle from the beginning
of the dipole to the mL/10 longitudinal position inside the dipole, where an aperture check
is made to see whether the particle is lost on the trapezoidal aperture of the dipole. When
the particle makes it through the aperture for the 10th step, it is traced through the third
HRS quadrupole. All losses of particles on the apertures are recorded and a complete picture

is obtained for the solid angle defining apertures of both spectrometers.

A2.5: The Effective Double-Arm Solid Angle

The Monte Carlo simulation creates pairs of scattered electrons and recoil nuclei along the
beam direction in the target. The incident beam distribution is assumed to be of a Gaussian
form with given standard deviation. FEach scattering event originates from a beam electron
that has undergone energy straggling through the target and has been multiple-scattered
before it interacts elastically with a nucleus. The location of the scattering vertex in the
target is uniformly distributed over the target length. Elastic electron events are created

with polar and azimuthal angles # and ¢ in the intervals (6,6) and (¢, ¢2) around the
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electron spectrometer axis (with Af = 6; — 0, and Agp = ¢ — ¢ larger than the angular
acceptances of the electron spectrometer). The recoil nucleus momentum and polar and
azimuthal angles are determined by the elastic scattering condition. All the kinematical
coordinates of both particles are corrected, before they enter the respective spectrometer
models, for energy straggling and multiple scattering on the way out through the target.

All probability distributions involved in the simulation like the ones for internal and
external bremsstrahlung, ionization energy loss, multiple scattering and for elastic scattering
at the scattering vertex, are produced by standard Monte Carlo techniques. Random deviates
from a particular distribution are generated either using the direct transformation method,
where possible, or the acceptance-rejection method by von Neumann. Both methods use
real numbers uniformly distributed in the interval [0,1] as provided by a (pseudo)random
number generator.

In the Monte Carlo language, the above procedure makes the integral Py;¢ equivalent to

an integral of the form
Puc = / / (B, ©)r(AE', AP,) dfdo, (36)

where the function r(AE’, AP,) includes the portion of the electron radiative corrections
that depend on the momentum acceptances of the two spectrometers, and effects from ion-
ization energy losses and multiple scattering for both scattering partners. For N trial events
randomly and uniformly distributed over the target length L and over the angular ranges

Af and Ag, the integral Py is given, in the limit N — oo, by:

/9 / £(0,6)d0d¢ = AGA(;S Z £(6:, 0), (37)

where:

f(@, ¢) = UJ(EI, @)T(AElv APT‘) (38)

Since the energy losses due to radiation and ionization and the multiple scattering effects

are applied for every event, the function f(f, ¢) takes the value:

w(FE1,0) for a “good event”
f(0,0) = (39)

0 otherwise
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Figure 16: The JLab HRS drift chamber position and angular distributions of electrons elastically
scattered off protons for one of the kinematics of experiment E91-26 (solid circles) [50]. The
distributions are for coincidence events and are plotted versus the vertical (top) and horizontal
(bottom) TRANSPORT position and angle coordinates. The curves represent the predictions of a

Monte Carlo simulation (see text).
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Figure 17: The JLab HRS drift chamber position and angular distributions of recoil protons for
one of the elastic electron-proton kinematics of experiment E91-26 (solid circles) [50]. The distri-
butions are for coincidence events and are plotted versus the vertical (top) and horizontal (bottom)
TRANSPORT position and angle coordinates. The curves represent the predictions of a Monte

Carlo simulation (see text).
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where “good event” (or double-arm event) is considered the case when both the scattered
electron and the recoil nucleus pass through the modeled spectrometers into the detectors
without being lost on any limiting aperture. Small corrections for effects not accounted
for by the above procedure, like radiation by the target nucleus, can be calculated in an
approximative way by using analytic formulae. It is obvious that the same procedure can be

used to calculate a corresponding integral:

Pl = / / w(Er, O)r (AE') dfds (40)

for single-arm elastic scattering with detection of only scattered electrons, which is the case

for part of the *He component of the experiment.

e I
o O

5 _ L

| . JLab Hall A i

0.9 — —

1 Proton 0 World Data i

0.8 I I T ‘

0.0 1.1 2.3 3.4 4.5
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Figure 18: The elastic electron-proton cross section from JLab experiment E91-26 (measurement
of the deuteron elastic structure functions) as extracted from coincidence measurements and sim-
ulation of the effective double-arm solid angle [50] compared to all previous world data for similar
kinematics [65]. The experimental cross section has been divided by a model cross section assuming
proton form factor scaling and using the dipole formula (see text). The JLab data include only

point-to-point random errors.
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This method of evaluation of the integral Py;c was employed in the data analysis of the
measurement of the electric form factor A(Q?) of the deuteron in JLab Hall A experiment
E91-26. Figures 16 and 17 show a comparison [50] of the measured distributions of the
coordinates of the scattered electrons and recoil deuterons at the drift chamber locations of
the two HRS detectors, for one of the E91-26 kinematics, with the distributions simulated
with our Monte Carlo code. It is evident that the simulated distributions are in very good
agreement with the experimental distributions giving us confidence that our Monte Carlo
model describes accurately all physical processes involved in the experiment and that the
product Pys¢ takes into account correctly the convolution of radiative and ionization energy
loss effects with the acceptances of the two spectrometers. The integral Py, was used for the
determination of the coincidence elastic electron-proton and electron-deuteron cross sections.
Figure 18 shows the elastic electron-proton cross section from double-arm coincidence mea-
surements at different values of @Q* from E91-26 [50] compared to the world data at similar
kinematics [65]. To obtain a linearized scale, the experimental cross section has been divided
by a cross section model assuming i) that the proton magnetic form factor follows the dipole
formula G%,(Q?) = (1 4+ @Q%/0.71)72 and ii) that the electric form factor is G%, = G%,/u,
(form factor scaling), where (i, is the proton magnetic moment. The excellent agreement of
the E91-26 cross section data with the world cross section data is another indication that

our Monte Carlo model calculates reliably the integral Py, ¢.
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