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Abstract
We propose to perform a high precision ep elastic cross sections measurement at very low four-
momentum transfer squared, Q2, from 10−4 to 10−2 (GeV/c)2 range using a high resolution
calorimeter. The absolute value of the ep cross sections will be controlled by a well known QED
process, the Møller scattering, which will be continuously measured in this experiment within
similar kinematics and the same experimental acceptances. The high precision differential cross
sections, measured for the first time in this low Q2 range, will allow a sub-percent and essentially
model independent extraction of the proton charge radius. With that, this experiment will have a
direct impact on the “proton charge radius crisis” currently developing in hadronic and atomic
physics. We propose to perform this experiment in Hall B at Jefferson Lab using the unique low-
intensity electron beam control capabilities of the hall and part of the PrimEx-II infrastructure.
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1 PAC 38 comments
The PAC38 conditionally approved the proposed “High Precision Measurement of the Proton
Charge Radius” (PR12-11-106) with the following comments:

“The proponents hope to resolve the “proton charge radius crisis” stemming from a 6-sigma
discrepancy between a new measurement of the Lamb shift in muonic hydrogen and existing data
... Testing of this result is among the most timely and important measurements in physics.”

“... This is a novel technique that should be able to achieve the required precision.”
“Before the proposal can be approved and beam time assigned, the PAC would need to see more

careful modeling related to beam halo with the exact target geometry proposed and all sources of
background included. Until a realistic and final target design is completed, the beam requirements
cannot be firmly established and matched to expected accelerator performance. In addition, the
PAC was not convinced that all Coulomb effects were properly included in the simulations pre-
sented. The proponents will also need to demonstrate that they have a path to extend radiative
corrections to 10−4 GeV2 with the required precision.”

2 Summary of updates to the PAC38 proposal
The following is a summary of updates to the proposal (PR12-11-106) addressing all the concerns
of PAC38.

• A complete design of the target is presented in Section 3. The target cell has been redesigned
to alleviate some of the sensitivity to beam halo and a cryo-cooler has been added to help
achieve the high density in the target cell. We have submitted a MRI proposal to the NSF to
build the target.

• Beam halo studies in Hall B (Section 4).

• Radiative corrections to Q2 down to 10−4 GeV2 (Section 5).

• Background simulation studies (Section 6).

• Extraction of 〈rp〉 with effect of radiative corrections (Section 7).
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3 Windowless cryo-cooled hydrogen gas flow target
The design and engineering of polarized or unpolarized internal gas flow targets are well estab-
lished and understood. Indeed, such targets have been used in different successful experiments.
The 40 cm long polarized 3He target installed in the HERA positron beam during the HERMES
experiment [1] reached values of thickness up to 6×1015 atoms/cm2. Another example, the 60 cm
long deuterium/hydrogen polarized internal gas target built for the BLAST experiment [2] attained
a thickness of 7×1013 atoms/cm2 where polarized atoms were injected into a thin-walled storage
cell by an Atomic Beam Source. On the other hand, the 27 cm long unpolarized OLYMPUS tar-
get [3], whose design is based on the HERMES and BLAST experiments, is cooled to 25 K and
has a target thickness of 3×1015 atoms/cm2, is currently under data taking. Another unpolarized
internal target was used at the VEPP-3 facility [4] in Novosibirsk for electron/positron cross sec-
tion measurements in order to detect a possible two-photon exchange effect. It has a similar design
to that used in previous experiments at VEPP-3 [5], where a target thickness of ≈1015 atoms/cm2

was reached. In the proposed Dark Light experiment [6] at Jefferson Lab, an unpolarized hydrogen
gas target aiming at attaining a ≈1019 atoms/cm2 thickness has been designed. This list does not
intend to be exhaustive but shows the wide range of applications, the versatility and the reliability
of polarized/unpolarized internal gas flow targets in electron/positron scattering experiments. All
these targets use important differential pumping systems in order to remove the residual gas for
maintaining the beam line vacuum pressure outside the target chamber. The novelty of our pro-
posed target does not lie in the principle but rather in the high density that it will be able to reach.
In the next sections we give a complete description of the whole system.

Table 1: Summary of gas flow targets used in various laboratories including the proposed ones at
JLab.

Gas Length (cm) Thickness (atoms/cm2) Temperature (K) Polarized
HERMES 3He 40 6×1015 15 yes
BLAST H2/D2 60 7×1013 100 yes

OLYMPUS H2 27 3×1015 25 no
VEPP-3 H2 40 ≈1015 - no

Dark Light H2 25 ≈1019 25 no
This proposal H2 4 ≈1018 25 no

In this experiment we propose to use a windowless cryo-cooled hydrogen gas flow target of
thickness t ∼ 1×1018 hydrogen atoms/cm2 at a beam current of 10 nA. The choice of such a target
is driven by several experimental considerations. Since we propose to make the measurements at
very low Q2, the scattered electrons in ep elastic scatterings will be detected at very forward angles
(as low as∼ 0.5◦) and thus very close to the beam line. As a consequence, in order to minimize the
overall background in the experiment, a windowless target-cell design is the best option. Indeed, in
the recent precision measurements of elastic ep scattering cross sections from MAMI at Mainz [7],
the primary source of background was the elastic and quasielastic scattering off the nuclei in the
walls of the closed-cell target. Furthermore, to reach such a high target density while keeping a
manageable mass flow rate, the cooling of the hydrogen gas becomes mandatory.
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The windowless cryo-cooled hydrogen gas flow target consists of a T-shaped cylindrical cell
with an inlet and two outlets pressurized to a pressure p1 at a temperature T1 by a constant inlet
feed. Figure 1 shows the principles of the windowless target: the gas flows out into the beam pipe
vacuum through the open-ended target cell, i.e., two small conductance tubes (outlets) of half-
length L/2 and diameter D concentric to the beam axis upstream and downstream of the cell. The
density profile along the target length which is approximately triangular in shape is also shown in
Fig. 1. In order to reduce a potential misalignment of the target cell induced by the vacuum in the
target chamber and for a better position stability, three 25 µm diameter Tungsten wires oriented at
120◦ from each other are connected to each of the outlets of the cell (see the top right picture in
Fig. 4).
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Figure 1: Schematic showing the principles of the windowless gas flow target (top) and the trian-
gular density profile along the target length (bottom).

The mass flow rate, Q, of a gas through an outflow tube expressed in terms of volume flow
normalized to a temperature T0 times the gas pressure is:

Q =
π

4
D Re µ R

T0

M
, (1)

where R is the universal gas constant, Re is the Reynolds number, µ is the dynamic viscosity of
the gas. Thus, for a given Q and µ, the Reynolds number and Mach number η1 can be determined
from which, for a given cell temperature T1 , the cell pressure p1 can be calculated. The resulting
target thickness t = ρL, where ρ is the particle density and L is the target length, is

t =
NA

Vmol

L
p1

736 Torr

273 ◦K

T1

= 1.00× 1019 L

cm

p1

Torr

◦K

T1

, (2)

where NA is Avogadro constant and Vmol is the molar volume. The specific hydrogen target pro-
posed for the proton charge radius experiment is a thin-walled (30 µm thick) Kapton tube with the
following dimensions and parameters:

L = 4 cm; D = 4 mm; ρ0 = 2.5× 1017 H2/cm3 (initial density at target center.) (3)
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With these parameters one finds

η1 ≈ 0.3; Re ≈ 207; p1 ≈ 6.8 Torr (at 273◦K). (4)

The total particle flux through both ends of the target cell is ϕ = ρ0C ≈ 2.2× 1020 H2/s for a mass
flow rate of Q ≈ 6.3 Torr-l/s at T1 = 25◦K. The gas flow remains laminar (Re≤1200) up to mass
flow of Q = 150 Torr-l/s. Over an average length of about 1.5 cm for a triangular shaped density
profile along the target length, a mass flow rate of Q ≈ 6.3 Torr-l/s can produce the required
thickness of 1018 hydrogen atoms/cm2.

3.1 Target cell
The target cell will consist of a 4 cm long, 8 mm diameter and 30 µm thick Kapton straw tube with
two 10 µm thick Kapton end-caps having central holes of 4 mm diameter along the incident beam
axis. A 6 mm inner-diameter 75 µm-thick Kapton vertical tube will be glued to the central hole
in the horizontal Kapton straw tube forming a T-shaped target cell, as shown in Fig 2. The glue
joints will be reinforced with thin wedge-shaped rings of Rohacell-31 for increased strength and
stability. The free end of the vertical part of the T-shaped target cell will be attached to the outlet
of the cryo-cooler using a compression type fitting. The cell will be anchored to the primary target
vacuum chamber using 25 µm tungsten wires placed at 120◦ with each other around the tube. This
cell design will ensure a more uniform distribution of the hydrogen gas compared to the triangular
profile shown in Fig. 1. The larger diameter of the cell compared to the entrance and exit apertures
will ensure reduced backgrounds from the beam halo at the cost of slightly reduced effective target
thickness.

75   m Kapton Gas Inlet Tube

4 m
m

µ30   m Kapton Tgt Cell

µ10   m Kapton Window

40 mm

6 mm

µ

8 m
m

Rohacell−31 enforced glue joints

20 m
m

Figure 2: Schematic of the target cell design.

3.2 Target cooling system
The inlet hydrogen gas will be cooled by a custom SHI CP204 10K cryo-cooler from Janis Re-
search Company. A copper tube will be wrapped around the two cooling stages of the refrigerator.
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One end of this tube will connect at room temperature to the gas feed through and the other end
will be connected to the target cell. Temperature sensors and heaters will be connected to each
cooling stage and the temperature will be monitored by a LakeShore model 336 temperature con-
troller. This setup will greatly simplify the design of the target cell by not requiring an independent
cooling of the target cell itself.

3.3 Target pumping system
A mass flow rate of Q ≈ 6.3 Torr-l/s has a major demand on the overall pumping capacity of the
system in order to maintain the original vacuum pressure p0 ≈ 5×10−6 Torr of the beam line. This
can be achieved by a two-stage differential pumping system. Conductance limits will be installed
between stages in order to improve the overall pumping efficiency. In the first stage two Pfeiffer
HiPace 3400 MC turbomolecular pumps with a pumping capacity of≈ 2950 l/s for H2 each will be
directly connected to the target chamber in the transverse direction with respect to the beam. The
second stage consists of one Pfeiffer HiPace 1500 turbomolecular pump with a pumping speed of
≈ 1150 l/s for H2 upstream and downstream of the target connected to secondary chambers. All
of these four pumps will be backed up with four Pfeiffer HiPace 60P turbomolecular pumps and
four Varian TriScroll 300 roughing pumps. With the two large HiPace 3400 MC connected to the
interaction chamber, one can reach a background pressure of ≈ 5× 10−3 Torr. With a diameter of
1.5 cm for the circular aperture in the baffles between the two pumping stages, the pressure in the
second stage will be ≈ 6 × 10−6 Torr. The pressure will be read out with two ion gauges in the
target chamber and the second pumping stage upstream of the target. A schematic of the target and
pumping system setup is shown in Fig. 3. The whole system without the backing pumps is shown
in Fig. 4.

Target Chamber 

HiPace 60 P 

Varian TriScroll 300 

SHI- CH 204 
H2 cryocooler 

H2 source 

 e- Beam 

HiPace 1500 

H2 @ 25K 

2950 L/s 1150 L/s 2950 L/s 

HiPace 3400 MC 

Stage I: 5 10-3 torr 

Stage II: 6 10-6 torr 

1.5 cm 

I 

II II 

1150 L/s 

Figure 3: Schematic of the target and pumping system setup (not to scale).

The various technical parameters of the proposed target are summarized in Table 2.
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Figure 4: Global view of the target and pumping system installation.

Table 2: Parameters of the cryo-cooled windowless hydrogen gas flow target

Target length 4 cm
Target diameter 4 mm
Target cell material Kapton 30 µm thick
Target temperature 25 K
Target thickness 1×1018 atoms/cm2

Target central density 2.5×1017 H2/cm3

Gas mass-flow rate 6.3 Torr·l·s−1

Pressure: beamline 5×10−6 Torr
Pressure: target chamber 5×10−3 Torr
Pressure: 2nd stage chamber 6.10−6 Torr

3.4 Target gas handling system
The gas handling system for the windowless hydrogen target is shown in Fig. 5. The beamline and
target chamber parts of the vacuum system are discussed in Section 3.3. The remotely controllable
gas handling system will allow the injection of hydrogen gas, at a known constant rate, into the
cryo-cooler followed by the target cell. The hydrogen gas delivered from standard high-pressure
gas cylinders will enter the gas manifold via a regulator and remotely controlled valve, the regula-
tors will be set to approximately 0.5 bar. The hydrogen gas will be injected into the target cell via
a mass flow-meter, operating at about 0.5 bar, and a thermovalve (temperature controlled needle
valve).

The pressure at various points of the manifold including the entrance of the cryo-cooler and the
target cell will be measured with total pressure baratron gauges. Other valves and lines shown in
Fig. 5 will permit pumping the gas out of the manifold and the target cell via a small turbomolecular
pump (30 l/s) system. All valves will be controlled by a programmable interlock system. The
residual gas exiting from the target cell will not be recirculated back into the gas handling system
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Figure 5: Schematic of the gas handling system.

but it will be vented out via dedicated exhaust lines installed in the experimental hall. The total
volume of hydrogen gas that will be required for the entire running period of the experiment (15
days) is about 9.6 m3 (equivalent to about two standard high-pressure gas cylinders).

3.5 Target vacuum chambers
The primary target vacuum chamber will be constructed from a custom 4-way Conflat flanged (CF)
reducing cross with two 2-inch ports in the direction of the beam and two 16-inch ports transverse
to the beam (horizontal). It will have two viewing ports inclined at 30◦ to the vertical and a gas
inlet port on the top side. The bottom side of the chamber will have four height adjustable legs for
support and alignment. The two secondary chambers will be constructed from custom 3-way CF
crosses or cubes with two 2-inch ports and one 12-inch port.

3.6 Beamline integration of the target
The target vacuum chamber will be interfaced to the four vacuum pumps and the Hall-B beamline
via CF flanged, edge-welded stainless steel bellows. The two bellows in the beam direction will
have conductance limiting baffles made from Kapton foils with a 1.5 cm diameter circular aperture.
The complete target system will be integrated into the Hall-B beamline via stainless steel bellows,
these bellows will also have conductance limiting baffles made from Kapton foils with a 1.5 cm
diameter circular aperture. The target chamber and vacuum pumps will be supported by beam-line
girders and additional support stands, as shown in Fig. 6. The target vacuum chamber will be built
with four adjustable legs for alignment. The height of these legs will be adjustable via custom built
100 µm pitch screws. Survey monuments will be mounted at appropriate locations to help align
the system before and after pump down. Two vacuum view-ports with graduated cross-hairs are
also included in the target vacuum chamber to monitor the target cell alignment. The complete
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target system will have a footprint of 1.6× 1.4 m2 and will easily fit in the 3 m2 space available in
the Hall-B beamline.

Cryo-cooler

viewportviewport

bellows bellows

target
 cell

PS magnet PS vacuum
box

New vacuum box

Veto
counter

HyCal1500 l/s
Turbo pump

1500 l/s
Turbo pump

Target
chamber
& alignment system
& two 3000 l/s
Turbo pumps

Hydrogen
     gas

1.0 m 0.5 m 3.5 m

bellows bellows

beam

1.6 m

Side View

Cryo-cooler

3000 l/s
Turbo pump3000 l/s

Turbo pump

Hydrogen 
gas

1.4 m

Front View

Figure 6: Schematic of the complete installation (along the beamline and front-view) of the target.
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4 Beam halo studies in Hall-B
Recent measurements of the transverse beam profile in Hall B was performed with sufficient dy-
namic range to provide a mechanism for determining the acceptability of the delivered beam such
that the ratio of beam signal to background from non-target interactions is at the level of ∼ 107

level.
The beam profile was measured by correlating a wire scanner position with count rates in a

pair of photomultiplier tubes (PMTs) located downstream of the wire scanner. To observe and
measure the beam width with greater sensitivity for a large dynamic range the integrating CLAS
wire scanner was used. The wire configuration and support frame for the integrating wire scanner
are shown in Fig. 7. The wire configuration consists of 25 µm diameterX and Y wires, 1 mm
diameter X and Y wires, and a 1 mm×10 mm X plate. All wires are made out of Fe and the plate
is stainless steel. This wire scanner is 5 m upstream of the PMT pair.

Figure 7: Mechanical schematic of the wire/plate support structure. The thin wire is 25 µm in
diameter. The thick wire is 1 mm in diameter. The plate is 1 mm×10 mm. The wire frame is
moved into the beam along a 45◦ axis with respect to the horizontal axis.

Beam profile scans were performed with a 5.5 GeV electron beam during the current running
experiment in Hall-B. The electron beam was specially well tuned to do studies of the beam halo
for the proton charge radius measurement. Several scan were taken with different beam intensities
and motor speeds for the wire scanner.

The 25 µm wires are used to scan the X and Y core profiles of the beam while the 1 mm wires
are used to scan the halo parts on either side of the beam’s core (the PMTs get saturated with the
high count rates from the thick 1 mm wires in the peak regions). Figures 8 and 9 show the X and
Y beam profiles obtained with a beam intensity of 1 nA and a motor speed of 0.07 mm/s.

Offline analysis was performed on the raw data in order to combine the 25 µm wire data with
the 1 mm wire. The technique used is the same as given in [8]. The beam size (<0.1 mm) is small
compared to the 1 mm wire diameter. Therefore, this data must be differentiated before they can
be combined with the 25 µm wire data with an appropriate scale factor.

Figure 10 shows the peak signal from the 25 µm wire data scaled by 2000 and the differentiated
data from the 1 mm wire.

Preliminary results from the recent beam profile measurements shown in Fig. 10 look promis-
ing for this proposed experiment and further analysis is ongoing.
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Figure 8: The X (left peak) and Y (right peak) beam profiles for a 1 nA beam intensity obtained
by scanning the 25 µm wires across the beam.

Figure 9: The X (left peak) and Y (right peak) beam profiles for a 1 nA beam intensity obtained
by scanning the 1 mm wires across the beam.
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Figure 10: The X beam profile combining the 25 µm (red points) and the 1 mm (blue points) wire
data. The count rate is normalized to the incident beam current.
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5 Radiative corrections extended to Q2 of 10−4 GeV2

5.1 Radiative corrections to ep elastic scattering beyond the URA
As stated in the original proposal [9] we used the codes MASCARAD [10] to calculate the ra-
diative corrections and ELRADGEN [11] to generate radiative events for the full Monte Carlo
simulation of the experiment. Both codes use the ultra relativistic approximation (URA) me�Q2.
We performed a new calculation of these corrections beyond the URA following the formalism
developed in [12] and updated both codes accordingly. Different contributions to the cross section
were recalculated by including the electron mass where it has been neglected. The ep elastic cross
section is given by:

σ = σ0(1 + δV R + δvac − δinf )e
δinf + σF , (5)

with σ0 being the Born cross section, δV R and δvac the corrections coming from soft photon ra-
diation and effect of vacuum polarization, respectively. The term δinf accounts for multi-photon
emission when Q2 → 0. It can be chosen arbitrarily and was set to the same expression as in the
original code. Details about this exponentiation procedure can be found in [13]. σF is the infrared
free correction from the hard photon emission (bremsstrahlung). Expressions for the different
corrections are given in Appendix A.

Figure 11: The percent change between the cross section calculated beyond the URA and that in
the URA.

Figure 11 shows the change in percent between the cross section σ using the URA and that
obtained beyond the URA. It is seen that the change is at most 0.2% for the lowest Q2 value of
our proposed kinematics and of course decreases when Q2 value increases due to the leading order
term ln

(
Q2

m2

)
. This also shows the good accuracy of the URA. It is important to point out that the

approximation no longer holds well for Q2 ≈ 10−5 GeV2 since the change reaches few percents.
Figure 12 shows the ep radiative corrections for Ebeam=1.1 GeV (bottom panel) and Ebeam=2.2
GeV (top panel) as a function of the inelasticity v = 2M(E − E ′) − Q2 (missing mass) for
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different values of Q2. The red box in the figure shows the range of v spanned by the kinematic
settings in the experiment.

Figure 12: ep radiative corrections at 1.1 GeV (bottom panel) and at 2.2 GeV (top panel) as a
function of the inelasticity v.

Figure 13 shows the ep radiative corrections over the full kinematical range of both beam
energy settings obtained using the modified code. Values of v = 0.04 GeV2 and 0.1 GeV2, cor-
responding to the central value of the v range in Fig. 12, are for Ebeam=1.1 GeV and Ebeam=2.2
GeV, respectively. These values will need to be determined experimentally. However, we see that
the radiative corrections depend only weakly (few percent level) on this value in the ranges of
interest. A correction of 9% ≤ δ ≤ 12% at Ebeam=1.1 GeV was found and at Ebeam=2.2 GeV,
10% ≤ δ ≤ 13%.

5.2 Radiative corrections to Møller scattering
The Møller radiative corrections (events) were calculated (generated) using the most advanced
codes MERA [14] and MERADGEN [15]. These programs have been well tested [16] and they
give stable results up to Q2 ≈ 10−7 GeV2. Figure 14 shows the Møller radiative corrections as a
function of Q2 for both incident beam energies. Corrections between 1% and 3% were found for
both energies.

The effect of radiative corrections on the scattered electron energy vs angle for ep elastic and
Møller scattering events are shown in Fig. 15, where elastic and Møller events with and without
radiative corrections were simulated for Ebeam = 1.1 GeV.
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Figure 13: ep radiative corrections at 1.1 GeV (2 · 10−4 ≤ Q2 ≤ 5 · 10−3 GeV2) and at 2.2 GeV
(7 · 10−4 ≤ Q2 ≤ 2 · 10−2 GeV2.

Figure 14: Møller radiative corrections at 1.1 GeV and at 2.2 GeV.
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Figure 15: The distribution of scattered energy (E ′) vs angle (θe) for ep elastic (blue) and
Møller events (red) simulated with and without radiative corrections are shown for θe > 1.0◦.
These distributions are for Ebeam = 1.1 GeV.
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6 Monte Carlo simulation of the experimental background
In order to study the interaction between the beam halo and the target, a Monte Carlo simulation
code based on GEANT was developed.

6.1 Geometry
The full geometry in the simulation includes the hydrogen gas flow target, the target cell and the
PbWO4 calorimeter.

i. The gas flow target was built by 10 slices of hydrogen gas with different densities which
linearly decreases from the center to the edge. The average thickness at the center of the
hydrogen target is 1.0×1018 H atoms/cm2.

ii. The simulated target cell geometry is identical to the one described in Section 3.1 including
the 20 mm long 75 µm thick Kapton gas inlet tube. The chemical formula for Kapton was
implemented into GEANT. The simulated PbWO4 calorimeter consists of 34×34 modules
of dimensions 2.05×2.05×18.0 cm3.

6.2 Physics processes
A standard GEANT electromagnetic event generator was used in the simulation code. It con-
sists of electromagnetic processes for photons, electrons, protons, pions, muons and other generic
ions. The electron-proton elastic, Møller scattering and bremsstrahlung process are included in this
event generator. In order to obtain a precise simulation result of the electron transport in a very low
density hydrogen gas, the GEANT multiple scattering process model was replaced by a single scat-
tering process model in this event generator [17]. Furthermore, some GEANT physics models of
nuclear reactions, such as electron-nuclear reaction, positron-nuclear reaction and photon-nuclear
reaction, were also implemented in the simulation.

6.3 Event generator for beam halo
In this experiment, the most important source of background is the beam halo target interaction.
The electron beam was simulated using a normal distribution with a σ = 80 µm, and the beam
halo was generated following a uniform distribution of width ±20 mm. The beam signal (peak)
to noise (beam halo) ratio was taken to be 107 which is similar to the result of the beam studies
described in section Section 4. Table 3 summarizes the target and beam parameters used in the
Monte Carlo simulation.

Table 3: Target and beam parameters for Monte Carlo simulation

Target thickness 1×1018 atoms/cm2

Beam intensity Ie=10 nA
Beam signal width σ=80 µm
Beam signal/halo ratio 107

Beam halo (flat) width ± 20 mm
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6.4 Simulation results
ep elastic events and background from the Kapton target cell and gas-inlet tube were generated in
the angular range 0.8◦ < θe < 3.8◦. Figures 16 and 17 show the energy E ′ of the scattered electron
versus the scattering angle θe at E0 = 1.1 GeV and 2.2 GeV, respectively.
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Figure 16: The energy vs. scattering angle distribution of ep elastic scattered electrons and back-
ground from the target cell and gas-inlet tube at E0 = 1.1 GeV.

The event selection criteria for comparing ep elastic to background events were:

(a) (scattered electron energy) > 0.3× (Beam energy);

(b) charged particles only (no photons);

(c) particles in angular range 0.8◦ < θe < 3.8◦.

Figures 18 and 19 show the angular distributions of the ep elastic and the background events
binned in 0.3◦ bins at E0 = 1.1 GeV and 2.2 GeV, respectively.

The ratio of background to ep elastic scattered electrons at the higher incident beam energy
setting at E0 = 2.2 GeV varies between 0.7% at θe = 1.0◦ to 1.9% at θe = 3.6◦. The same ratio at
E0 = 1.1 GeV is smaller by a factor ∼2. The average ratio of background to ep elastic is ∼1.2%
at E0 = 2.2 GeV and ∼0.5% at E0 = 1.1 GeV. More comprehensive GEANT simulations are
ongoing.

It is projected that with empty target running at regular intervals during the experiment, one
can safely account for the effects of any beam instability and contributions from the beam halo to
reach the proposed precision of 0.6% for the measurement of 〈rp〉.
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Figure 17: The energy vs. scattering angle distribution of ep elastic scattered electrons and back-
ground from the target cell and gas-inlet tube at E0 = 2.2 GeV.
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Figure 18: The angular distribution of ep elastic scattered electrons and background from the target
cell and gas-inlet tube at E0 = 1.1 GeV.
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Figure 19: The angular distribution of ep elastic scattered electrons and background from the target
cell and gas-inlet tube at E0 = 2.2 GeV.
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7 Simulation of the effect of radiative corrections on the
extraction of 〈rp〉

An event generator for ep elastic scattering was used to study the effect of radiation on the extrac-
tion of the charge radius from the simulated events. In the event generator we used the parametriza-
tion GE = 1− Q2

6
〈r2

p〉 in calculating the ep cross section. The radiative correction code described
in Sec. 5 was incorporated into the event generator. Just the geometrical acceptance was used as
the detector acceptance and Gaussian smearing was used to simulate the effect of detector resolu-
tion. Events were generated for electron beam energy of 1.1 and 2.2 GeV both with and without
radiative corrections. The cross section and then GE as a function of Q2 was extracted from the
simulated data. The resulting GE as a function of Q2 was fitted to a straight line, and the slope of
the line gives us the value of 〈rp〉. The results for events simulated with and without radiation are
shown in Fig. 20. The values of 〈rp〉 used in the simulation is compared to the values extracted by
analyzing the simulated data and the effect of the radiative corrections was found to be very small.

Figure 20: The extracted 〈rp〉 from simulated events with and without radiative corrections.
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8 Summary
The physics motivation of the proton charge radius remains very strong and urgent. Our proposed
experiment at Jefferson Lab will address this important and fundamental physics quantity in a
timely and unique way. We believe we have addressed all the technical issues raised by the PAC38
reports and we are confident to achieve the proposed accuracy. We have submitted to NSF a
MRI proposal to build the target for this experiment and the collaboration will be ready for this
experiment within a year that funds are in place for the construction of this target. This experiment,
with the requested 15 days of beam time, will have a direct impact on the “proton charge radius
crisis” currently developing in hadronic physics.
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Appendices
A Expressions for radiative corrections beyond the URA
The total cross section for ep elastic scattering is given by the expression:

dσ

dQ2
=

dσ0

dQ2
(1 + δV R + δvac − δinf )e

δinf + σF , (6)

with the various terms as:

The Born cross section:

dσ0

dQ2
=

2πα2

S2

∑
i

θi
BFi. (7)

The infrared-free sum of factorized part of soft photon emission and vertex correction:

δV R =
α

π

(
2
((

Q2 + 2m2
)
Lm − 1)

)
ln
(vmax

mM

)
+

1

2
(SLS + (S −Q2)L0

X) + Sφ

+

(
3

2
Q2 + 4m2

)
Lm − 2− Q2 + 2m2

√
λm

(
1

2
λmL2

m + 2Φ

(
2
√

λm

Q2 +
√

λm

)
− π2

4

))
(8)

with Φ being the dilogarithm (Spence) function.

The vacuum polarization contribution:

δvac =
∑

i=e,µ,τ

α

π

[
2

3
(Q2 + 2m2

i )L
i
m −

10

9
+

8m2
i

3Q2
(1− 2m2

i L
i
m)

]
(9)

Soft photon radiation contribution:

δinf =
α

π

(
ln

Q2

m2
− 1

)
ln

(
v2

max

S(S −Q2)

)
(10)

The infrared-free cross section of the bremsstrahlung process:

σF = − α3

2S2

∫ vmax

0

dv

∫ τmax

τmin

dτ

1 + τ

∫ 2π

0

dφ
∑
i,j

Rj−2θij
Fi

Q4
− 4FIRθB

i

F0
i(

1 +
Rτ

Q2

)2

(11)
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where:

S = 2EM

X = 2E ′M

Lm =
1√
λm

ln

√
λm + Q2

√
λm −Q2

λm = Q2(Q2 + 4m2Q2)

LS =
1√
λS

ln
S +

√
λS

S −
√

λS

L0
X =

1√
λ0

X

ln
S −Q2 +

√
λ0

X

S −Q2 −
√

λ0
X

λ0
X = (S −Q2)2 − 4m2M2

The θ functions in σF are given by:

θ1
B = Q2 − 2m2

θ2
B =

1

2M2

[
S(S −Q2)−M2Q2

]
θ11 = 4(Q2 − 2m2)FIR

θ12 = 4τFIR

θ13 = −4F − 2τ 2Fd

θ21 =
2

M2
(SX −M2Q2)FIR

θ22 =
1

2M2
(2m2(S + X)F2− + (S2 −X2)F1+ + 2(S −X − 2M2τ)FIR − τ(S + X)2Fd)

θ23 =
1

2M2
(4M2F + (4m2 + 2M2τ 2 − (S −X)τ)Fd − (S + X)F1+)

Fd =
F

u0w0

, F1+ =
F

w0

+
F

u0

F2± = Fm2

(
1

u0

+
1

u0

)
, F = 1/(2π

√
λQ)

λQ = (Q2 + v)2 + 4M2Q2

The propagators are given by:

w0 =
1

λQ

[
Q2(S + X) + τ(S(S −X) + 2M2Q2)− 2M

√
λz cos φk

]
u0 =

1

λQ

[
Q2(S + X) + τ(S(S −X)− 2M2Q2)− 2M

√
λz cos φk

]
with: λz = (τ − τmin)(τmax − τ)(SXQ2 −M2Q4 −m2λQ)
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Abstract
We propose to perform a high precision e − p elastic cross sections measurement at very low
four-momentum transfer squared, Q2, from 10−4 to 10−2 (GeV/c)2 range using a high resolution
calorimeter. The absolute value of the e−p cross sections will be controlled by a well known QED
process, the Møller scattering, which will be continuously measured in this experiment within
similar kinematics and the same experimental acceptances. The high precision differential cross
sections, measured for the first time in this low Q2 range, will allow a sub-percent and essentially
model independent extraction of the proton charge radius. With that, this experiment will have a
direct impact on the “proton charge radius crisis” currently developing in hadronic and atomic
physics. We propose to perform this experiment in Hall B at Jefferson Lab using the unique low-
intensity electron beam control capabilities of the hall and part of the PrimEx-II infrastructure.
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1 Introduction
The strong interaction, which is responsible for the nucleon-nucleon interaction (nuclear forces),
is one of the four fundamental forces in nature. Quantum chromodynamics (QCD), a theory with
quarks and gluons as the underlying degrees of freedom is the accepted theory of strong interaction.
QCD has two important features: asymptotic freedom and confinement. While the former refers
to the feature that the strong coupling constant becomes weaker and weaker as energies involved
become higher and higher or the corresponding distance scale becomes smaller and smaller, the
latter refers to the fact that quarks do not exist in isolation and they exist only as colorless hadrons:
mesons or baryons. While QCD has been extremely well tested at high energies by experiments
where perturbation calculations can be carried out, an analytical solution to the QCD Lagrangian in
the non-perturbative region is notoriously difficult and out of reach. As such our knowledge about
how QCD works in the confinement region where the strong coupling constant is strong is rather
poor. Nucleons, building blocks of atomic nuclei, which make up more than 99% of the visible
matter in the universe, is a natural and an effective laboratory to study QCD in the confinement
region. Hadron physics at low energies, particularly the structure of hadron (nucleon) has provided
much insight about how QCD works in the confinement region.

The structure of nucleons is a rich, exciting and vibrant area of research, which involves studies
of the ground state properties, their distributions as well as the excitation of the nucleons. Lep-
ton scattering, particularly electron scattering has been proved a powerful microscope in probing
the nucleon structure. It is a clean probe with the advantage of higher-order contributions being
suppressed. With the development in polarized beam, recoil polarimetry, and polarized target tech-
nologies, polarization experiments have provided more precise data on quantities ranging from
electromagnetic form factors of the nucleon [1, 2, 3] from elastic electron-nucleon scattering to
spin structure functions [4] probed in deep inelastic lepton-nucleon scattering.

2 Electric and magnetic form factors of the nucleon and radii
Among quantities describing the structure of the nucleon, the electromagnetic form factors are the
most fundamental quantities − they are sensitive to the distribution of charge and magnetization
within the nucleon. At low four-momentum transfer squared Q2, they are sensitive to the pion
cloud [5, 6, 7, 8, 9, 10], and provide tests of effective field theories of QCD based on chiral sym-
metry [11, 12]. Lattice QCD calculations continue to make advances in techniques [13, 14, 15]
and computing power, and tests against precise nucleon form factor data will be possible in the fu-
ture. Accurate measurements of nucleon electromagnetic form factors at low Q2 are also important
for the interpretation of parity-violation electron scattering experiments [16, 17], which probe the
strange quark contribution to the nucleon electromagnetic structure. In the limit of Q2 → 0, the
charge and magnetic radius of the nucleon can be determined from the slope of the corresponding
electric and magnetic form factor. Precise information about the proton charge radius is particu-
larly important because it is a crucial input to high precision tests of QED based on hydrogen Lamb
shift measurements. The standard Lamb shift measurement probes the 1057 MHz fine structure
transition between the 2S1/2 and 2P1/2 states in hydrogen. The hydrogen Lamb shift can be cal-
culated to high precision from QED using higher order corrections. The proton rms charge radius
is an important input in calculating the hadronic contribution to the hydrogen Lamb shift. The
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subject of the charge radius of the proton has received a lot of attention recently because a new
experiment reported [18] a much smaller value of the proton charge radius from a measurement
of Lamb shift in muonic hydrogen atoms than the CODATA value [19] extracted from Lamb shift
measurements of hydrogen atoms. The new experiment from muonic hydrogen Lamb shift has an
unprecedented precision of 0.1%.

The experimental situation becomes more interesting as the latest value of the charge radius
of the proton determined from an electron scattering experiment [20] is in agreement with the
CODATA value [19]. The experiment [20] took place at the Mainz Microtron MAMI in which
about 1400 cross sections from electron-proton elastic scattering were measured with negative
four-momentum transfer squared, Q2 values up to 1 (GeV/c)2 with statistical uncertainties below
0.2%. The charge and magnetic radii of the proton were determined from this experiment from the
extracted electric and magnetic form factors by fitting the cross section data to a variety of form
factor models. They are:√

〈r2
E〉 = 0.879(5)stat.(4)syst.(2)model(4)group fm

and √
〈r2

M〉 = 0.777(13)stat.(9)syst.(5)model(2)group fm.

Figure 1 shows the results of the spline model for GE and GM and their ratio in a Q2 region of 0 to
1.0 (GeV)2 together with previous measurements and fits. Details about previous data and fits, as
well as about other fits of the latest MAMI cross section data can be found in [20]. More recently,
Zhan et al. [21] carried out a recoil polarization experiment in which the proton electric to magnetic
form factor ratio was reported down to a Q2 value of 0.3 (GeV/c)2. These results show a different
Q2 dependence in the form factor ratio from that of the BLAST results [22] in a similar Q2 range,
in which a polarized internal hydrogen target was employed. Further experimental investigations
are necessary to understand this difference. Zhan et al. [21] also reported an updated global fit of
the form factors including their new data as well as other recent recoil polarization data [23, 24, 25]
following the procedure of [26]. To extract the proton radii, they performed a fit by including data
only up to Q2 =0.5 (GeV/c)2 and the values they obtained are:√

〈r2
E〉 = 0.875(5)± 0.008exp ± 0.006fit fm

and √
〈r2

M〉 = 0.867(13)± 0.009exp ± 0.018fit fm.

Figure 2 shows a compilation of recent determination of the proton charge radius from hydro-
gen Lamb shift measurements [19], muonic hydrogen Lamb shift measurement [18], recent Mainz
cross section measurement [20], and global analyses of electron scattering data [21, 27]. This high-
lights the large discrepancy between the result from the muonic hydrogen lamb shift measurement
and those from all other measurements. The result from the muonic hydrogen Lamb shift is the
most precise measurement to date and this large discrepancy needs a resolution by more theoretical
investigations and new measurements.
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Figure 1: From [20]: The form factors GE and GM normalized to the standard dipole and GE/GM

as a function of Q2. Black line: best fit to the data, blue area: statistical 68% pointwise confidence
band, light blue area: experimental systematic error, green outer band: variation of the Coulomb
correction by±50%. The different data points depict previous measurements, for Refs. see [6, 26];
we added the data points of [28, 29, 30]. Dashed lines are previous fits to the old data in [6, 26].
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Zhan et al.

Figure 2: A compilation of recent measurements and analyses of proton rms charge radius from
Zhan et al. [21]. Here “Zhan et al.” refers to the result from a global fit in [21].

3 Physics motivation

3.1 Proton charge radius from unpolarized e− p elastic scattering
The elastic electron-nucleon scattering has proven to be a very useful tool for probing the structure
of nucleons. The squared momentum transfer Q2 carried by the exchanged virtual photon in elastic
electron-proton (ep) scattering is defined in terms of the four-momenta of the incident and scattered
electron; k and k′, respectively; by Q2 = −(k − k′)2. By varying Q2, the spatial distributions of
charge and current in the proton can be mapped and these charge and current distributions are
related to the proton electric and magnetic Sachs form factors Gp

E and Gp
M .

In the low Q2 region, below the two-pion production threshold; i.e., Q2 < t0; t0 = (2mπ)2 < 2
fm−2; the energy transfer in the scattering process is negligible and the form factors can be taken
as the Fourier transforms of the charge and current radial distributions ρchg(r) and ρcur(r).

The elastic electron-proton scattering can be described theoretically using the one-photon ex-
change approximation. In this model the cross section is written as:

dσ

dΩ
(E0, θ) = σ

NS

(
A(Q2) + B(Q2) tan2 θ

2

)
, (1)

where σ
NS

is the differential cross section for the elastic scattering from a point-like and spinless
particle at incident energy E0 and scattering angle θ. The two structure functions A(Q2) and B(Q2)
are related to Gp

E and Gp
M by:

A(Q2) = [Gp
E

2(Q2) + τGp
M

2(Q2)]/(1 + τ) , (2)
B(Q2) = 2τGp

M
2(Q2) , (3)

with τ = Q2/(4M2
p ), where Mp is the proton mass.

4



Putting Eqs. 2 and 3 back into Eq. 1 we get the celebrated Rosenbluth formula [31]:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

(
E ′

E

)
1

1 + τ

(
Gp

E
2(Q2) +

τ

ε
Gp

M
2(Q2)

)
, (4)

with the virtual photon longitudinal polarization parameter:

ε =

[
1 + 2(1 + τ) tan2 θ

2

]−1

(5)

and the Mott structureless cross section:(
dσ

dΩ

)
Mott

=
α2
[
1− β2 sin2 θ

2

]
4k2 sin4 θ

2

, (6)

where k2 is the momentum of the incident electron.
In the case of small angles and very low Q2 the contribution from the magnetic form factor,

Gp
M , to the scattering process is suppressed and a precise separation of the two form factors using

the Rosenbluth method [31] is no longer effective. On the other hand, at very low Q2 values (∼
10−4) (GeV/c)2, the uncertainty in extracting the electric form factor by neglecting the magnetic
contribution from differential cross section measurement is significantly reduced, though precise
measurements of differential cross sections at such low values of Q2 are challenging.

At low Q2, the electric form factor of the proton can be expanded as:

Gp
E(Q2) = 1− Q2

6
〈r2〉+

Q4

120
〈r4〉+ ... . (7)

Therefore, the root-mean-square (rms) charge radius of the proton is the slope of this expansion at
Q2 → 0:

〈r2〉
6

= − dGp
E(Q2)

dQ2

∣∣∣∣∣
Q2=0

, (8)

with the boundary condition Gp
E(Q2 = 0) = 1. Therefore, to adequately determine the rms radius

of the proton, high precision data of the proton form factors in the Q2 → 0 region are needed.
The two most precise and widely cited determinations of the proton charge radius in the lit-

erature before 2000 give rp = 0.805(11) fm [32] and rp = 0.862(12) fm [33], respectively, dif-
fering from each other by more than 7%. While precision hydrogen Lamb shift measurements
[34, 35, 36, 37, 38] are in better agreement with the QED predictions using the smaller value of the
proton charge radius without the two-loop binding effects, they are consistent with the larger value
of the proton charge radius when two-loop binding effects are included in the QED calculations.
We show that this discrepancy is dependent upon the data analysis and that the data are in fact
consistent albeit with larger error bars.

Simon et al. [33] determined the proton charge radius by measuring the absolute differential
cross sections of ep elastic scattering at Q2 values from 0.14 fm−2 to 1.4 fm−2. To extract Gp

E

from the cross section measurement, they assumed the relation Gp
M/µp = Gp

E . Their best fitted
value, which also incorporated data from Orsay [39] and Saskatoon [29], gave the rms charge
radius of the proton as 〈r2〉1/2

= 0.862 ± 0.12 fm. In their analysis Gp
E was assumed to have a
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polynomial Q2 dependence, so that Gp
E = a0 +a1Q

2 +a2Q
4, neglecting terms higher than Q4. The

effect of keeping the Q6 term in the fit on the fitted value of 〈r2〉1/2 was studied and found to be
negligible. The other widely cited value for the proton rms charge radius before 2000 is from Hand
et al. [32], which contains a compilation of data from different experiments. In their analysis, they
also assumed that µpG

p
E = Gp

M and fitted Gp
E to the form Gp

E = 1 − 1/6 〈r2〉 Q2 + AQ4,
using data for Q2 up to 3 fm−2 to determine the parameter A. From this fit, they determined the
rms charge radius of the proton to be 〈r2〉1/2

= 0.805± 0.011 fm.
In order to explore these discrepancies further, we re-fitted the Gp

E data from the experiments
of Simon et al. and those compiled by Hand et al.. We concentrated on the data at the lowest
values of Q2 (Q2 < 2.0 fm−2) in order to maintain a consistent range of data between these
two analyses. Furthermore, the model-independent determination of the proton charge radius is
especially sensitive to the data in the Q2 → 0 region, according to Eq. 8. In our analysis of the
data from Hand et al. [32], in which we restricted the fit to include only those data with Q2 ≤ 2.0

fm−2, we obtained a proton charge radius, 〈r2〉1/2
= 0.868 ± 0.105 fm. When fitting the data

compiled by Hand et al. up to 3.0 fm−2, we obtained 〈r2〉1/2
= 0.809 ± 0.060 fm, essentially in

agreement with Hand’s published result of 0.805 fm. In fitting these data, the following functional
form was used: Gp

E = a0 + a1Q
2 + a2Q

4. Fitting the data from Mainz by Simon et al. [33] in the
same way, we obtained 〈r2〉1/2

= 0.878±0.024 fm, within errors of their published result of 0.862
fm. In addition to these two sets of data, we also re-analyzed the data from Höhler et al. [40] and
we obtain 〈r2〉1/2

= 0.863±0.057 fm, again within the consistent assumption concerning the ratio
of the electric and magnetic form factors. Thus, these three determinations of the proton charge
radius are consistent with one another within the errors. By restricting the data sets to the most
sensitive Q2 region, we were able to obtain consistent results from all three data sets at the expense
of increased uncertainties in the extracted values of 〈r2〉1/2.

The form-factor analysis of electron-proton scattering is based on one-photon exchange dia-
gram. The validity of it is based on the assumptions that higher-order corrections are negligible.
However, for any precision measurement as what is proposed here, it is important to address the
higher-order electromagnetic corrections. Drell and Fubini [41] calculated the higher-order cor-
rections and showed that the form factor analysis of electron-proton scattering is accurate to ∼ 1

137

for all angles and energies into the GeV range. They have used dispersion theory methods to for-
mulate the electron-proton scattering amplitude in a manner which allows them to evaluate the e4

contribution due to Compton scattering of the virtual intermediate photons by the proton.
Greenhut [42] calculated the two-photon exchange contribution to electron-proton scattering in

second Born approximation using potentials representing the charge and magnetic moment distri-
butions of the proton. The resonance contribution was calculated using a fit of the proton Compton
scattering data. The numerical results showed that up to order α3, the two-photon exchange con-
tribution is less than 0.8% at the kinematics (0.005 to 0.088 (GeV/c)2) of the proposed BLAST
experiment [48] in the case of the unexcited intermediate proton states and the resonance contribu-
tion at the kinematics of this experiment is negligible. Furthermore, one can follow the formalism
derived by Greenhut to apply this correction to each Q2 bin and the relative error from bin to bin
due to this correction is negligible. For the proposed kinematics of this experiment, the effect is
negligible.

Rosenfelder [43] applied the Coulomb correction to elastic electron-proton scattering and showed
that the analysis of the electron scattering data including Coulomb correction lowers the χ2 of the
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fit and increase the proton radius by about (0.008 - 0.013) fm depending on the fit strategy. The
Coulomb correction is calculated using a standard partial wave program which solves the Dirac
equation in the electrostatic potential of the proton. The coulomb corrections are found to be small
but positive, ranging from 0.4 - 0.9 %. These results are in good agreement with those from Green-
hut, though in the latter case both the Coulomb and magnetic corrections have been taken into
account using the second Born approximation.

A more recent extraction of the proton charge radius from a systematic analysis of the world
unpolarized ep elastic scattering cross section data was carried out by Sick [27] in which Coulomb
distortion correction and an electric form factor parametrization that allows for proper handling
of higher moments have been adopted. The extracted value for the proton rms charge radius is
0.895±0.018 fm. Most recently, Hill and Paz [44] carried out a model independent analysis of the
electron scattering data using constraints from analyticity and obtained a proton rms charge radius
of

rp = 0.870± 0.023± 0.012 fm

using just proton scattering data.

3.2 Double-polarization e− p elastic scattering and proton charge radius
Interference between Gp

E and Gp
M provides an easily measurable asymmetry when using a beam

of polarized electrons in concert with a polarized proton target or a recoil proton polarimeter. A
combination of a double-spin asymmetry measurement and unpolarized differential cross section
measurement in ep elastic scattering in principle allows for a good separation of the two form
factors.

In the one-photon-exchange Born approximation, the elastic scattering of longitudinally polar-
ized electrons from unpolarized protons results in a transfer of polarization to the recoil proton with
only two non-zero components: Pt perpendicular to, and Pl parallel to the proton momentum in the
scattering plane [45]. The form factor ratio can be determined from a simultaneous measurement
of the two recoil polarization components in the scattering plane:

Gp
E

Gp
M

= −Pt

Pl

E + E ′

2M
tan

(
θ

2

)
, (9)

where E and E ′ are the incident and scattered electron energy, respectively, and θ is the electron
scattering angle. Most recently, this technique has been used in a number of experiments at Jeffer-
son Lab [21, 23, 24, 25], and also in an upcoming experiment [46] from a Q2 value of 0.7 down to
0.25 (GeV/c)2.

In the one-photon exchange approximation, the elastic scattering asymmetry of longitudi-
nally polarized electrons from polarized protons with respect to the electron beam helicity has
the form [47]

Aphys =
vz cos θ∗Gp

M
2 + vx sin θ∗ cos φ∗Gp

MGp
E

(τGp
M

2 + εGp
E

2) / [ε(1 + τ)]
, (10)

where θ∗ and φ∗ are the polar and azimuthal angles of the target polarization defined relative to the
three-momentum transfer vector of the virtual photon and τ = Q2/(4M2

p ) with the proton mass
Mp. The longitudinal polarization of the virtual photon is denoted as ε = [1+2(1+τ) tan2(θe/2)]−1
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where θe is the electron scattering angle, and vz = −2τ tan(θe/2)
√

1/(1 + τ) + tan2(θe/2), vx =

−2 tan(θe/2)
√

τ/(1 + τ) are kinematic factors. The experimental asymmetry

Aexp = PbPt Aphys (11)

is reduced by the beam (Pb) and target (Pt) polarizations. A determination of the ratio Gp
E

Gp
M

, inde-
pendent of the knowledge of the beam and target polarization, can be precisely obtained by forming
the so-called super ratio [1]:

R =
A1

A2

=
2τvT ′ cos θ∗1G

p
M

2 − 2
√

2τ(1 + τ)vTL′ sin θ∗1 cos φ∗
1G

p
MGp

E

2τvT ′ cos θ∗2G
p
M

2 − 2
√

2τ(1 + τ)vTL′ sin θ∗2 cos φ∗
2G

p
MGp

E

, (12)

where A1 and A2 are elastic electron-proton scattering asymmetries measured at the same Q2 value,
but two different proton spin orientations relative to the corresponding three-momentum transfer
vector, i.e., (θ∗1, φ

∗
1) and (θ∗2, φ

∗
2), respectively.

For a detector configuration that is symmetric with respect to the incident electron momentum
direction, A1 and A2 can be measured simultaneously by forming two independent asymmetries
with respect to either the electron beam helicity or the target spin orientation in the beam-left
and beam-right sector of the detector system, respectively. The target spin direction would be
chosen to optimize the determination of the proton form factor ratio given the experimental running
conditions and the running time. This technique was pioneered in the BLAST experiment at MIT-
Bates [22], and a proposal based on this technique for a precision measurement of the proton charge
radius was conditionally approved [48] at Bates in late 1990s. This technique will also be used in
the upcoming experiment [46] from a Q2 value of 0.4 down to 0.015 (GeV/c)2 using a dynamically
polarized NH3 target [49, 50].

3.3 Proton charge radius from atomic measurements
As we mentioned previously, precision tests of QED calculations of hydrogen Lamb shift with
higher orders require precise information on the rms charge radius of the proton. However, the
current situation from electron scattering on the proton charge radius discussed previously has not
quite reached the level which can make a major impact on high precision test of QED. On the
other hand, the precision of hydrogen Lamb shift measurements has improved significantly in the
last two decades or so, particularly with the advancement of optical measurements [34, 51, 35, 36,
37, 38, 52]. As such, the rms charge radius of the proton can be extracted by the combination of
hydrogen Lamb shift measurements and state-of-the-art QED calculations [53]. The CODATA [19]
recommended value for the proton rms charge radius from hydrogen Lamb shift is

rp = 0.8768± 0.0069 fm.

This value is in good agreement from the values reported by Bernauer et al. [20], and Zhan et
al. [21]. For a review of hydrogen Lamb shift measurements, we refer readers to [54].

The sensitivity to the proton charge radius is further enhanced by measuring the Lamb shift of
muonic hydrogen atom due to the fact that moun is about a factor of 200 more massive compared
to electron. Such measurements, however, are very challenging and have taken a long time to
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succeed. Last year, a collaboration at PSI reported [18] the most precise value of the proton charge
radius from a measurement of muonic hydrogen Lamb shift. The reported value of the proton
charge radius is

rp = 0.84184± 0.00067 fm

which has a relative precision of better than 0.1%. However, this value is 5σ away from the
CODATA value determined from the hydrogen Lamb shift measurements. It is also much smaller
than most values reported from electron scattering experiments and analyses with the exception of
a dispersion analysis of electron scattering data by Belushkin et al. [55], in which a value in the
range of 0.822 to 0.852 fm has been obtained for the proton rms charge radius.

3.4 Summary
The PSI result caused a lot of excitement and also raised many questions. Is there a problem
with proton size? Is new physics discovered [56]? What effects are missing in state-of-the-arts
calculations [57, 58]? Are there additional corrections to the muonic Lamb shift due to the structure
of the proton [59, 60]? Are the higher moments of the charge distribution taken into account
correctly in the extraction of the proton rms charge radius [61, 62, 63, 64, 65, 66, 67]? However,
so far there is no resolution or reconciliation about the discrepancy between values of the proton
charge radius extracted between the electronic and muonic hydrogen Lamb shift measurements.

The current discrepancy in the values of the proton charge radius extracted from experiments
using three different techniques strongly suggests the importance and urgency to carry out a new
measurement which relies on a different technique. Here we propose to perform a new, magnetic-
spectrometer-free electron scattering experiment using a calorimeter with normalizing the ep cross
sections to that of the well known e−e− → e−e− Møller process.
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4 Proposed experiment
In this proposal we are suggesting to perform a new electron scattering experiment on hydrogen
(ep → ep) at small angles to address the current “proton charge radius crisis”. The suggested
experiment will be done with a calorimetry method as opposed to most of the previous ep exper-
iments using the traditional magnetic spectrometers. The proposed experimental apparatus will
include:

(1) a windowless gas flow hydrogen target;

(2) a package of detectors for the scattered electrons including a multi-channel high resolution
and high acceptance PbWO4 calorimeter located at 5-8 m downstream from the gas target
(see Sec. 5).

The suggested experimental design will allow detection of the scattered electrons to angles as
low as ∼ 0.5◦ level, never reached before by magnetic spectrometer measurements. Also, with
its high acceptance and azimuthally symmetric capabilities, the setup will simultaneously detect
multi-electron processes like the Møller scattering.

4.1 Major advantages of the proposed experiment
This experiment will have three major improvements over previous electron scattering experi-
ments:

(1) The ep cross sections will be normalized to the well known QED process - Møller scatter-
ing, which will be measured simultaneously during the experiment within the same detector
acceptance. This, arguably, will be a superior method to control the systematic uncertainties
in the ep → ep cross sections.

(2) The suggested non-magnetic and calorimetric experiment will have a good possibility to
reach the extreme forward angles for the first time in ep scattering experiments. The sug-
gested experimental setup will cover the very forward angles (∼ 0.5◦−4◦), which in turn will
allow to reach extremely low Q2 range (10−4 − 10−2) (GeV/c)2 for few GeV incident elec-
tron beams. The lowest Q2 range measured up to date is the recent Mainz experiment [20]
where the minimum value for Q2 reached is 3 · 10−3 (GeV/c)2. Including this very low
Q2 range is critically important since the rms charge radius of the proton is being extracted
as the slope of the measured Gp

E(Q2) at the Q2=0 point (see Eq. 8). We also understand that
in going to very small Q2 range, one has to take care of the uncertainties in the measured
cross sections and Q2, as well as still provide a reasonably large interval of Q2 to facilitate
the extraction of the slope from Gp

E vs. Q2 dependence.

In this proposed experiment we suggest to reach the highest precision in measuring the cross
sections by continuously measuring the Møller scattering process and using different en-
ergy values for the incident electron beam to cover a sufficient range in Q2 (10−4 − 10−2)
(GeV/c)2.

In order to achieve these objectives we propose to run at two different beam energies, which
will ensure coverage of a large enough range in Q2 and also provide significant overlap in
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the Q2 range for systematic studies. This will also help to control the systematics of the
radiative correction calculations.

(3) We propose to use a windowless gas flow target in this experiment. This will sufficiently
cut down the experimental background from the target windows which is typical for all
previous ep experiments. With this type of gas target the absolute majority of events in the
PbWO4 calorimeter will be produced by the two processes: ep → ep and e−e− → e−e−,
both of which are the direct interests in this proposed experiment.

The calorimeter proposed for this experiment (see Sec. 5.4), with high resolution PbWO4 crys-
tal detectors located in the beamline with a 4 × 4 cm2 hole in the central part, will allow a direct
and simultaneous detection of both ep → ep and e−e− → e−e− processes. The trigger in this
experiment (total energy deposited in calorimeter ≥ 20% of E0, as described in Sec. 5.6) will al-
low for the detection of the Møller events in both single-arm and double-arm modes. In the case
of double-arm mode, already two selection criteria, the co-planarity and elasticity in energy (de-
scribed in Sec. 6.2.2) will provide a good event selection in this very low background experiment.

The ep → ep elastic cross sections in this proposed experiment will be normalized to e−e− →
e−e− Møller cross sections, which can be calculated with sub-percent accuracy (∼ 0.5)% within
the QED framework, including the radiative corrections.

The experimental differential cross sections for ep → ep scattering are written as:(
dσ

dΩ

)
ep

(
Q2

i

)
=

Nyield
exp (ep → ep in θi ±∆θ)

N e−
beam ·NH

tgt · εep
geom (θi ±∆θ) · εep

det

. (13)

On the other hand, the differential cross sections for the Møller process, measured simultaneously
in this experiment, will have a similar dependence on the experimental quantities:(

dσ

dΩ

)
e−e−

=
Nyield

exp (e−e− → e−e−)

N e−
beam ·NH

tgt · εe−e−
geom · εe−e−

det

, (14)

where Nyield
exp (ep → ep in θi ±∆θ) is the number of elastically scattered ep → ep events inside

a particular azimuthally symmetric ring on PbWO4 with polar angles in (θi ± ∆θ) range which
defines the Q2

i ±∆Q2 for a fixed incident energy (see Fig. 3); Nyield
exp (e−e− → e−e−) is the same

quantity as for ep, defined in three different ways described below; N e−
beam is the number of beam

electrons that passed through the target with the number of H atoms/cm2 - NH
tgt, during the mea-

surement; εep
geom (θi ±∆θ) is the geometrical acceptance of the (θi ± ∆θ) ring for the ep → ep

reaction; εe−e−
geom is the same for the e−e− → e−e− process and it will be calculated in three different

ways depending on the accepted method for the Møller process, and it is described below; εep
det

and εe−e−
det are the detection efficiencies of the particular elements of the setup for the scattered

electrons.
The ratio of Eqs. 13 to 14 will relate the ep cross sections relative to the e−e− Møller cross

sections:

(
dσ

dΩ

)
ep

(
Q2

i

)
=

Nyield
exp (ep → ep in θi ±∆θ)

Nyield
exp (e−e− → e−e−)

·
εe−e−
geom

εep
geom

· εe−e−
det

εep
det

( dσ

dΩ

)
e−e−

. (15)
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Figure 3: The X−Y position distribution of a single Møller scattered electron in the calorimeter
at E0 = 1.1 GeV. The angular range of the detected electron is θ1 = 1.0◦ − 1.1◦ giving a Q2 range
of Q2 = (4.1± 0.4) · 10−4 (GeV/c)2.

Right away, the two major sources of systematic uncertainties, N e
beam and NH

tgt, in the above ratio
which dominated in the previous experiments are simply canceling out in this proposed experiment.

The remaining two sources of systematic uncertainties: the ratio of the geometrical uncertain-
ties

(
εe−e−
geom/εep

geom

)
and the detection efficiency

(
εe−e−
det /εep

det

)
will have a different impact on the

final systematic uncertainties depending on the selection method of the Møller events.

4.2 Møller event selection methods
We are planning to use three different approaches for the identification of the Møller events to
reduce systematics in precise determination of the Møller scattering process.

4.2.1 Single-arm Møller event selection method

The propsed experimental setup (see Sec. 5) is optimized in a way that both Møller scattered
electrons will be detected in the calorimeter for angles ≥ 0.7◦ (see Sec. 6.2.2. However, looking
at Eq. 15 for the case when one defines the Møller process inside the same angular (θi ±∆θ) ring
(see Fig. 3) with one of the scattered electrons detected (single-arm Møller method), then we get
εep
geom = εe−e−

geom and εep
det = εe−e−

det having in mind the different energy values of these electrons. With
that, Eq. 15 becomes:(

dσ

dΩ

)
ep

(
Q2

i

)
=

[
Nyield

exp (ep → ep in θi ±∆θ)

Nyield
exp (e−e− → e−e−)

](
dσ

dΩ

)
e−e−

(16)

and, therefore, allows for a determination of the ep scattering cross sections essentially without
systematic uncertainties related to the experimental apparatus.
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Since the e−e− → e−e− is a two-body reaction, the experimental scattering angle of one of
the electrons, together with the well known (∆E/E = 10−4)) incident beam energy will define
the kinematics of the process. With that, the measured energy in the calorimeter (Emeas) can be
used to select the events in the experiment. Figure 4 demostrates that a good resolution in the
reconstructed energy (Erec−Emeas) will give a high level of confidence that this selection criterion
alone will allow for an effective selection of events in this low-background experiment. Figure 5
also demonstrates the effective separation of Møller events from the ep elastic scattered events for
angles θe > 0.7◦ that is planned for this experiment.
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Figure 4: The resolution of the reconstructed and the measured energies (Erec−Emeas) for detecting
a single Møller scattered electron in the calorimeter at E0 = 1.1 GeV and θe > 0.7◦.

4.2.2 Coincident event selection method

As already mentioned above, the proposed experiment is optimized in a way that both electrons
from e−e− → e−e− will be detected in the calorimeter for angles θe > 0.7◦. We will also explore
the selection of Møller events in coincidence. As illsutrated in Fig. 6, this method, in addition to
the same Q2

i ring (θi ±∆θ), will introduce a second ring on the calorimeter for the detection of
the second Møller scattered electron. As a consequence, it may introduce different geometrical
acceptances and detection efficiencies for the particular Q2 which can be calculated by Monte
Carlo simulations and tested by the extracted Møller cross sections.

13



Scatt. elec. angle  θe (deg)

S
ca

tt.
 e

le
c.

 e
ne

rg
y 

E
e 

(G
eV

)

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5: The energy vs. scattering angle distribution of e−p elastic and one of the Møller scattered
electrons at E0 = 1.1 GeV.
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Figure 6: The X − Y position distribution of the the two Møller scattered electrons on the
PbWO4 calorimeter at a distance of 5 m from the target at an incident beam energy of 1.1 GeV.
The distribution of the second electron is shown as the outer ring θ2 when the first electron is in
the range θ1 = 0.7◦ − 0.8◦. The outside square box is the size of the PbWO4 calorimeter.
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4.2.3 Integrated Møller cross section method

In this case, we will normalize the ep cross sections to the Møller cross sections extracted from the
entire fiducial volume of the calorimeter for all Q2 values. With that, Eq. 15 becomes:(

dσ

dΩ

)
ep

(
Q2

i

)
=

[
Nyield

exp (ep, θi ±∆θ)

Nyield
exp (e−e−, on PbWO4)

]
εe−e−
geom (all PbWO4)

εep
geom(θi ±∆θ)

εe−e−
det (all PbWO4)

εep
det(θi ±∆θ)

·
(

dσ

dΩ

)
e−e−

,

(17)
with

(
dσ
dΩ

)
e−e−

integrated over the PbWO4 calorimeter acceptance.

4.3 Relation to other experiments
The other experiment that is related to this proposed experiment is the “Measurement of the Proton
Elastic Form Factor Ratio at Low Q2” (E08-007) [68] which is currently scheduled to run in Hall
A in January, 2012. In E08-007 the electric to magnetic form factor ratio, GE/GM , will be studied
in the range of Q2 = 0.015 − 0.7 (GeV/c)2 with sub-percent precision. The results of this ex-
periment will greatly improve the knowledge of the ratio in this Q2 range, which, in combination
with separate cross section data, will also allow significant improvements in the knowledge of the
individual form factors. However, in our proposed experiment the electric form factor, Gp

E , will be
measured directly in the very low Q2 range of 2 · 10−4 − 2 · 10−2 (GeV/c)2 which will allow a
definitive extraction of the proton charge radius with sub-percent precision.
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5 Experimental apparatus

5.1 Introduction
The proposed experiment plans to use an existing high resolution and high efficiency PbWO4 crys-
tal electromagnetic calorimeter together with a windowless gas flow hydrogen target to detect the
scattered electrons from ep elastic and Møller scatterings with high precision. A windowless target
cell has a definitive advantage over closed cell targets in minimizing one of the primary sources
of background compared to previous measurements of the same reactions. The scattered elec-
trons travel through a large area vacuum box with thin windows to minimize multiple scattering
and backgrounds. The vacuum box matches the geometrical acceptance of the calorimeter. The
PbWO4 calorimeter is preceded by a set of X−Y scintillator veto counters for minimizing neutral
particle backgrounds from the target.

The elements of the experimental apparatus along the beamline are as follows:

• windowless gas flow hydrogen target

• vacuum box with only one thin window at the calorimeter end

• X−Y veto counters

• high resolution PbWO4 crystal calorimeter

Figure 7 shows a schematic layout of the experimental setup.
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Figure 7: Schematic layout (not to scale) of the experimental apparatus to measure the proton
charge radius.

5.2 Electron beam
The electron beam parameters, such as energy, polarization, intensity and size, required for the pro-
ton charge radius measurement are all within the Hall B beam specifications, as shown in Table 1.

A critical component of this proposed experiment is a windowless gas flow hydrogen target
having a thickness of about ∼ 1× 1018 hydrogen atoms/cm2. With an incident beam current of 10
nA, this gives a luminosity of about L ≈ 6× 1028 cm−2 s−1.
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Table 1: CEBAF beam parameters in the proton charge radius measurement.

Experiment Energy Polarization Current Size (rms)
(GeV) (nA) (mm)

proton charge radius 1.1, 2.2 none 10 ∼0.08

5.3 Windowless gas flow target
In order to achieve the expected rates of Møller scattered electrons in this experiment (see Sec. 9)
with an incident electron beam current of 10 nA, a target thickness of t ∼ 1 × 1018 hydrogen
atoms/cm2 is required. We propose to generate the target thickness by flowing cold hydrogen gas
through a small diameter thin-walled cylindrical tube open at both ends. Such a windowless target
cell has the definitive advantage over closed cell targets in minimizing the overall background in the
experiment. As noted in the recent precision measurements of elastic ep scattering cross sections
from MAMI at Mainz [20], the primary source of background was the elastic and quasielastic
scattering off the nuclei in the walls of the closed-cell target.

The target cell envisaged for this proton charge radius measurement is based on the proposed
DarkLight [69] experiment at Jefferson Lab with the FEL beam. The gas flow target consists of a
horizontal cylindrical cell pressurized to a pressure p1 at a temperature T1 by a constant inlet feed.
The gas flows out into the beam pipe vacuum through two small conductance tubes of half-length
L/2 and diameter D concentric to the beam axis upstream and downstream of the cell. Since there
is no appreciable back pressure form the beam vacuum, the gas exits at near the speed of sound in
the absence of a special Laval nozzle at the tube exit. Similar gas flow targets are currently in use
for the OLYMPUS [70] experiment at DORIS/DESY and have been used for the HERMES [71]
experiment at HERA/DESY.

For low pressures (molecular flow) the conductance, C (l/s), of a tube of uniform circular cross
section with diameter D (cm), length L (cm) is given by [72]

C = 3.81
D3

L

√
T

M
(18)

where T is the temperature and M is the mass number of the gas.
The mass flow rate, Q, of a gas through an outflow tube expressed in terms of volume flow

normalized to a temperature T0 times the gas pressure is:

Q =
π

4
D Re µ R

T0

M
(19)

where R is the universal gas constant, Re is the Reynolds number, µ is the dynamic viscosity of
the gas. Thus, for a given Q and µ, the Reynolds number and Mach number η1 can be determined
from which, for a given cell temperature T1, the cell pressure p1 can be calculated. The resulting
target thickness t = ρL, where ρ is the particle density and L is the target length, is

t =
NA

Vmol

L
p1

736 Torr

273 ◦K

T1

= 1.00× 1019 L

cm

p1

Torr

◦K

T1

(20)
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The specific hydrogen target proposed for the proton charge radius experiment is a thin-walled
(30 µm thick) Kapton tube with the following dimensions and parameters:

L = 4 cm; D = 4 mm; ρ0 = 2.5× 1017 H2/cm
3 (initial density at target center).

With these parameters one finds

η1 ≈ 0.3; Re ≈ 207; p1 ≈ 6.8 Torr.

The total particle flux through both ends of the target cell is ϕ = ρ0C ≈ 2.2 × 1020 H2/s for
a mass flow rate of Q ≈ 6.3 Torr-l/s at T1 = 25 ◦K. The gas flow remains laminar (Re≤1200)
up to mass flow of Q = 150 Torr-l/s. Over an average length of about 1.5 cm for a triangular
shaped density profile along the target length, a flow rate of Q ≈ 6.3 Torr-l/s can produce the
required thickness of ∼ 1018 hydrogen atoms/cm2. A schematic of the principle of the proposed
windowless gas flow target is shown in Fig. 8 and the target parameters are listed in Table 2.

ρ
0

e−

L/2L/2

D

z

ρ(z)

L

Q

Q/2 Q/2

Figure 8: The principle of the windowless gas flow target. Hydrogen gas flows at a rate of Q Torr-
l/s into the cell and exits symmetrically along conductance tubes of length L/2 and inner diameter
D. The density profile along the target cell is approximately triangular.

Table 2: Windowless H2 gas flow target parameters for the proton charge radius measurement.

H thickness (atoms/cm2) t = 1018

Cell wall (Kapton) thickness (µm) 30
Cell diameter (cm) D = 0.4
Cell length (cm) L = 4.0
Inlet gas temperature (◦K) T = 25
Gas pressure at target center (Torr) P0 = 6.8
Mass flow rate (Torr-l/s) Q = 6.3

A three-stage differential pumping system on both the upstream and downstream ends of the
target cell will be required to pump away the residual gas and interface to the ≈ 5 × 10−6 Torr
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vacuum pressure of the beamline. This can be achieved with magnetically levitated turbo molecular
pumps with high pumping speeds (∼ 2800 l/s for H2) capable of approximately 102 reduction in
pressure at each of the three pumping stages.

5.4 High resolution forward calorimeter
The scattered electrons from e−p elastic and Møller scatterings in this precision experiment will be
detected with a high resolution and high efficiency electromagnetic calorimeter. In the past decade,
lead tungstate (PbWO4) has became a popular inorganic scintillator material for precision compact
electromagnetic calorimetry in high and medium energy physics experiments (CMS, ALICE at
the LHC) because of its fast decay time, high density and high radiation hardness. Recently,
the PrimEx Collaboration at Jefferson Lab has constructed a novel state-of-the-art multi-channel
electromagnetic hybrid (PbWO4-lead glass) calorimeter (HYCAL) [75] to perform a high precision
(1.5%) measurement of the neutral pion lifetime via the Primakoff effect.

The PbWO4 central insertion part of HYCAL will be used as the calorimeter for this experi-
ment. A single PbWO4 module is 2.05 × 2.05 cm2 in cross sectional area and 18.0 cm in length
(20X0). The calorimeter consists of 1152 modules arranged in a 34 × 34 square matrix (70 × 70
cm2 in size) with four crystal detectors removed from the central part (4.1 × 4.1 cm2 in size) for
passage of the incident electron beam. Figure 9 shows the assembled PrimEx HYCAL calorimeter.
The calorimeter will be at a distance of about 5 m from the target which will provide a geometrical
acceptance of about 25 msr.

Figure 9: The PrimEx HYCAL calorimeter with all modules of the high performance PbWO4 crys-
tals in place.

The performance characteristics of the PbWO4 crystals are well known mostly for high energies
(>10 GeV) [73] and at energies below one GeV [74]. In order to check the performance of the
PriEx calorimeter crystals with few GeV electron/photon beams, tests were carried out with a
6 × 6 prototype crystal detector. As the light yield of the crystal is highly temperature dependent
(∼ 2%/◦C at room temperature), the detector array was maintained at a stable temperature of
T = 4 ± 0.1◦C during the tests. For finer definition of the impact coordinates of the electrons on
the crystal array, a pair of X−Y array of scintillating fibers with a fiber-width of 0.2 cm was used
in front of the calorimeter.
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5.4.1 Energy resolution

The energy calibration of the PbWO4 crystal part of HYCAL was performed with 4 GeV electrons
irradiating the centers of each crystal module. The reconstructed energy distribution of is shown
in Fig. 10 for three different calibrated energy sums: the central single module; the inner section
comprising of a 3×3 array; and the total array of 6×6 crystals. The central module already contains
∼ 75% of the total energy deposition. An excellent energy resolution of σE/E = 2.6%/

√
E has

been achieved by using a Gaussian fit of the line-shape obtained from the 6 × 6 array. After
subtraction of the beam energy spread due to the finite size of the scintillating fiber, as well as
multiple scattering effects in vacuum windows and in air, a level of 1.2% energy resolution was
reached for 4 GeV electrons.

Figure 10: Energy response of a PbWO4 crystal array to 4 GeV electrons. Left peak: single crystal;
center peak: 3× 3 array; right peak: 6× 6 array.

5.4.2 Position resolution

The impact coordinates of the electrons incident on the crystal array were determined from the
energy deposition of the electromagnetic shower in several neighboring counters. The distribution
of the reconstructed coordinates for 4 GeV electrons hitting a crystal cell boundary is shown in
Fig. 11. The linear dependence of the reconstructed coordinates obtained from a logarithmically
weighted average of the cell signals vs. the impact positions determined by the scintillating fiber
detectors is shown in Fig. 12. As is well known, there is a rather strong correlation between the
position resolution (σx,y) and the point at which the incoming electrons hit the detector face. The
top plot of the figure shows this dependence for the PbWO4 crystals. The σx (1.28 mm) is smaller
near the edge of the cell and increases to 2.1 mm at the cell center for 4 GeV electrons. Taking
into account the 2 mm width of the scintillating fibers, the overall position resolution reached was
σx,y = 2.5 mm/

√
E.
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Figure 11: Distribution of reconstructed positions at the boundary between two PbWO4 crystal
detectors.

Figure 12: Position resolution (top) and reconstructed vs. actual position (bottom) of a
PbWO4 crystal array for 4 GeV electrons.

5.5 Veto counters
The veto counters are an X−Y array of scintillator paddles in front of the calorimeter that will
serve to veto neutral particle backgrounds. Ten scintillators in each direction with PMT on both
ends will cover the full solid angle spanned by the calorimeter. A central hole (4.1 × 4.1 cm2 in
size) will be cut out in each plane for passage of the incident electron beam. In order to minimize
photon conversion, only a single layer of 6.5 mm thick scintillator will be used for each plane.
Time differences between signals from two ends of the scintillator will be used to determine the
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position of the incident particles. Figure 13 shows a schematic of the X array of the veto counters,
the Y array is similar.
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veto counter array with double PMTsX

Figure 13: Schematic layout of the X veto counters array with PMTs on both ends and the central
4.1× 4.1 cm2 hole for passage of the incident electron beam.

5.6 Electronics, data acquisition, and trigger
The proposed experiment will read out about 1230 channels of ADC and TDC information coming
from three different detector systems. These include the PbWO4 crystal calorimeter, the lead-
glass preshower detector, and the X−Y scintillator veto counters. The electronics will consist of
FASTBUS, VME, CAMAC, and NIM standard crates. The digitization will be done entirely by
FASTBUS LRS1877 TDC and LRS1881M ADC modules. Additionally, some VME scalers will
read out and periodically inserted into the data stream. The triggering electronics will be done
using NIM modules for fanning in calorimeter signals and discrimination.

The DAQ system for the proposed experiment is the standard JLab CODA based FASTBUS
system utilizing the JLab designed Trigger Supervisor. A big advantage of the CODA/Trigger
Supervisor system is the ability to run in fully buffered mode. In this mode, events are buffered in
the digitization modules themselves allowing the modules to be “live” while being readout. This
significantly decreases the deadtime of the experiment.

The trigger electronics is based on UVA120A (36 input, 2 output linear fan-ins) and UVA125A
(quad 9 input linear fan-in with discriminator) NIM modules.

All electronics needed for the proton charge radius measurement DAQ and trigger, including
the high voltage crates and all necessary cabling for the detectors, are available in Hall B from the
PrimEx-II experiment.

Our approach in organizing the first level hardware trigger in this proposed experiment is to
make it as simple as possible to reach the highest efficiency for the event selection process and in
the mean time, to meet the DAQ rate requirements. The primary trigger will be formed from the
PbWO4 calorimeter by only using the analog sum of all dynode outputs from each of the crystal
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cells. For fast summation of the analog signals, the UVA120 linear fan-in modules will be used as
it was organized during the PrimEx-II experiment in Hall B.

The scattered electrons from the ep → ep reaction carry almost the same energy as the incident
beam. Therefore, for this process alone, one can organize a very efficient trigger by requiring
the total energy in the calorimeter to be 0.8 × E0 including the resolutions. We are planning to
detect simultaneously the electrons from the e−e− → e−e− process in this experiment in two
single-arm and coincidence modes. For the coincidence mode, we are required to lower the total
energy threshold level to about one-fifth of the beam energy − 0.2×E0 (see Fig. 16 including the
resolutions. This will be still doable for this low luminosity (L ≈ 6 × 1028 cm−2 s−1) and low
background experiment. The information from the other detectors (the veto counters) will be used
during the off-line analysis of the experiment.
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6 Experimental resolutions

6.1 Kinematics
Both ep → ep scattering and Møller scattering e−e− → e−e− are two-body reactions. Therefore,
a minimum of two kinematical variables are required for the kinematical reconstruction of the re-
action. For the selection of events from competing physics processes and accidental backgrounds,
one needs to measure more than two variables in the experiment.

In this experiment the energy and momentum of the incident electron beam are known with
high precision (∆E/E ∼ 10−4, emittance ε ∼ 10−3 mm-mrad). In addition, for the ep → ep
events, the energy and the (x, y) positions of the forward scattered electrons will be measured by
the PbWO4 calorimeter. The energy and momentum of the recoiling protons are very small (< 3
MeV) and will not be detected. Both scattered electrons from the Møller events will be detected in
the calorimeter with measurement of the energies (E1, E2) and the (x, y) positions. Table 3 lists
the incident beam energies and the Q2 range for this experiment.

Table 3: Proposed kinematics for the proton charge radius measurement with the PbWO4 calorime-
ter at 5 m from target.

Ebeam (GeV) θe (deg) Q2 (GeV/c)2

1.1 0.7 1.8 · 10−4

3.8 5.2 · 10−3

2.2 0.7 7.2 · 10−4

3.8 2.1 · 10−2

6.1.1 e− p scattering

Under the assumptions of one photon exchange the e− p elastic scattering is described by the well
known Rosenbluth formula [31]:

dσ

dΩ
=

(
dσ

dΩ

)
Mott

(
E ′

E

)
1

1 + τ

(
Gp

E
2(Q2) +

τ

ε
Gp

M
2(Q2)

)
, (21)

with
Q2 = 4EE ′ sin2 θ

2
,

τ =
Q2

4M2
p

,

ε =

[
1 + 2(1 + τ) tan2 θ

2

]−1

,

E ′ =
E

1 + 2E
Mp

sin2 θ
2

,
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where Q2 is the four-momentum transfer squared, Gp
E

2(Q2) and Gp
M

2(Q2) are the protons electric
and magnetic form factors, ε is the virtual photon longitudinal polarization parameter, E and E ′

the incident and scattered electron energies, θ the laboratory scattering angle of the electron and
Mp the proton mass.

Figures 14 and 15 show the range of the scattered electron’s energy and four-momentum trans-
fer squared as a function of the laboratory scattering angle.
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Figure 14: Energy of the scattered electron in e − p scattering vs. the laboratory scattering angle
at an incident beam energy of 1.1 GeV.
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Figure 15: Q2 of the scattered electron in e− p scattering vs. the laboratory scattering angle at an
incident beam energy of 1.1 GeV.
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6.1.2 Møller scattering

The Møller e−e− → e−e− differential cross section, at tree level, is getting contributions from the
s and t photon exchange channels. In the center-of-mass (CM) system it is given by

dσ

dΩ
=

α2

s

(3 + cos2 θ∗)2

sin4 θ∗
(22)

for high energies where the electron mass me can be neglected. Here α = 1/137 is the fine structure
constant, θ∗ is the CM system polar scattering angle, and s is the interaction energy squared.

Some obvious features of the Møller scattering can be deduced from Eq. 22.

• The cross section is seen to diverge at cos θ∗ = ±1. This is due to the fact that the electron
mass was neglected. In a rigorous treatment, where me is not neglected, the Møller scattering
formula remains finite even at cos θ∗ = ±1.

• The magnitude of the cross section decreases as s increases, similar to that of the e+e−

annihilation process.

In the scattering of two electrons, s may be written in a Lorentz invariant form as

s = 2m2
e + 2meEB , (23)

where EB is the beam energy.
The laboratory momentum of the scattered electron, plab is given by

plab = γCM

√
(E∗ + p∗βCM cos θ∗)2 − m2

e

γ2
CM

, (24)

where p∗, E∗ are the momentum and energy of the incident electron in the CM system and γCM is
the Lorentz factor. The relation between the laboratory scattering angle θlab and the CM scattering
angle θ∗ is given by

tan θlab =
1

γCM

· sin θ∗

βCM/β∗ + cos θ∗
, (25)

where βCM is the velocity of the CM system and β∗ is the velocity of the electron in the CM system.
In the CM system of the Møller scattering, the momentum and energy of the incident electron

are expressed by:

p∗ =

√
me(EB −me)

2
and

E∗ =

√
me(EB + me)

2
. (26)

From Eqs. 23-26 it follows that
plab =

pB

2
(1 + cos θ∗) (27)

so that the laboratory momentum of the scattered electron does not depend on the CM total energy,
but only on the beam energy and the CM scattering angle. From Eq. 25 one obtains the expression:

tan2 θlab =
2me

EB + me

· 1− cos θ∗

1 + cos θ∗
. (28)
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The minimum opening angle in the laboratory system between the two electrons in the Møller scat-
tering is when θ∗ = π/2:

tan2 θlab =
2me

EB + me

. (29)

Figure 16 shows one of the Møller scattered electrons’ energy vs. its angle. The angular
correlation between the two scattered electrons in the laboratory system is shown in Fig. 17 and
the opening angle as a function of beam energy in Fig. 18. The kinematical distribution of the
X−Y positions of the two Møller electrons is shown in Fig. 6.
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Figure 16: Energy of one of the electrons in Møller scattering vs. the laboratory scattering angle at
an incident beam energy of 1.1 GeV.

6.2 Resolutions
In this experiment, the scattered electrons from e−p elastic and Møller scatterings will be detected
with a high resolution and high efficiency PbWO4 electromagnetic calorimeter. The energy and
positions of the scattered electrons will be measured with high resolution:

σE/E = 2.6%/
√

E ,

σx,y = 2.5 mm/
√

E .

(Details of energy and position resolutions are given in Secs. 5.4.1 and 5.4.2.)
Detailed Monte Carlo simulations for e − p elastic and Møller scatterings were carried out in

order to study the the energy and position resolutions of detecting the scattered electrons over the
full acceptance of the calorimeter.
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Figure 17: Angular correlation of the two electrons in Møller scattering in the laboratory system
at an incident beam energy of 1.1 GeV.
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Figure 18: The minimum opening angle in the laboratory system of the two electrons in
Møller scattering as a function of incident beam energy.
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6.2.1 e− p scattering

Figure 19 shows the “elasticity”, (E0−E ′), distribution of the electrons in e−p elastic scattering.
An excellent energy resolution of σE = 27 MeV is seen at E0 = 1.1 GeV. The corresponding
distribution of polar angular resolution is shown in Fig. 20, σθe = 0.5 mrad is expected in this
experiment. The polar angular range implemented in generating these distributions is θe ≥ 0.7◦.
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Figure 19: The “elasticity”, (E0 − E ′), distribution of detecting the electrons in e − p elastic
scattering at E0 = 1.1 GeV. The minimum scattering angle cut implemented is θe ≥ 0.7◦.

One of the key considerations in this precision measurement is the Q2 resolution that is ex-
pected in this experiment. Figure 21 shows the Q2 resolutions at the minimum and maximum
scattering angles of the calorimeter acceptance at a distance of 5 m with E0 = 1.1 GeV.

6.2.2 Møller scattering

The elasticity, (E0 − (E1 + E2)), distribution of the Møller scattered electrons is shown in Fig. 22
for 1.1 GeV incident beam energy.

An important criterion that needs to be satisfied for the two electrons in Møller scattering is
that they have to be co-planar in the azimuthal direction, ϕe1 − ϕe2 = π. Figure 23 shows the
resolution of the co-planarity requirement at E0 = 1.1 GeV.

A clear identification of the e−p elastic scattering electrons from the Møller electrons requires
that the tails of their energy distribution do not have any significant overlap. This condition can be
achieved by requiring that the polar scattering angles of the electrons are above a certain minimum
value. Figure 24 shows that above θe = 0.7◦ the electrons from the two processes can be cleanly
separated for E0 = 1.1 GeV. A similar plot for E0 = 2.2 GeV is shown in Fig. 25. Here, the ep
elastic scattered electrons are separated from the Møller scattered electrons without the need for
an angular cut; the events with θe < 0.4◦ are not in the acceptance region of the calorimeter.
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Figure 20: The polar angle resolution of detecting the electrons in e − p elastic scattering at
E0 = 1.1 GeV. The minimum scattering angle cut implemented is θe ≥ 0.7◦.
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Figure 21: The Q2 resolution of detecting the electrons in e− p elastic scattering at E0 = 1.1 GeV.
The top plot is for θmin = 0.7◦ and the bottom plot is for θmax = 3.8◦. The PbWO4 calorimeter is
placed at a distance of 5 m from the target.
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Figure 22: The “elasticity”, E0− (E1 +E2), distribution of detecting the electrons in Møller scat-
tering at E0 = 1.1 GeV. The minimum scattering angle cut implemented is θe ≥ 0.7◦.
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Figure 23: The coplanarity distribution in the azimuthal direction, ϕe1−ϕe2 , of the two electrons in
Møller scattering at E0 = 1.1 GeV. The minimum scattering angle cut implemented is θe ≥ 0.7◦.
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Figure 24: The energy vs. scattering angle distribution of e − p elastic and Møller scattered
electrons at E0 = 1.1 GeV. A minimum scattering angle cut of θe = 0.7◦ is required to clearly
identify the electrons from the two processes.
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Figure 25: The energy vs. scattering angle distribution of e − p elastic and Møller scattered
electrons at E0 = 2.2 GeV. No minimum scattering angle cut on θe is required here to clearly
identify the electrons from the two processes.
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7 Radiative corrections at forward angles
The radiative corrections to the unpolarized elastic ep scattering cross sections were determined
by two methods. The first one used the calculation of Maximon and Tjon [77]. Only the leptonic
model independent terms were considered. The second one used the MASCARAD code [78].
Both methods, with appropriate kinematical cuts, give similar results within 3% up to Q2 = 10−4

GeV2. At Ebeam = 1.1 GeV and for 1.8 · 10−4 GeV2 ≤ Q2 ≤ 5.2 · 10−3 GeV2 a correction δ
to the unpolarized cross sections of 9% ≤ δ ≤ 15% was found. At Ebeam = 2.2 GeV and for
7.2 · 10−4 GeV2 ≤ Q2 ≤ 2.1 · 10−2 GeV2, 11% ≤ δ ≤ 18%. The effect of radiative corrections is
known to better than 0.5%. It is important to point out that for very low Q2 (∼ 10−5) MASCARAD
presents some instabilities whereas the results obtained with the Maximon and Tjon calculation
remain stable. This instability comes from the part that is subtracted from the real photon emission
in order to cancel the infrared divergence. Large and negative contributions can be obtained but
must cancel with the respective factorized correction. However, this correction is calculated using
the approximation m2

e << Q2 whereas the integration for the real photon emission is carried out
without it. As consequence, this can be a source of instability in the very low Q2 region. As for the
Maximon and Tjon calculation, both m2

e << Q2 and soft photon approximations are used, leading
a result less sensitive to instabilities at very low Q2. The quality of the soft photon approximation
is difficult to control without exact calculation of RC in the style of MASCARAD, therefore, in
order to obtain a precise estimation of the radiative correction at very low Q2 one needs to have a
full calculation beyond both the m2

e << Q2 approximation and the soft photon approximation in
elastic ep scattering. One expert in radiative corrections among the collaboration plans to develop
and carry out such calculation. Experimentally, it would also be possible to reduce the hard photon
contribution since we will be able to detect the hard photon in the calorimeter.

A Monte Carlo simulation was written to study the effect of the detectors resolutions on the Q2

determination. Since two-body elastic kinematics is over determined, only angles were generated
randomly following a uniform distribution between 0.7 and 3.8 degrees and the scattered energy
was determined by the kinematics. Both distributions were then smeared by a Gaussian of width
equal to detector resolutions: σE′ = 2.6%/

√
E with E in GeV and σθ = 0.35 mrad. The radiative

tail in the E ′ spectrum is simulated with a Landau distribution. The scattered electron energy and
Q2 distributions are shown in Figs. 26 and 27 respectively.

The generated data are then binned in small bins of E ′ and θ. For each bin the mean Q2
smeared

is calculated and it is compared to Q2
nom. obtained without any resolution effect. One defines a

correction factor for each bin as r = (Q2
nom.− Q2

smeared)/Q
2
nom. which will be used to correct the

value of Q2 in each bin. This simple simulation shows an average value over all (E ′, θ) bins of
24% for r for both beam energies. Such a change in Q2 will induce a variation strictly below 1% of
the radiative correction to the elastic ep unpolarized cross sections. A full Monte Carlo simulation,
with a more refined radiative correction implementation following the latest development [79] is in
progress. Its results will be reported prior to the defense of the proposal. The radiative corrections
to the Møller are well known [80] and their calculation and implementation in the full simulation
is also in progress.
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Figure 26: Simulated scattered electron energy. In black with only the resolution contributions, in
green with only radiative corrections and in red with both contributions.
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Figure 27: Simulated scattered electron energy. In black with only the resolution contributions, in
green with only radiative corrections and in red with both contributions.
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8 Extraction of proton charge radius
As described in Sec. 4, the ep elastic cross sections in this proposed experiment will be measured
by normalizing to the Møller cross sections. The Møller cross sections will be obtained from
theoretical QED calculations within particular acceptances (see Fig. 3), taking into account the
radiative effects. At this Q2 range, the contribution from Gp

M (Q2) in Eq. 4 is negligible within the
accuracy of this experiment. Then the electric form factor, Gp

E , can be extracted from the measured
ep elastic cross sections vs. Q2. The slope of Gp

E vs. Q2 at this very low Q2 range will determine
the rms proton charge radius, rp (see Eq. 7).

In order to investigate the uncertainties in the extraction of rp, a full Monte Carlo simulation
code based on GEANT3.21 package has been developed which takes into account the realistic ge-
ometry of the experimental setup, including all resolutions of the detector. This program generates
events based on theoretical cross sections which are then traced through the target and detection
system. The Monte Carlo generated events are then analyzed to reconstruct the “measured” differ-
ential cross sections. In this scheme one can obtain the uncertainties in rp vs. detector resolutions,
geometrical acceptances, misalignments of beam and experimental setup. This program takes in
account the radiative processes inside of the hydrogen gas target. However, the so called “in-
ternal” or the soft radiative effects are not yet included in this code. We are in the process of
implementing the full radiative effects in this code in order to get effects of their corrections in
the extracted proton charge radius. One important advantage of the calorimetric method over the
traditional magnetic spectrometer method is that in this case we have a parallel measurement of the
part of the radiative effects, related to target bremsstrahlung, the so called hard radiative effects.
This fact, together with the extremely low contributions from the hydrogen gas target, will signifi-
cantly reduce the effects of radiative corrections in this proposed experiment. The results from the
fully implemented corrections in the Monte Carlo code will be reported prior to the defense of the
proposal.

Four examples of these preliminary simulations are illustrated in Figs. 28, 29, 30 and 31 for
part of the statistics for the incident beam energies E0 = 1.1 GeV and E0 = 2.2 GeV. In Figs. 28
and 30, in the event generator the value of rp = 0.8768 fm was set, while in Figs. 29 and 31 it is
rp = 0.8418 fm. As demonstrated in these preliminary studies, the measured Gp

E at this Q2 range
has a good sensitivity from rp to reach the sub-percent level of extraction.
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Figure 28: Extraction of Gp
E from Monte Carlo generated data set for E0 = 1.1 GeV for the value

of rp = 0.8768 fm. The error bars shown are statistical only.
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Figure 29: Extraction of Gp
E from Monte Carlo generated data set for E0 = 1.1 GeV for the value

of rp = 0.8418 fm. The error bars shown are statistical only.
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Figure 31: Extraction of Gp
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GeV run for the value of rp = 0.8418 fm. The error bars shown are statistical only.
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9 Statistics, event rate and beam time
For the statistics and event rate estimation, a full Monte Carlo program was developed based on
GEANT3.21 package. This program samples both ep → ep and e−e− → e−e− processes accord-
ing to their differential cross sections and traces the events through the target and detector setup.
The energies and positions of the secondary particles were sampled in the calorimeter according
to their experimental resolutions described in Secs. 5.4.1 and 5.4.2.

The hydrogen gas target in this experiment is projected to have Ntgt = 1 · 1018 H atoms/cm2.
In that case, with the incident electron beam intensity of Ibeam = 10 nA (Ne = 6.25 · 1010 e−/s)
the rate for the ep → ep scattered elastic electrons on the PbWO4 calorimeter will be:

NRB
e = Ne ·Ntgt ·∆σ · εgeom · εdet ,

where ∆σ is the integrated Rosenbluth (RB) cross section at forward angles (θe = 0.15◦ − 10◦);
∆σ · εgeom is part of the integrated cross section accepted by our setup. For these calculations,
we assume that the detection efficiency εdet ≈ 1. With all that, the rate of electrons from the
ep → ep process is

NRB
e = 6.25 · 1010 · 1 · 1018 · 3.14 · 10−26 · 0.0754 e−/s

' 150 e−/s

' 12.8M e−/day .

This is a high integrated statistics per day for the forward angles. However, due to ∼ 1/ sin4 (θ/2)
nature of the scattering process, most of these events are populated in the extreme forward angles
(θe ∼ 0.5◦ for our acceptance range). Therefore, in order to provide ≤ 0.5% statistical uncertainty
also for the last Q2 bin (θe = 3.55◦ − 3.77◦), we are required to run 2 days for this E0 = 1.1 GeV
energy setting:

NRB
e (Q2 =4.9± 0.3·10−3) = 6.25 · 1010 · 1 · 1018 · 3.14 · 10−26 · 1.7 · 10−4 e−/s

' 0.334 e−/s

' 57, 600 e−/2 days .

The e−e− → e−e− Møller cross section is significantly higher than the ep → ep cross section
for the same incident beam intensity and target thickness:

Ne−e−(coin.) = 6.25 · 1010 · 1 · 1018 · 0.68 · 10−24 · 0.0048 e−e−/s

' 200 e−e−/s

' 17.3M e−e−/day .

In order to address the rate of hadronic (π+) contribution in this experiment, detailed calcula-
tions were performed using the EPC/Wiser/SAID codes. Table 4 shows the rate for π+ production
and ep elastics for forward angles at E0 = 1.1 GeV and 2.2 GeV. As expected for these forward an-
gles, the estimated π+/e ratio is less than∼ 10−3. With this low hadronic rate, the PbWO4 electro-
magnetic calorimeter itself with its π/e rejection capability of ∼ 10−2 will cut down the hadronic
background.
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Table 4: Rates of π+, proton, π0, and ep elastics for forward angles at two different energies.

E0 = 1.1 GeV E0 = 2.2 GeV
θ π+ p π0 ep π+ p π0 ep

(deg) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)

0.5 1.4 · 10−4 1.0 · 10−5 5.0 · 10−5 2.3 · 103 2.4 · 10−4 5.2 · 10−5 2.4 · 10−4 56
1.0 1.1 · 10−3 7.7 · 10−5 5.5 · 10−4 106 1.8 · 10−3 5.3 · 10−4 2.5 · 10−3 26
2.0 2.2 · 10−3 1.6 · 10−4 1.2 · 10−3 13.7 3.8 · 10−3 1.1 · 10−3 5.2 · 10−3 3.4
3.0 3.5 · 10−3 2.5 · 10−4 1.8 · 10−3 4.2 6.0 · 10−3 1.7 · 10−3 8.9 · 10−3 1.0

In summary, with Ibeam = 10 nA and Ntgt = 1 · 1018 H atoms/cm2, two days of run time
will be sufficient to get the required high statistics for all Q2 points including the very last one,
Q2 = 4.9± 0.3 · 10−3 (GeV/c)2.

We also request to have a separate run with E0 = 2.2 GeV to increase the Q2 range for a more
stable fit of the Gp

E vs. Q2 to extract the proton charge radius. The Møller cross section is inversely
proportional to the beam energy, so we will have twice less cross section. On the other hand, the
geometrical acceptance of the e−e− → e−e− reaction increases with the energy also. With all
that, the Møller rate at E0 = 2.2 GeV will be of the same order as for the first energy. For the
ep → ep elastic scattering process the cross section drops as 1/E2 and, therefore, all rates for the
2.2 GeV run will be four times less than for those at 1.1 GeV. However, we request two days of
run for this energy also. This will provide sufficient statistics for most part of the Q2 range, except
for the few points at larger Q2 where we will have statistical uncertainties still less than 1%.

With this, we are requesting two days of run time for each of the energy settings to have
sufficient statistics for the precision extraction of the proton charge radius. We will need 3.5 more
days for setup checkout, tests and calibration, and 5 days for commissioning the new gas flow
target. The energy change from one-pass to two-pass will require about half-a-day.

In order to control the experimental background originating from the electron beam halo (beam
signal peak/halo ratio is ∼ 107 − 108) hitting the cell wall of the gas flow target, we will need a
total of 2 days of empty target runs. These runs will be performed periodically during the entire
time of the experiment. With that, we are requesting a total of 15 days to perform this experiment
and extract the proton charge radius with a sub-percent precision.

Table 5: Beam time request.

Time (days)

Setup checkout, tests and calibration 3.5

Gas target commissioning 5

Statistics at 1.1 GeV 2

Energy change 0.5

Statistics at 2.2 GeV 2

Empty target runs 2

Total 15
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10 Estimated uncertainties
The cross sections for the two processes, ep and e−e− Møller, which we are aiming to measure
simultaneously in this proposed experiment, are the most highest two electromagnetic processes at
these forward angles. Based on the rates estimated in Sec. 9, we expect to have enough statistics
within the requested beam time, to provide statistical uncertainties on the level of 0.2% for each
Q2 point. For the lower Q2 points, this number would be significantly less than 0.2%. With that, the
major concern for this type of experiments, for sure, is the control of the systematic uncertainties,
and estimation of them in the final uncertainty of the extracted proton charge radius. We are
convinced that the proposed experiment with its: (1) possibility to reach very low Q2 range; (2)
with normalizing the ep cross sections to a well known QED process, like the Møller scattering;
and (3) very low density windowless hydrogen gas target to minimize the physics background
processes, is currently the most optimized ep measurement to extract the proton charge radius with
a sub-percent precision.

The main sources of systematic uncertainties in this proposed experiment from the experimen-
tal setup are:

(1) misalignment in position reconstruction;

(2) misalignment of beam position and angle on the PbWO4 calorimeter;

(3) calorimeter energy miscalibration.

The energy calibration of the calorimeter will be performed by the Hall B photon tagger at
E0 = 1.1 and 2.2 GeV. The energy accuracy of the tagger is at the level of ∼ 10−3. Therefore, its
contribution to the uncertainty in Q2 will be at the same level.

The uncertainty in position of the calorimeter on the beam line will be performed by engineer-
ing survey with an accuracy of ∼ 0.7 mm. In addition, the coplnarity of the e−e− → e−e− process
will be used in offline analysis to obtain a finer definition of the electron beam’s position and angle
on the calorimeter.

As it is described in Sec. 4, the ep cross sections will be measured with respect to the Møller.
Therefore, the two major systematic uncertainties, most typical for other ep experiments, will
directly cancel out in the ratio. The remaining systematic uncertainties will depend on the method
with which we identify the Møller events and, therefore, the cross sections for that particular
Q2 bin. The single-arm method, described in Sec. 4.2.1, is the best way to further cut down the
sources of the systematic uncertainties in the simulation of the Møller cross section for a particular
Q2 bin since it will be calculated in the same ep acceptance. Implementation of this method
depends only on the level of the radiative tails on the ep scattered electrons. We are in the process
of performing full simulations of these type of effects, the results will be submitted prior to the
defense of the proposal.

With the single-arm Møller event selection method, the estimated uncertainty on the Møller cross
section calculation is on the level of 0.4%, including the electromagnetic corrections. Combining
that with the 0.2% statistical uncertainty, we estimate the total uncertainty on the rp extraction to
be on the level of 0.45%.

For the two other Møller event selection methods, two more items are remaining in the de-
termination of the ep cross sections, the partially different geometrical acceptances and detection
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efficiencies. The differences of the detection efficiencies for the different part of the detection sys-
tem, based on our previous experiences, is expected to be rather small. Therefore, that part will
not contribute significantly in the final uncertainty. For the “two-ring” acceptance determinations
(see Secs. 4.2.2 and 4.2.3), the estimated uncertainty should not exceed the 0.3% level. With that,
for the second and third methods the total uncertainty is estimated to be 0.55%, including the 0.2%
statistical uncertainty and it is shown in Table 6.

Table 6: Total estimated uncertainty for the second and third Møller events identification methods.

Item Uncertainty
(%)

Statistical uncertainty 0.2
Ratio in detection efficiency <0.1
Ratio in acceptance (including Q2 determination) 0.4
Radiative corrections 0.3
Fitting procedure 0.2
Hadron rejection <0.1
Neutral rejection <0.1
Total 0.6
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11 Summary
The proton charge radius is one of the fundamental quantities in physics. Precision knowledge of
its value is critically important for the understanding of the structure of nucleon in terms of quark
and gluon degrees of freedom in the theory of strong interactions − QCD. On the other hand, the
precise determination of the charge radius is very important for atomic physics to test calculations
of bound-state QED and, in particular, spectroscopy of atomic hydrogen.

There are three major methods to measure the proton charge radius. The ep elastic scattering
method, in which the slope of the extracted electric form factor, Gp

E , at low Q2 defines the rms
radius of the proton. For this type of experiments, typical uncertainties obtained is at the level of
2%. The average value of the charge radius for this method, given by a model independent analysis
of electron scattering data is is rp = 0.871(10) fm.

Another method uses the spectroscopy of electronic hydrogen atom through the Lamb shift
measurements. The value of the charge radius from this method is consistent with the ep scattering
results: rp = 0.8768(69) fm.

Very recently, in 2010, results from two more precision measurements of the charge radius
have been published. The first one is from new studies of muonic hydrogen performed at PSI
providing a factor of ten more precise result than all previous experiments: rp = 0.84184(67) fm.
The second result is from Mainz done with the traditional ep method giving rp = 0.879(8) fm and
it is consistent with previous ep results. The muonic hydrogen result is five standard deviations
smaller than the CODATA average. This experimental fact creates a serious discrepancy on the
value of a fundamental quantity, the proton charge radius. The current situation critically requires a
possible theoretical explanation and/or the performance of a new high precision and high accuracy
experiment.

With this proposal, we suggest to perform a new magnetic spectrometer free ep scattering
experiment to extract the proton charge radius from the measured electric form factor Gp

E at very
low Q2 in Hall B at Jefferson Lab. We will critically improve all systematic uncertainties typical
for the traditional magnetic spectrometer experiments by implementing three major improvements
over previous experiments:

(1) The extracted ep cross sections will be normalized to a well known QED process - Møller scat-
tering.

(2) We will reach very forward scattering angles for the first time in ep experiments while keep-
ing the Q2 range (2·10−4−2·10−2 (GeV/c)2) large enough for the extraction of the Gp

E slope.

(3) The windowless, low density hydrogen gas flow target will sufficiently reduce the experi-
mental background typical for all previous ep experiments.

With that, we will reach sub-percent precision on the differential cross sections measured for the
first time in this low Q2 range and extract the proton charge radius with unprecedented precision
in electron scattering measurements. This experiment, with the requested 15 days of beam time,
will have a direct impact on the “proton charge radius crisis” currently developing in hadronic
physics.
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