
The UnderLord Scheduler
A Drop-In Scheduler for the Portable Batch System

Walt Akers, Chip Watson, Jie Chen, Ying Chen

June 8, 2001
TJNAF - Thomas Jefferson National Accelerator Facility
1

2

TRADEMARKS:

UNIX is a registered trademark of AT&T in the USA and other countries.
Linux and gmake are a register trademark of the Free Software Foundation.
The X Window System is a trademark of Massachusetts Institute of Technology.
OSF/Motif and Motif are trademarks of Open Software Foundation, Inc.
PBS and Open PBS is a trademark of Veridian Systems.

DOCUMENT DATE:

Table of Contents generated: June 8, 2001 3:19 pm

SURA/TJNAF:

The Southeastern Universities Research Association (SURA) operates the Thomas
Jefferson National Accelerator Facility (TJNAF) for the United States Department of
Energy under contract DE-AC05-84ER40150.

COPYRIGHT AND LICENSE

Copyright (c) 2001 Southeastern Universities Research Association
Thomas Jefferson National Accelerator Facility
12000 Jefferson Avenue, Newport News, VA 23606

This material resulted from work developed under a United States Government
Contract and is subject to the following license:

The Government retains a paid-up, nonexclusive, irrevocable worldwide license to
reproduce, prepare derivative works, perform publicly and display publicly by or for
the Government including the right to distribute to other Government contractors.

DISCLAIMER AND LIMITATION OF WARRANTY.

ALL SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY. THERE
ARE NO WARRANTIES EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. THERE IS NO WARRANTY THAT USE WILL NOT INFRINGE
ANY PATENT, COPYRIGHT OR TRADEMARK.

In consideration of the use of the software and other materials, user agrees that
neither the Government nor SURA/TJNAF will be liable for any damages with
respect to such use, and user shall hold both the Government and SURA/TJNAF
harmless from and indemnify them against any and all liability for damages arising
out of the use of such software and other materials. In no event shall the
Government or SURA/TJNAF be liable whether arising under contract, tort, strict
liability or otherwise for any incidental, indirect or consequential loss or damage of
any nature arising at any time from any cause whatsoever. In addition, the
Government and SURA/TJNAF assume no obligation for defending against third
party claims or threats of claims arising as a result of user's use of the software or
materials either as delivered to user or as modified by user.

i. Table of Contents

1. Introduction. 1
Project Overview .1

PBS Server Library. .1
UnderLord Library .1

Document Objectives .1
Tested Systems. .1

2. Building, Installing and Starting the UnderLord 2
Overview .2
Obtaining the Distribution .2
Prepare the Compilation Environment .2

PBS_SRC .2
PBS_HOME .2

Update PBS Header Files .2
Build and Install the UnderLord .2

3. The UnderLord Configuration File. 3
Configuration File Location .3
Configuration File Format .3

Section Headers .3
Entries .3
Comments .3

4. Configuration Options for the UnderLord. 4
[Scheduler] Options .4

summaryRate .4
summaryDir .4
stageSummary. .4
execSummary .4
accountingDir. .4
maxHistory .4
maxWallHours .5

[Job Duration Stage] Options .5
weight .5
lowerBound .5
upperBound .5
countProcs .5

[Job Age Stage] Options .5
weight .5
lowerBound .6
upperBound .6

[User Priority Stage] Options .6
weight .6

[Queue Priority Stage] Options .6
weight .6
wallTimeFactor .6
cpuTimeFactor .6
runJobFactor .7
recentJobThreshold .7
oldJobThreshold .7
oldFactor .7
3

[User Share Stage] Options. 7
weight. 7
wallTimeFactor . 7
cpuTimeFactor. 7
runJobFactor . 8
recentJobThreshold . 8
oldJobThreshold . 8
oldFactor . 8

[Fair Share] Options . 8
default . 8

[Restricted Nodes] Options. 8
node . 8

5. How the UnderLord Sorts Jobs. 10
General Scheduler Requirements . 10
Multi-Stage Job Weighting . 10
Bounding the Curve . 10
Computing the Raw Weight . 10

The Central Formula . 11
The Boundary Formula . 11

The Raw Curve . 11
Computing the Processed Weight Factor . 12
The Lower Weight Boundary . 12
Fitting the Raw Curve to the Weighted Curve . 12

6. Building a Sorting Stage for the UnderLord . 13
The UnderLordStage Base Class . 13

getWeight . 13
compute . 13

Sample Sorting Stage . 13
Adding the New Stage to the UnderLord . 18

7. Match-Making: Periods of Availability on a Single Node. 19
Match-Making Objectives . 19
The MatchMatrix Solution . 19
Populating the ClusterNode Object with Running Jobs . 19
Periods of Availability . 19
Finding Overlapping Periods of Availability . 20
Periods of Availability on One Processor . 20
Periods of Availability on Two Processors . 21
Periods of Availability on Four Processors. 21
Improving the Performance of these Operations . 21

8. Match-Making: Periods of Deployment on Multiple Nodes 23
Parallel Objectives . 23
Periods of Deployment . 23

9. Match-Making: Jobs Requiring Multiple Node Types 25
What are Node Types? . 25
Pitfalls of Multiple Node Types . 25

10. Future Directions . 26
Objectives . 26
4

ii. List of Figures

Figure 1. Sample UnderLord Configuration File ..3
Figure 2. Raw Curves Produced by the Central and Boundary Formulae11
Figure 3. A Raw Curve After Processing with Various Weights12
Figure 4. Reading Weight Factor from Configuration File13
Figure 5. DurationStage.h - C++ header file for the Job Duration Stage14
Figure 6. DurationStage.cc - C++ source file for the Job Duration Stage15
Figure 7. Excerpts from SchedMain.cc - Adding a new stage to the UnderLord......18
Figure 8. Available time slots on a 4 processor system...20
Figure 9. Periods of availability on one processor..20
Figure 10. Periods of availability on two processors ..21
Figure 11. Periods of availability on four processors..21
Figure 12. Periods of deployment on one processor..23
Figure 13. Overlapping periods of deployment on four nodes...................................24
5

6

1. Introduction

Project
Overview

The UnderLord scheduler was developed at Jefferson Lab as part of a joint effort with MIT to
develop a meta-facility between our institutions. The implementation of this meta-facility requires
two scheduling systems: the OverLord, a meta-scheduler responsible for migrating jobs between
sites; and the UnderLord which is responsible for deploying jobs locally. The UnderLord scheduler
represents the first step of this larger project.

To promote code reuse and modularity, we have developed the UnderLord as a collection of C++
classes. The bulk of this work resides in two libraries:

PBS Server Library A collection of classes that provide simplified access to the data stored
within the PBS Server and the Machine Oriented Mini-Servers (PBS
MOM).

UnderLord Library A collection of extensible classes that provide mechanisms to order job
candidates and select the best time and location for them to be
executed.

Document
Objectives

Since this project is under ongoing development, this version of the documentation will be limited
to the following issues:

• Provide instructions on how to build, install and start the UnderLord scheduler.

• Describe the structure and syntax of the configuration file that guides the scheduler's decisions.

• Describe the different options that can be set in within the scheduler’s configuration file.

• Define the mechanisms that the UnderLord uses to sort jobs.

• Demonstrate the technique for extending the sorting mechanism to support site specific
objectives.

• Explain the general match-making approach used by the UnderLord to get optimal system
utilization.

• Discuss future objectives for the ongoing development of the project.

Tested Systems As of this writing, the UnderLord scheduler has been built and tested on RedHat Linux version 6.2
through 7.1 for both Alpha and Intel processors. Although we have not tested on other platforms,
we believe that this product should be readily portable to all of the systems supported by the
Portable Batch System.
1

2. Building, Installing and Starting the UnderLord

Overview While the UnderLord was designed to be an extensible framework, it is distributed in a readily
usable default configuration. The term 'readily usable', of course, only applies if your scheduling
objectives are similar to ours.

This section will describe how to obtain, configure, build, install and start the UnderLord scheduler
with the default configuration on a Linux system.

Obtaining the
Distribution

The source code and documentation for the scheduler can be obtained as a zipped tar file from the
High Performance Computing site at Jefferson Lab:

http://www.jlab.org/hpc/UnderLord/underlord_1.0.2.tar.gz

Prepare the
Compilation
Environment

Once you have downloaded and extracted the source distribution you are ready to begin
compilation. The PBS source distribution should be installed and the following environment
variables should be defined.

PBS_SRC This variable should point to the root of the PBS source tree.

At our site we create a link to the most recent version of the PBS source
distribution on the /usr/local/PBS_SRC directory.

PBS_HOME This variable should point to the root of the PBS binary installation.
The bin, sbin, and lib directories for PBS will be located here.

At our site we create a link to the most recent PBS binary tree on the /
usr/local/PBS_HOME directory.

Update PBS
Header Files

Since PBS was developed as a system of C libraries, the header files contain several inconsistencies
that prevent the headers from being included directly into C++ source files. Prior to compiling the
UnderLord it will be necessary to correct these problems.

• On lines 105 and 107 of the header file log.h, the C++ keyword “class” is used as a variable
name. To correct this change “class” to “Class”.

• On line 191 of the header file pbs_error.h, the function prototype for pbse_to_text requires an
integer argument. To correct this change:

extern char * pbse_to_text (); to

extern char * pbse_to_text (int);

As of version 2.3.12 of Open PBS, these are the only inconsistencies that need to be corrected.

Build and Install
the UnderLord

With the environment variables set and these corrections made, you are ready to build the
UnderLord scheduler. Change directories to the UnderLord source directory and run gmake to
compile the collection of libraries, applications and test programs.

Note that in order to make errors and warnings easier to read, much of the output from these
makefiles has been suppressed. The distribution should compile without any errors or warnings.
Once the build is complete run gmake install to install the binaries.

Note: Because of the way that the UnderLord scheduler is designed, it is necessary to build, install
and execute it on the same host where your PBS Server is running. This is because the UnderLord
requires direct read-access to the server’s accounting files in order to track current and historic
system utilization.
2

3. The UnderLord Configuration File

Configuration
File Location

The UnderLord configuration file is located in the /usr/spool/PBS directory and is named
scheduler.cfg. This file contains the configuration options that define how the scheduler will
prioritize jobs and how they will be deployed on the system.

You should note that the UnderLord comes with a pre-installed configuration file that is copied to
the /usr/spool/PBS directory every time the scheduler is rebuilt/reinstalled. If you plan to rebuild
the scheduler, it is important to safeguard the site specific scheduler.cfg prior to reinstalling...
otherwise, it will be overwritten.

Configuration
File Format

The format of this file is very similar to the “.ini file” format used in early versions of Microsoft
Windows. At the most fundamental level, the configuration file contains three types of elements:
sections, entries, and comments.

Section Headers example: [Section Header]

A section header is a character string enclosed in square brackets that
defines the beginning of a group of related entries. Sections that are
predefined in the default scheduler configuration file include:

[Scheduler]

[Job Age Stage]

[Fair Share]

[Restricted Nodes]

Once a section has been started, all entries that follow it are
considered to be part of that section until the next section begins or
the file ends.

Entries example: entry=value

An entry consists of a character string tag and an associated character
string value. Entries must be defined within the confines of a section.

Comments example: #comment

Comments are preceded by a '#' character and continue until the next
newline character.

The following is a brief example showing the structure and format of the scheduler configuration
file.

Figure 1: Sample UnderLord Configuration File

This section defines entries associated with the scheduler
[Scheduler]
summaryRate=10:00
summaryDir=/usr/spool/PBS/sched_logs

This section defines entries associated with Fair Share
[Fair Share]
default=1
3

4. Configuration Options for the UnderLord

[Scheduler]
Options

The Scheduler section of the configuration file contains entries that effect the behavior of the
UnderLord scheduler as a whole. This section has the following entries.

summaryRate summaryRate=10:00

The summaryRate entry specifies how frequently a job summary will
be written to disk. The value is provided in hour:min:sec format.
Whenever the summaryRate period expires, the UnderLord will open
a summary file in the configuration specified summaryDir and will
write a list of waiting jobs and when they are projected to start and
finish.

The default value is 10:00 (ten minutes).

summaryDir summaryDir=/usr/spool/PBS/sched_logs

The summaryDir entry specifies the directory where summary files
will be written. The directory specified in this entry is used by both
the stageSummary and the execSummary options.

The default directory is /usr/spool/PBS/sched_logs

stageSummary stageSummary=yes

This is a yes/no entry that will tell the UnderLord whether it should
write a sorting summary report to an output file in the summaryDir.
If this flag is set to “yes”, then whenever the summary period expires
the UnderLord will write a summary describing the current
conditions (utilization, priority, etc) under which sorting decisions are
being made. This is a useful tool for fine-tuning the parameters used
by the various sort stages.

The text file that is generated by this option is recreated every 24
hours and has a date oriented name: yyyymmdd.sorting.

execSummary execSummary=yes

This is a yes/no entry that will tell the UnderLord whether it should
periodically report on projected start/completion times for jobs in the
queue. This report can be used to determine when jobs are actually
projected to be run.

The text file that is generated by this option is recreated every 24
hours and has a date oriented name: yyyymmdd.summary.

accountingDir accountingDir=/usr/spool/PBS/server_priv/accounting

This is the directory where the server's ACCOUNTING logs are
located. As you'll note, the scheduler's need to access the server's
accounting logs in the server_priv directory is one of the reasons that
it must be executed on the same host as the PBS server.

maxHistory maxHistory=14

This is the number of days of history that should be initially retrieved
from the server log database.
4

maxWallHours maxWallHours=200

Once a job in the accounting database accrues this much wall time
without having an end event in the log, it is assumed to be a lost job.
The job will be eliminated from the internal database to prevent it
from skewing the weight computations.

[Job Duration
Stage] Options

Since the UnderLord is a multi-stage scheduler, each scheduling stage has specific configuration
options that define its behavior. This section contains entries that define the characteristics of the
Job Duration Stage of the scheduling process.

weight weight=1

The weight entry defines the significance of the Job Duration Stage in
relationship to all other stages in the scheduling process. If this value
is 0, then the stage will have no impact on job scheduling.

The default value is 1.0.

lowerBound lowerBound=1:00

Since all jobs are fitted to a curve, the lowerBound identifies the
duration (in seconds) that corresponds to the bottom 5% of the curve.
All values less than the lowerBound will be fitted asymptotically
toward 0. Those values between the lowerBound and upperBound
will be fitted linearly between the two values.

The default value is 1:00 (1 minute).

upperBound upperBound=24:00:00

The upperBound identifies the durations (in seconds) that
corresponds to the upper 95% of the curve. All values greater than the
upperBound will be fitted asymptotically toward 1.

The default value is 24:00:00 (1 day).

countProcs countProcs=yes

This is a yes/no entry that defines whether the Job Duration Stage
should multiply the job’s duration by the number of processors
requested.

The default value is yes.

[Job Age Stage]
Options

This section contains entries that define the characteristics of the Job Age Stage of the scheduling
process.

weight weight=1

The weight entry defines the significance of the Job Age Stage in
relationship to all other stages in the scheduling process. If this value
is 0, then the stage will have no impact on job scheduling.

The default value is 1.0.
5

lowerBound lowerBound=1:00

Since all jobs are fitted to a curve, the lowerBound identifies the time
in queue (in seconds) that corresponds to the bottom 5% of the curve.
All values less than the lowerBound will be fitted asymptotically
toward 0. Those values between the lowerBound and upperBound
will be fitted linearly between the two values.

The default value is 1:00 (1 minute).

upperBound upperBound=24:00:00

The upperBound identifies the time in queue (in seconds) that
corresponds to the upper 95% of the curve. All values greater than the
upperBound will be fitted asymptotically toward 1.

The default value is 24:00:00 (1 day).

[User Priority
Stage] Options

This section contains entries that define the characteristics of the User Priority Stage of the
scheduling process.

Note: User priority is the priority value that the user applies to each job that he or she submits. This
value and this stage does not influence the scheduling of jobs submitted by different users.

weight weight=1

The weight entry defines the significance of the User Priority Stage in
relationship to all other stages in the scheduling process. If this value
is 0, then the stage will have no impact on job scheduling.

The default value is 1.0.

[Queue Priority
Stage] Options

This section contains entries that define the characteristics of the Queue Priority Stage of the
scheduling process. Using PBS, each queue is granted an integer priority. This stage considers that
priority to represent the queue’s fair share of system resources. Using historic and current data it
will increase or decrease the queue’s weight depending on the amount of system resources that its’s
jobs have consumed. Considered resources include walltime, cpu time, and number of jobs
executed. The system administrator may change the significance of any of these factors by altering
the appropriate parameters in this section.

weight weight=1

The weight entry defines the significance of the Queue Priority Stage
in relationship to all other stages in the scheduling process. If this
value is 0, then the stage will have no impact on job scheduling.

The default value is 1.0.

wallTimeFactor wallTimeFactor=1.0

The significance that the queue's accumulated walltime will have in
the formula used to compute the queue's priority.

The default value is 1.0.

cpuTimeFactor cpuTimeFactor=1.0

The significance that the queue's accumulated CPU time will have in
the formula used to compute priority.

The default value is 1.0.
6

runJobFactor runJobFactor=1.0

The significance that the queue's accumulated number of running
jobs will have in the formula used to compute priority.

The default value is 1.0.

recentJobThreshold recentJobThreshold=24:00:00

A time value given in hh:mm:ss format. This value is the amount of
time following job completion that a job is considered recent.

Typically one day (24:00:00).

oldJobThreshold oldJobThreshold=168:00:00

A time value given in hh:mm:ss format. Once the time following a
jobs completion is greater than this value, that jobs statistics will no
longer be considered in calculating the queue's priority.

Note: The PBS_ServerDatabase class purges job records after two
weeks. Using an oldJobThreshold longer than two weeks will be
ineffective without first modifying the PBS_ServerDatabase class.

Typically one week (168:00:00)

oldFactor oldFactor=0.10

The multiplier that will be used to decrease the significance of old jobs
(jobs that have ended between the oldJobThreshold and the
recentJobThreshold).

By default this value is 0.10.

[User Share
Stage] Options

This section contains entries that define the characteristics of the User Share Stage of the
scheduling process. This stage is very similar to the Queue Priority stage. It considers the user share
value to represent the user’s fair share of system resources. Using historic and current data it will
increase or decrease the user’s weight depending on the amount of system resources that his jobs
have consumed. Considered resources include walltime, cpu time, and number of jobs executed.
The system administrator may change the significance of any of these factors by altering the
appropriate parameters in this section.

Note: Each user’s share of system resources is specified in the Fair Share section.

weight weight=1

The weight entry defines the significance of the User Share Stage in
relationship to all other stages in the scheduling process. If this value
is 0, then the stage will have no impact on job scheduling.

The default value is 1.0.

wallTimeFactor wallTimeFactor=1.0

The significance that the user's accumulated walltime will have in the
formula used to compute the his fair share of resources.

The default value is 1.0.

cpuTimeFactor cpuTimeFactor=1.0

The significance that the users's accumulated CPU time will have in
the formula used to compute the his fair share of resources.
7

The default value is 1.0.

runJobFactor runJobFactor=1.0

The significance that the user's accumulated number of running jobs
will have in the formula used to compute his fair share of resources.

The default value is 1.0.

recentJobThreshold recentJobThreshold=24:00:00

A time value given in hh:mm:ss format. This value is the amount of
time following job completion that a job is considered recent.

Typically one day (24:00:00).

oldJobThreshold oldJobThreshold=168:00:00

A time value given in hh:mm:ss format. Once the time following a
jobs completion is greater than this value, that jobs statistics will no
longer be considered in calculating the user's fair share of resources.

Note: The PBS_ServerDatabase class purges job records after two weeks.
Using an oldJobThreshold longer than two weeks will be ineffective
without first modifying the PBS_ServerDatabase class.

Typically one week (168:00:00)

oldFactor oldFactor=0.10

The multiplier that will be used to decrease the significance of old jobs
(jobs that have ended between the oldJobThreshold and the
recentJobThreshold).

By default this value is 0.10.

[Fair Share]
Options

This section contains entries that define each user's fair share of system resources. The default entry
will be applied to any user who does not have an entry in this section. In the event that the user does
not have an entry and there is no default entry defined, then the user will arbitrarily be assigned a
share of 1.0.

default default=1.0

This is the default share of system resources that will be applied to any
user who does not have a specifically assigned share.

[Restricted
Nodes] Options

One of the most notable features of the UnderLord scheduler is it’s ability to associate a list of
nodes with a specific queue. If the system administrator wants to bind a node to one or more
specific queues, he should make an entry here with the name of the node followed by the queues
that are authorized to use it. The entries in this section are of the form:

node node=queue1,queue2

The word 'node' is not an entry keyword in this section. 'node'
should be replaced with the name of the node that the queue should
be associated with.

Note: If a queue is not mention in this section, then it is assumed to have
access to all available nodes. Also, if a queue is identified for a node, then
all of the other nodes that are associated with it must also be listed as line
entries.
8

In this example, the queue Slave is only allowed to deploy jobs against
node hpc14b.

[Restricted Nodes]
hpc14b=Slave
9

5. How the UnderLord Sorts Jobs

General
Scheduler
Requirements

In general, a PBS scheduler is required to evaluate jobs that are waiting in one or more queues of a
PBS Server and determine which of these jobs should be executed next. The scheduler may
consider any number of parameters in making this decision, but, in the end, the aggregate job
selection over time should conform to a collection of scheduling policies that have been determined
by the site.

A generic site might have a policy stating that, over a period of time, all user's should have an equal
share of system resources. Other sites might stipulate that resources be divided evenly (or
unevenly) based on the queue from which a job originates.

While it is not the job of the scheduler to dictate policy, it should have the capabilities to implement
whatever reasonable scheduling policy the site may implement. Within the UnderLord scheduler,
we do this by using a multi-stage weighting algorithm.

Multi-Stage Job
Weighting

Early on in our design, we realized that there were many factors for the scheduler to consider
during job sorting. Jobs might be sorted based on their time in queue, projected duration, number of
nodes requested, the queue or user's past utilization of resources or many other factors.
Unfortunately, it is difficult to prioritize this list of factors because the importance of any single
statistic might change based on the current job mix.

For instance: If we developed a scheduling algorithm that considered each job's projected duration
and it's time in queue (giving priority to the duration factor), then shorter jobs would always run
first. The time in queue factor would only be considered when two competing jobs had the same
projected duration. In the long term this would be brutally unfair to a job that is only nominally
longer than it's competitors. In fact, the longer job might wait in the queue indefinitely.

Consequently, our example algorithm must have the intelligence to consider both duration and time
in queue simultaneously when making scheduling decisions. It must determine when a generally
less significant factor (such as time in queue) has reached sufficient magnitude to become the
driving term. While this approach is relatively simple when dealing with two factors, it becomes
more difficult as more sort terms are added.

To address this issue, the UnderLord uses a series of sorting stage objects (derived from the C++
UnderLordStage class) that examine a specific sort factor (such as duration) and assign each job a
weight that varies between 0 and 1.0 --- with 1.0 being the most significant.

Bounding the
Curve

Having an infinite number of values between 0 and 1.0, it is necessary for the sorting stage to fit its
values into that range such that a statistically outlying value does not overwhelm the significance of
the other values. To solve this problem, the UnderLord uses a curve fitting scheme where an upper
and lower boundary of significance is specified and these values are used to bound the curve.

Computing the
Raw Weight

It is assumed that each job has a series of parameters that can be used for sorting. Conceivably,
these numeric parameters may fall anywhere between negative and positive infinity. To most
effectively use these values it is necessary to restrict them to a specific range. For ease of
computation, these values will be processed to conform to a curve that exists between 0 and 1.

To provide the system administrator a degree of control regarding the distribution of values within
this curve, he will be able to express an upper significance boundary (USB) and a lower
significance boundary (LSB). The values that occur between the LSB and USB will represent 90
percent of the region between 0 and 1 and will be linear. Values that occur outside of that boundary
will taper asymptotically toward the overall upper and lower boundaries of 0 and 1.

In order to achieve this effect, two formulas will need to be selectively applied to the unprocessed
job parameters. A Central Formula will be applied to values that occur between the LSB and USB
range and a Boundary Formula will be applied to values that occur outside of that range.
10

Note: During the application of these initial formulae, the curve that is created is between -1 and 1.
This curve will be adjusted to the proper range (0 to 1) during a later calculation.

The Central Formula The central formula will force all values between the LSB and
USB to be distributed linearly within the central 90% of the curve.
Consequently, a parameter that is equal to the lower significance
boundary will be assigned a raw weight of -0.9 and a parameter
that is equal to the upper significance boundary will be assigned a
raw weight of 0.9. The following formula can be used to generate
these values:

The Boundary Formula The body formula is applied to all parameter values that fall
outside of the range between LSB and USB. In order to form a
continuous curve, it is structured to coincide with the weights
generated by the central formula at the upper and lower
significance boundaries. The following formula is used to
generate these values:

The Raw Curve When the results of these two formulae are combined it produces a curve that can be used to
represent all of the values for a specific parameter within the range from -1 to 1. The following
diagram shows the curves produced by these equations.

Figure 2: Raw Curves Produced by the Central and Boundary Formulae

LSB)-10(USB
LSB)9(USB - 18x

 weight raw
+

=

9
)(

)(2

(-2
 weight raw

LSBUSB
LSBUSBx

LSB)USBx
−

++−

+
=

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Central Formula

Boundary Formula

Combined Formulas
11

Computing the
Processed
Weight Factor

Now that the job's weight has been fitted to a raw curve within a bounded region, it will be
necessary to scale this curve to give some factors greater significance than others. Once the raw
weights for all sort stages have been computed and scaled they will be multiplied together to
produce a total weight for the job.

Because the use of negative values will only impede the computation of weights, the processed
weight curves will exist in the range between 0 and 1. To provide greater significance to a specific
type of parameter, its overall consumption of this range will be increased or decreased depending
on its weight. We’ll accomplish this by introducing a lower weight boundary.

The Lower
Weight
Boundary

To change the significance of various sorting stages, the system administrator will apply a positive
integer weight to each of the stages. The higher the weight, the greater the impact that stage will
have on the scheduling outcome. A weight of 0 indicates that the stage has no effect. This user
defined weight factor will be used to determine the range of the processed weight curve for each
sorting stage.

The following formula is used to compute the lower weight boundary (LWB) for a specific sorting
stage. Note that the upper boundary is always 1.

Fitting the Raw
Curve to the
Weighted Curve

The processed weight curve is generated by compressing the raw curve for the specific sorting
stage to fit between the range specified by the stage's lower weight boundary and 1. The following
formula can be used to process the raw value.

The following chart shows the effect of applying various user-defined weights to identical data.
You'll note from the chart that a weight of 0 has resulted in a horizontal line at the value 1,
rendering that parameter ineffective.

Figure 3: A Raw Curve After Processing with Various Weights

∑=
weights

1
 boundaryweight lower

 - weight

LWB LWB)-(1 *) 21)x((valueweight processed

boundaryweight lower LWB

value raw x

++=
=

=

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

R a w V a l u e s

W e ig h t : 0

W e ig h t : 1

W e ig h t : 5

W e ig h t : 1 0
12

6. Building a Sorting Stage for the UnderLord

The
UnderLordStage
Base Class

As mentioned earlier, a sorting stage is merely a C++ class that is derived from the UnderLordStage
object. The header file for this base class is provided in the include directory of the source
distribution. In order to build a new sorting stage, it will be necessary to derive two methods for
your new class: getWeight and compute.

getWeight double getWeight (void)

The getWeight method is called by the scheduler to determine the
weight that has been assigned to this particular scheduling stage. The
weight can be a static value that you embed in the class or, preferably,
it can be a dynamic value that is read from the configuration file when
the scheduler is started or reinitialized with a SIGHUP.

If you wish to use the configuration file as a repository for storing
weights for your sorting stages, you should examine some of the
sample stages that are provided with the UnderLord distribution. An
API for accessing data in the configuration file is provided in the
PBS_Parameters.h header file in the include subdirectory of the source
distribution. As a simple illustration, the following calls are used to
retrieve the weight entry for the User Share Stage.

Figure 4: Reading Weight Factor from Configuration File

compute double compute (PBS_Jobs ** j, size_t cnt, double weightSum)

The compute method is the workhorse of the sorting stage. It is called
with an array of pointers to PBS_Job objects, a count of those objects,
and the sum of the weights of all sorting stages that will be applied to
these jobs.

The class will compute a processed weight for each job in this list. After
the weight has been computed, it will call the getWeight method of
the PBS_Job object to obtain the existing weight that was assigned by
the other sorting stages. It should multiply the existing weight by the
locally generated weight and then call the PBS_Job's setWeight
method to install the resulting value.

For an extended illustration of how this works, see the source code for
one of the sorting stages that were provided with the UnderLord
distribution.

Sample Sorting
Stage

The following source code illustrates a sorting stage that sorts jobs based on their duration. This
stage is provided as part of the UnderLord's source distribution.

PBS_Parameters & params =
PBS_Parameters::attach();

double weight = params.getConfigFloat
("User Share Stage", "weight", 1.0);
13

Figure 5: DurationStage.h - C++ header file for the Job Duration Stage

#ifndef _DURATION_STAGE_H_
#define _DURATION_STAGE_H_ 1

#include <UnderLordStage.h>
#include <PBS_Parameters.h>

class DurationStage : public UnderLordStage
{
public:

inline DurationStage (void);
inline double getWeight (void);
void compute (PBS_Job ** jobs,

 size_t jobCnt,
 double weightSum);

};

// **
// * DurationStage::DurationStage :
// *This is the constructor for the DurationStage. It
// *calls the constructor for the UnderLordStage object.
// **
inline DurationStage::DurationStage (void)

: UnderLordStage ()
{
}

// **
// * DurationStage::getWeight :
// *Returns the weight of this stage in relationship to all
// *other stages.
// **
inline double DurationStage::getWeight (void)

{
// ***
// * Read the user defined weight for this stage from the
// * scheduler.cfg file located in /usr/spool/PBS
// ***
double weight =

PBS_Parameters::attach().getConfigFloat
("Job Duration Stage", "weight", 1.0);

// ***
// * Return the weight as a positive floating point value.
// ***
return (weight<0)?0.0:weight;
}

#endif /* _DURATION_STAGE_H_ */
14

Figure 6: DurationStage.cc - C++ source file for the Job Duration Stage
#include <DurationStage.h>
#include <SchedStatic.h>
#include <math.h>

// **
// * DurationStage::compute :
// * This stage of the scheduling algorithm will compute the
// * weight of an individual job based on the amount of
// * walltime that it has requested.
// *
// * jobs :The array of PBS_Jobs that are being weighted.
// * jobCnt :The number of PBS_Jobs in the array.
// * weightSum :The sum of the weights of all stages that
// * will be used.
// **
void DurationStage::compute

(PBS_Job ** jobs, size_t jobCnt, double weightSum)
{
// **
// * First requested the upper and lower bounds of
// * significance from the configuration file. When each
// * value is tabulated and fitted to a curve, 90% of the
// * curve is represented by those values that occur between
// * the lower significance boundary and the upper
// * significance boundary.
// *
// * Jobs whose durations are shorter than the lower
// * significance boundary will be fit in the bottom 5% of
// * the curve, and those whose durations is greater than
// * the upper significance boundary will be confined to the
// * top 5% of the curve.
// *
// * The time expressed in the configuration file is given
// * as whole seconds. By default the lower significance
// * boundary is 1 minute and the upper significance
// * boundary is 24 hours.
// **
PBS_Parameters & params = PBS_Parameters::attach();
double LSB;
double USB;

LSB = SchedStatic::stringToDuration(
params.getConfigString(

"Job Duration Stage",
"lowerBound",
NULL), 60);

USB = SchedStatic::stringToDuration(
params.getConfigString(

"Job Duration Stage",
"upperBound",
NULL), 24*3600);
15

Figure 6: DurationStage.cc (Cont) - C++ source file for the Job Duration Stage

// **
// * In order to insure a decent curve shape and proper
// * behaviour, The USB and LSB value MUST BE POSITIVE, and
// * the LSB must be less than the USB. For values that are
// * out of bounds I'm assigning a default of 24 hours for
// * the USB and USB/10 for the LSB.
// **
if(USB < 0) USB = 24*3600;
if(LSB<0 || LSB>USB) LSB = USB/10.0;

// **
// * Next, request the countProcs flag from the
// * configuration file. It is a yes or no value that
// * indicate whether the number of processors should be
// * considered when calculating the overall job duration.
// **
int countProcs = !strcasecmp

("yes", params.getConfigString
("Job Duration Stage", "countProcs", "yes"));

// **
// * Next we must obtain the weight of this stage (relative
// * to all other stages that will be used. By default all
// * stages are given a weight of 1.
// **
double weight = getWeight();

// **
// * If the stage weight is less than or equal to 0, then
// * the stage will have no effect on the outcome and we
// * will return without computing it.
// **
if(weight <= 0 || weightSum <= 0) return;

// **
// * If the weight is greater than 0, then we will compute
// * the lower weight boundary using this value and the
// * weightSum value. The LWB indicates the bottom of the
// * curve for this stage... Note: all stages will fit their
// * values to a curve between LWB and 1.0.
// **
double LWB = 1.0-(weight/weightSum);

// **
// * Now we'll walk through each of the jobs and apply the
// * weight that is appropriate for its job duration.
// **
for(size_t idx=0; idx<jobCnt; idx++)

{
double rawWeight = 0;

// **
// * Read the job's duration from the job.
// **
double duration = jobs[idx]->getDuration();
16

Figure 6: DurationStage.cc (Cont) - C++ source file for the Job Duration Stage

// **
// * If countProcs is TRUE, then multiply the duration
// * times the number of processors requested.
// **
if(countProcs) duration*=jobs[idx]->getProcCnt();

// **
// * If the duration is between the lower significance
// * boundary and the upper significance boundary, then
// * we'll use the 'Central Formula' to compute its
// * weight.
// **
if(LSB<=duration && duration<=USB)

{
rawWeight =-(18.0*duration - 9.0*(USB+LSB)) /

 (10.0*(USB-LSB));
}

// **
// * Otherwise use the boundary formula. Note the
// * variable t is used to reduce the compute time for
// * the operation and to simplify the appearance of the
// * code.
// **
else

{
double t = (2.0*duration - (USB+LSB));
rawWeight = -(t / (fabs(t)+(USB-LSB)/9));
}

// **
// * Next use ths raw weight in conjunction with the
// * lower weight boundary to fit the curve within the
// * desired region and obtain the processed weight of
// * this job in this stage.
// **
double procWeight = ((rawWeight+1.0)/2.0)*(1-LWB)+LWB;

// **
// * Multiply this value against the current weight of
// * the job to introduce this stage's influence on the
// * overall weight of the job. Note that if the initial
// * weight is less than (or equal to) 0, it is restored
// * to 1 - making this stage the only one of any
// * significance.
// **
double jobWeight;

if((jobWeight = jobs[idx]->getWeight())<=0)
{
jobWeight=1.0;
}

jobs[idx]->setWeight(jobWeight * procWeight);
}

}

17

Adding the New
Stage to the
UnderLord

After the code for the new sorting stage is completed, the next step is to add it to the list of sorting
stages that will be used by the UnderLord. This is accomplished by modifying the source code
SchedMain.cc in the UnderLord source distribution.

In the schedule function of this file, the UnderLord object is initially created and then assigned to
the underlord pointer. After construction, the developer should call the addStage method to add a
new sorting stage to the UnderLord. The example below shows an excerpt from the schedule
method with the critical code for adding the new JobDurationStage to the scheduler.

Note: Once a scheduling stage has been allocated and assigned to the scheduler, it becomes the
property of the UnderLord and should not be directly accessed afterwards. These objects will be
automatically destroyed when the scheduler is shutdown or reinitialized.

Figure 7: Excerpts from SchedMain.cc - Adding a new stage to the UnderLord

extern "C" int schedule(int cmd, int sd)
{
...
if(underlord == NULL)

{
underlord = new UnderLord();
underlord->addStage(new DurationStage());
}

...
}

18

7. Match-Making: Periods of Availability on a Single Node

Match-Making
Objectives

One of the most difficult tasks in designing a scheduling system is that of matching the waiting jobs
to the available resources. The scheduler must balance the objective of finding the 'perfect match'
for optimal system performance against job priorities established during the sorting stage and still
be able to complete this analysis in a reasonable amount of time. In the end, the goal of match-
making is to maintain high system utilization, conform to the site’s scheduling policies, and not
starve jobs with unusual or large system requirements --- t'aint a simple problem.

The
MatchMatrix
Solution

The UnderLord uses an extensive set of C++ classes to develop an object-oriented solution to
matchmaking. Unfortunately, the complexity of this system of objects prevents them being fully
explained here. For those interested, an OMT object model illustrating the structure and
organization of these classes is available from the following address:

http://www.jlab.org/hpc/Underlord/MatchMatrix.pdf

Populating the
ClusterNode
Object with
Running Jobs

At the beginning of the scheduling cycle, the UnderLord will start by collecting a list of available
nodes (those that are not down, offline, reserved or in an unknown state. It will read the attributes
and the number of processors of these nodes (as defined in the PBS configuration files) and will use
this information to construct a C++ ClusterNode object. The ClusterNode object is the key
interface that the scheduler will use to perform match-making.

The next step in this process is to determine the periods of availability on each node. This is done
by obtaining a list of executing jobs and assigning these jobs to the ClusterNode objects. Since
there is no way to be certain when a job will really end, we have to rely on the information provided
by the user to project the job’s duration. Once all running jobs have been assigned to the
ClusterNodes, there will be empty spaces where jobs are not actively being executed... these are
called periods of availability.

Periods of
Availability

Due to the dynamic nature of batch processing, the duration and start times of these periods of
availability can be any shape or size. The only certainty is that the last period of availability on any
node will start after the last job completes and will extend to infinity. While obvious enough, this is
useful information because it means that, at some point in the future, the entire cluster will be
available and is schedulable. Consequently, any job that the cluster is capable of running should be
schedulable regardless of the current number or type of jobs in execution.

In the event that a job requires more than one processor per node, then the UnderLord must provide
overlapping periods of availability that represent free time across multiple processors. The
following series of illustrations will demonstrate the algorithm that the UnderLord uses to catalog
overlapping periods of availability.
19

Finding
Overlapping
Periods of
Availability

Assume that the following collection represents the free time slots available on the 4 processors of a
single node - each color representing one of the processors.

Figure 8: Available time slots on a 4 processor system

After extracting these periods of availability, the UnderLord has placed them into an ordered list
(ordered by start time, then duration). Once this list has been created, the scheduler may then walk
through it and create a list of periods of availability that extend across one or more processors.

Note that the UnderLord will not maintain a list of redundant periods. In the event that one period is
completely overlapped by another, the second period will be disregarded. This has no ill effect on
scheduling since a job will only occupy a node once, regardless of the number of processors
available on that node.

Periods of
Availability on
One Processor

The diagram below illustrates the four periods of availability that can be extracted from this node
when only one processor has been requested.

Figure 9: Periods of availability on one processor

Now

Now
20

Periods of
Availability on
Two Processors

When the number of processors requested increases to two, the number of periods of availability
increases to six, but the duration of each period decreases somewhat. Additionally, the beginning of
the earliest, infinite period of availability becomes later.

Figure 10: Periods of availability on two processors

Periods of
Availability on
Four Processors

This effect becomes more apparent when the UnderLord extracts periods of availability in groups
of four processors.

Figure 11: Periods of availability on four processors

Improving the
Performance of
these Operations

As you might imagine, the initial generation of these lists can be a very time consuming process.
This situation is worsened if you are working with a system that has many processors per node and,
consequently, a greater number of permutations.

The UnderLord optimizes these operations by only generating each group of lists when a job
requests a specific number of processors. Additionally, when a new job is scheduled on a node,
each of its lists of periods of availability is marked as dirty. The list is only refreshed when another
job with the same number of requested processors needs to be processed.

For example, imagine that your queue contains one job that required four processors per node and
ten jobs that require two processors per node. The list of periods of availability for four processors
will be created once, used and then never updated. The list of periods of availability for two
processors will be created and then will be incrementally updated each time a job is assigned to one
of the nodes. The lists for one and three processors will never be created.

Now

Now
21

As an additional optimization, at the beginning of the scheduling cycle the UnderLord will
determine the duration of the briefest job in the queue. When there is no immediate period of
availability (all nodes are active) or when the duration of the longest immediate period of
availability is shorter than the shortest job, then the scheduling cycle will be terminated and no
other jobs will be evaluated for placement.

Note: In the event that the system administrator is using either the execSummary or the
stageSummary option, whenever the summary period expires the scheduler will compute the
projected execution time for every job in the system. For this reason it is important to make the
summaryRate high enough that system performance will not be impacted by these operations. The
default summaryRate that is specified in the UnderLord’s configuration file is ten minutes.
22

8. Match-Making: Periods of Deployment on Multiple Nodes

Parallel
Objectives

When scheduling jobs in a simple batch environment, it is not necessary to address the issue of
scheduling concurrent time across multiple nodes. However, in parallel environments this is a
critical element of scheduling. In the UnderLord scheduler we have chosen to use a histogram
approach to scheduling on multiple nodes that is very similar to that used to find overlapping
periods of availability on multi-processor nodes.

When scheduling concurrent time on multiple nodes, the periods of availability are still generated
for each node in the system. Once these lists are generated, the scheduler will begin querying each
node for a list of time slots where the job can fit. This approach is different than you might
expect...

Earlier, we generated simple lists of periods when the node was available and returned them as time
intervals. When performing this part of the match-making process, we will pass the projected
duration of each job to the scheduler and it will return a list of time intervals in which the job may
be started and still complete within the period of availability on that node. These intervals are
called the periods of deployment.

Periods of
Deployment

The illustration below shows the periods of availability on a node, and the periods of deployment
that are returned for a job that has a projected duration of one hour. Note that each line on the chart
represents one hour of walltime.

Figure 12: Periods of deployment on one processor

In the illustration above, you'll note that while there are four periods of availability there are only
two periods of deployment. This is because the period of deployment is not associated with a
specific processor on the node --- that information will be garnered when the job is sent to the node
to be scheduled. If two periods of availability overlap sufficiently (by at least the duration of the
job) then the period of deployment is continuous. Using this approach may greatly decrease the
number of time intervals that must be evaluated during the scheduling cycle.

Once the periods of deployment have been obtained from all available nodes, these periods will
again be linked together into an ordered list (ordered by start time and sub-ordered by duration).
The scheduler can then walk this list to locate the earliest group of nodes that are sufficient to run
the job.

Now

P
er
io
ds

of
D
ep
lo
ym

en
t

P
er
io
ds

of
Av

ai
la
bi
li
ty
23

Note that since each of these time intervals represents a period in which the job may be started,
only the most minimal overlap of these periods is required. The diagram below shows how the
periods of deployment on four nodes are evaluated to find the earliest time that a job can be
executed.

Figure 13: Overlapping periods of deployment on four nodes

The earliest time interval in which the job can be started is the small magenta/green combination at
the bottom. While this may not appear to be very much time, remember that these regions
represented the available start times only.

Now

O
ve
rl
ap
pi
ng

P
er
io
ds

of
D
ep
lo
ym

en
t

24

9. Match-Making: Jobs Requiring Multiple Node Types

What are Node
Types?

Each node in a batch cluster has specific attributes associated with it. A node with a particularly
large data disk may have a BIGDISK attribute, while one with 512 MBytes of RAM may have a
MEM512 attribute. The Portable Batch System allows you to specify the number and types of
nodes that a job requires.

The UnderLord allows the caller to request up to 32 different node types for each job. The
scheduler will make an array of periods of deployment for each node type. It will then collect the
number and types of nodes from these lists, using the same histogram approach that was described
earlier.

Pitfalls of
Multiple Node
Types

I should note that there are scenarios when requesting multiple node types when the scheduler
might fail to satisfy the request, even though there are sufficient nodes available. For instance, if
several of the nodes have overlapping node types, the scheduler might assign a BIGDISK/
MEM512 node to the BIGDISK list of nodes and, inadvertently, not have sufficient MEM512
nodes to do the job. In an attempt to address this, if the scheduler cannot locate sufficient nodes for
a job with multiple node types, it will reorder the node types and try again... hoping for a better
outcome. The user can improve the chances of successfully deploying multiple node type jobs by
listing the rarest node types first.

Because of the inherent difficulty and time-consuming nature of deploying jobs with multiple node
types, many scheduling systems do not support it. We intend to develop a more comprehensive
solution to this problem in future versions of this product.
25

10. Future Directions

Objectives As mentioned earlier, the UnderLord was originally designed as the site level scheduler for a multi-
site meta-facility. The design, construction and implementation of this meta-facility remains one of
our primary objectives. Many of our other goals for future development are in line with achieving
this overall mission.

The following is a list of issues that we intend to address in future releases.

1. Enhance reliability of the scheduler through continued testing on increasingly larger
systems with a more diverse job mix.

2. Introduce an easy interface for developers to reserve periods of time on a node or nodes.

3. Allow the system administrator to reserve periods of time during which only certain jobs
or certain classes of jobs can be run.

4. Develop a 'bag of nodes' solution. In this design, whenever a user requests a specific
number of nodes (8, 16, 32, 64), they will always be allocated in predefined groups. This
solution is being developed to ensure the optimal performance of high speed
interconnects that are being used in our cluster.

5. Develop a rating system that allows the scheduler to identify the cost of moving a job to
another site for processing. This would include the cost of relocating data files as well as
simply relocating the job.

6. Create XML based reporting tools that generate summaries of how and why the
UnderLord is scheduling jobs. ASCII text summary and projection files are already being
generated, however, XML files can easily be manipulated and displayed on web pages.

7. Develop a graphical user interface allowing the system administrator to easily modify and
update scheduler parameters to dynamically tune the behavior of the system.

8. Allow the user to specify optional node combinations and durations, i.e: 32 nodes for 1
hour, or 16 nodes for 2 hours, etc.

9. Develop an improved algorithm for handing requests that include multiple node types.
26

	ADDRESS - The UnderLord Scheduler
	HEADING1-PRE - i. Table of Contents
	HEADING1TOC - 1. Introduction 1
	HEADING1TOC - 2. Building, Installing and Starting the UnderLord 2
	HEADING1TOC - 3. The UnderLord Configuration File 3
	HEADING1TOC - 4. Configuration Options for the UnderLord 4
	HEADING1TOC - 5. How the UnderLord Sorts Jobs 10
	HEADING1TOC - 6. Building a Sorting Stage for the UnderLord 13
	HEADING1TOC - 7. Match-Making: Periods of Availability on a Single Node 19
	HEADING1TOC - 8. Match-Making: Periods of Deployment on Multiple Nodes 23
	HEADING1TOC - 9. Match-Making: Jobs Requiring Multiple Node Types 25
	HEADING1TOC - 10. Future Directions 26

	HEADING1-PRE - ii. List of Figures
	FIGURELOF - Figure 1. Sample UnderLord Configuration File 3
	FIGURELOF - Figure 2. Raw Curves Produced by the Central and Boundary Formulae 11
	FIGURELOF - Figure 3. A Raw Curve After Processing with Various Weights 12
	FIGURELOF - Figure 4. Reading Weight Factor from Configuration File 13
	FIGURELOF - Figure 5. DurationStage.h - C++ header file for the Job Duration Stage 14
	FIGURELOF - Figure 6. DurationStage.cc - C++ source file for the Job Duration Stage 15
	FIGURELOF - Figure 7. Excerpts from SchedMain.cc - Adding a new stage to the UnderLord 18
	FIGURELOF - Figure 8. Available time slots on a 4 processor system 20
	FIGURELOF - Figure 9. Periods of availability on one processor 20
	FIGURELOF - Figure 10. Periods of availability on two processors 21
	FIGURELOF - Figure 11. Periods of availability on four processors 21
	FIGURELOF - Figure 12. Periods of deployment on one processor 23
	FIGURELOF - Figure 13. Overlapping periods of deployment on four nodes 24

	HEADING1 - 1. Introduction
	UHEADING2 - Project Overview
	FUNC_NAME - PBS Server Library
	FUNC_NAME - UnderLord Library

	UHEADING2 - Document Objectives
	UHEADING2 - Tested Systems

	HEADING1 - 2. Building, Installing and Starting the UnderLord
	UHEADING2 - Overview
	UHEADING2 - Obtaining the Distribution
	UHEADING2 - Prepare the Compilation Environment
	FUNC_NAME - PBS_SRC
	FUNC_NAME - PBS_HOME

	UHEADING2 - Update PBS Header Files
	UHEADING2 - Build and Install the UnderLord

	HEADING1 - 3. The UnderLord Configuration File
	UHEADING2 - Configuration File Location
	UHEADING2 - Configuration File Format
	FUNC_NAME - Section Headers
	FUNC_PROTO - example: [Section Header]

	FUNC_NAME - Entries
	FUNC_PROTO - example: entry=value

	FUNC_NAME - Comments
	FUNC_PROTO - example: #comment
	FIGURE - Figure 1: Sample UnderLord Configuration File

	HEADING1 - 4. Configuration Options for the UnderLord
	UHEADING2 - [Scheduler] Options
	FUNC_NAME - summaryRate
	FUNC_PROTO - summaryRate=10:00

	FUNC_NAME - summaryDir
	FUNC_PROTO - summaryDir=/usr/spool/PBS/sched_logs

	FUNC_NAME - stageSummary
	FUNC_PROTO - stageSummary=yes

	FUNC_NAME - execSummary
	FUNC_PROTO - execSummary=yes

	FUNC_NAME - accountingDir
	FUNC_PROTO - accountingDir=/usr/spool/PBS/server_priv/accounting

	FUNC_NAME - maxHistory
	FUNC_PROTO - maxHistory=14

	FUNC_NAME - maxWallHours
	FUNC_PROTO - maxWallHours=200

	UHEADING2 - [Job Duration Stage] Options
	FUNC_NAME - weight
	FUNC_PROTO - weight=1

	FUNC_NAME - lowerBound
	FUNC_PROTO - lowerBound=1:00

	FUNC_NAME - upperBound
	FUNC_PROTO - upperBound=24:00:00

	FUNC_NAME - countProcs
	FUNC_PROTO - countProcs=yes

	UHEADING2 - [Job Age Stage] Options
	FUNC_NAME - weight
	FUNC_PROTO - weight=1

	FUNC_NAME - lowerBound
	FUNC_PROTO - lowerBound=1:00

	FUNC_NAME - upperBound
	FUNC_PROTO - upperBound=24:00:00

	UHEADING2 - [User Priority Stage] Options
	FUNC_NAME - weight
	FUNC_PROTO - weight=1

	UHEADING2 - [Queue Priority Stage] Options
	FUNC_NAME - weight
	FUNC_PROTO - weight=1

	FUNC_NAME - wallTimeFactor
	FUNC_PROTO - wallTimeFactor=1.0

	FUNC_NAME - cpuTimeFactor
	FUNC_PROTO - cpuTimeFactor=1.0

	FUNC_NAME - runJobFactor
	FUNC_PROTO - runJobFactor=1.0

	FUNC_NAME - recentJobThreshold
	FUNC_PROTO - recentJobThreshold=24:00:00

	FUNC_NAME - oldJobThreshold
	FUNC_PROTO - oldJobThreshold=168:00:00

	FUNC_NAME - oldFactor
	FUNC_PROTO - oldFactor=0.10

	UHEADING2 - [User Share Stage] Options
	FUNC_NAME - weight
	FUNC_PROTO - weight=1

	FUNC_NAME - wallTimeFactor
	FUNC_PROTO - wallTimeFactor=1.0

	FUNC_NAME - cpuTimeFactor
	FUNC_PROTO - cpuTimeFactor=1.0

	FUNC_NAME - runJobFactor
	FUNC_PROTO - runJobFactor=1.0

	FUNC_NAME - recentJobThreshold
	FUNC_PROTO - recentJobThreshold=24:00:00

	FUNC_NAME - oldJobThreshold
	FUNC_PROTO - oldJobThreshold=168:00:00

	FUNC_NAME - oldFactor
	FUNC_PROTO - oldFactor=0.10

	UHEADING2 - [Fair Share] Options
	FUNC_NAME - default
	FUNC_PROTO - default=1.0

	UHEADING2 - [Restricted Nodes] Options
	FUNC_NAME - node
	FUNC_PROTO - node=queue1,queue2

	HEADING1 - 5. How the UnderLord Sorts Jobs
	UHEADING2 - General Scheduler Requirements
	UHEADING2 - Multi-Stage Job Weighting
	UHEADING2 - Bounding the Curve
	UHEADING2 - Computing the Raw Weight
	FUNC_NAME - The Central Formula
	FUNC_NAME - The Boundary Formula

	UHEADING2 - The Raw Curve
	FIGURE - Figure 2: Raw Curves Produced by the Central and Boundary Formulae

	UHEADING2 - Computing the Processed Weight Factor
	UHEADING2 - The Lower Weight Boundary
	UHEADING2 - Fitting the Raw Curve to the Weighted Curve
	FIGURE - Figure 3: A Raw Curve After Processing with Various Weights

	HEADING1 - 6. Building a Sorting Stage for the UnderLord
	UHEADING2 - The UnderLordStage Base Class
	FUNC_NAME - getWeight
	FUNC_PROTO - double getWeight (void)
	FIGURE - Figure 4: Reading Weight Factor from Configuration File

	FUNC_NAME - compute
	FUNC_PROTO - double compute (PBS_Jobs ** j, size_t cnt, double weightSum)

	UHEADING2 - Sample Sorting Stage
	FIGURE - Figure 5: DurationStage.h - C++ header file for the Job Duration Stage
	FIGURE - Figure 6: DurationStage.cc - C++ source file for the Job Duration Stage
	FIGURE_CONT - Figure 6: DurationStage.cc (Cont) - C++ source file for the Job Duration Stage
	FIGURE_CONT - Figure 6: DurationStage.cc (Cont) - C++ source file for the Job Duration Stage

	UHEADING2 - Adding the New Stage to the UnderLord
	FIGURE - Figure 7: Excerpts from SchedMain.cc - Adding a new stage to the UnderLord

	HEADING1 - 7. Match-Making: Periods of Availability on a Single Node
	UHEADING2 - Match-Making Objectives
	UHEADING2 - The MatchMatrix Solution
	UHEADING2 - Populating the ClusterNode Object with Running Jobs
	UHEADING2 - Periods of Availability
	UHEADING2 - Finding Overlapping Periods of Availability
	FIGURE - Figure 8: Available time slots on a 4 processor system

	UHEADING2 - Periods of Availability on One Processor
	FIGURE - Figure 9: Periods of availability on one processor

	UHEADING2 - Periods of Availability on Two Processors
	FIGURE - Figure 10: Periods of availability on two processors

	UHEADING2 - Periods of Availability on Four Processors
	FIGURE - Figure 11: Periods of availability on four processors

	UHEADING2 - Improving the Performance of these Operations

	HEADING1 - 8. Match-Making: Periods of Deployment on Multiple Nodes
	UHEADING2 - Parallel Objectives
	UHEADING2 - Periods of Deployment
	FIGURE - Figure 12: Periods of deployment on one processor
	FIGURE - Figure 13: Overlapping periods of deployment on four nodes

	HEADING1 - 9. Match-Making: Jobs Requiring Multiple Node Types
	UHEADING2 - What are Node Types?
	UHEADING2 - Pitfalls of Multiple Node Types

	HEADING1 - 10. Future Directions
	UHEADING2 - Objectives
	NUMBERED - 1. Enhance reliability of the scheduler through continued testing on increasingly larg...
	NUMBERED - 2. Introduce an easy interface for developers to reserve periods of time on a node or ...
	NUMBERED - 3. Allow the system administrator to reserve periods of time during which only certain...
	NUMBERED - 4. Develop a 'bag of nodes' solution. In this design, whenever a user requests a speci...
	NUMBERED - 5. Develop a rating system that allows the scheduler to identify the cost of moving a ...
	NUMBERED - 6. Create XML based reporting tools that generate summaries of how and why the UnderLo...
	NUMBERED - 7. Develop a graphical user interface allowing the system administrator to easily modi...
	NUMBERED - 8. Allow the user to specify optional node combinations and durations, i.e: 32 nodes f...
	NUMBERED - 9. Develop an improved algorithm for handing requests that include multiple node types.

