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Abstract

Multiple copper-based commodity Gigabit Ether-
net (GigE) interconnects (adapters) on a single host can
lead to Linux clusters with mesh/torus connections with-
out using expensive switches and high speed network inter-
connects (NICs). However traditional message passing sys-
tems based on TCP for GigE will not perform well for this
type of clusters because of the overhead of TCP for mul-
tiple GigE links. In this paper, we present two os-bypass
message passing systems that are based on a modi-
fied M-VIA (an implementation of VIA specification) for
two production GigE mesh clusters: one is constructed
as a 4x8x8 (256 nodes) torus and has been in produc-
tion use for a year; the other is constructed as a 6x8x8 (384
nodes) torus and was deployed recently. One of the mes-
sage passing systems targets to a specific application
domain and is called QMP and the other is an implemen-
tation of MPI specification 1.1. The GigE mesh clusters us-
ing these two message passing systems achieve about 18.5
µs half-way round trip latency and 400MB/s total band-
width, which compare reasonably well to systems using
specialized high speed adapters in a switched architec-
ture at much lower costs.

1. Introduction

During the past decade clusters running the Linux op-
erating system (OS) using Intel X86 CPUs offer attrac-
tive platforms for those who seek parallel computing sys-
tems with high performance-to-cost ratios. Like traditional
massive parallel processors (MPP), these clusters have to
be organized with network interconnects (NICs) to allow
message passing among all nodes. The choice of the net-
work topology or architecture for a cluster has some in-
fluence on the scalability and performance of the cluster.
There are several commonly used network topologies such
as switched networks, meshes (tori), trees and hypercubes

[16], but a majority of clusters prefer the switched net-
work topology which offers a fully connected network. De-
ploying the switched topology requires expensive network
switches in addition to specialized NICs that provide high
bandwidth and low latency. However, for certain parallel
applications that require communications occurring mostly
between nearest neighbors, the mesh (torus) topology may
offer a better performance-to-cost ratio in comparison to
a switched architecture because of the removal of expen-
sive switches. A single Gigabit Ethernet (GigE) [23] link
may not provide as much bandwidth as a high performance
NIC such as Myrinet [5], but multiple GigE links in a mesh
could provide comparable total bandwidth and adequate la-
tency. Fortunately, recent progress in performance coupled
with a decline in price for copper-based GigE intercon-
nects (adapters) makes them ideal candidates for construct-
ing Linux clusters with mesh connections.

Currently, there are a few TCP based message passing
systems[12] for Linux clusters with GigE mesh network
topology. The portable MPI [31] implementation MPICH
[14] over TCP (MPICH-P4) actually can work for a mesh
topology with careful setups of routing tables, host names
and host ranks even though it is designed and implemented
for a switched network environment.

TCP based message passing systems rarely approach
the GigE raw hardware performance because of the over-
head of kernel involvement and multiple copies during data
transfers [18]. To reduce this type of overhead, an indus-
try standard called Virtual Interface Architecture (VIA) [21]
stemmed from a technique dubbed “user-level networking”
or ULN [27], which removes the kernel from the critical
paths of sending and receiving messages, has been in place
for several years. There are a few VIA implementations
among which the M-VIA [32] is the only one that is ap-
propriate for GigE adapters. There is indeed an implemen-
tation of MPI over M-VIA called MVICH [33] but it does
not work for mesh topology.

There are several message passing systems that are based
on the ULN approach for GigE adapters, but they are ei-



ther not working for mesh topology or not implemented as
hardware independent. For instance, there are EMP [24],
GAMMA [7], and PM/Ethernet-kRMA [25]. The first one
is a truly zero-copy OS-bypass message passing system, but
it has been implemented only for a set of GigE adapters
which are not inexpensive. The second one uses customized
linux network device drivers to deliver low latency and high
bandwidth, but it is designed explicitly for a switched topol-
ogy. The last one actually uses multiple GigE adapters along
with even more GigE switches to achieve high bandwidth.

The primary mission of two production Linux clusters
with GigE mesh connections deployed at Jefferson Lab
(Jlab), which is a national laboratory, is to carry out Lat-
tice Quantum Chromodynamics (LQCD) [28] calculations
which describes the strong interaction among quarks. An
LQCD calculation is carried out in a 4-dimensional (4-D)
box of points, which approximates a portion of the space-
time continuum. Specifically, each node in a cluster oper-
ates on a regular 4-D sub-lattice, calculating determinants
and inverses of 3x3 complex matrices and communicating
3-dimensional (3-D) hyper-surface data to adjacent nodes,
i.e., utilizing nearest-neighbor communication, in each iter-
ative step after which a global reduction, one type of collec-
tive communications, is carried out. However, these clus-
ters may also be used for other scientific calculations re-
quiring more complex communication patterns. Therefore
two message passing systems have been implemented for
the clusters: one is QMP (QCD message passing) [34] fo-
cusing on the LQCD applications; the other one is an imple-
mentation of MPI specification 1.1 offering wider capabili-
ties to other applications. Both systems are derived from a
common core that is based on a modified M-VIA communi-
cation software. Consequently two systems should perform
similarly.

In this paper, we first give a brief overview of VIA and
describe the hardware and software environment for our
work. We then point out what modifications we have made
to the original M-VIA, and evaluate and compare the per-
formance of TCP and the modified M-VIA for Linux clus-
ters of mesh topology using GigE adapters. Subsequently
we present our design and implementation of our mes-
sage passing systems with emphasis on both point-to-point
and collective communications. Furthermore, an applica-
tion benchmark results for a GigE mesh and a Myrinet
switched cluster are given to demonstrate that our GigE
mesh clusters are indeed cost effective platforms at least for
LQCD calculations. Finally we conclude our work and dis-
cuss future research.

2. Virtual Interface Architecture (VIA)

The Virtual Interface (VI) architecture eliminates the op-
erating system overhead by providing each process with a

protected, directly accessible interface to the network hard-
ware - a Virtual Interface. Each VI represents a communi-
cation endpoint, and pairs of such VIs can be connected to
form a communication channel for bi-directional point-to-
point data transfers. The operating system is only involved
in setting up and tearing down VI communication chan-
nels and pinning data buffers from which interconnects can
safely DMA data, but it is no longer in the way of the crit-
ical paths of data transfers. Figure 1 shows an organization
view of the VI architecture that consists of several compo-
nents such as VI, Completion Queues, Send/Recv Queues
and so on.
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Figure 1: The VI Architectural Model

Currently VIA supports three levels of communication
reliability at the NIC level: Unreliable Delivery, Reliable
Delivery and Reliable Reception. In addition, VIA also sup-
ports two different styles of communications: send/receive,
and remote memory access (RMA).

3. Hardware and Software Environment

There are two production GigE mesh Linux clusters at
Jlab. One that has been in production use for a year contain-
ing 256 nodes is arranged as either a 4×8×8 or a 4×4×16
3-D mesh with wraparound links (torus). Each node has a
single Pentium 4 Xeon 2.67 GHz processor with 256 MB
of memory and is connected to its six neighbors by three
dual port Intel Pro/1000MT GigE adapters [30] situated on
three PCI-X slots (133/100MHz 64bit). The other cluster
that was deployed recently containing 384 nodes is config-
ured as a 6×8×23 5-D mesh that can be projected to differ-
ent 3-D mesh configurations with wraparound links (torus).
Each node has a single Pentium 4 Xeon 3.00 GHz processor
with 512 MB of memory and is connected to its six neigh-
bors by three same type of adapters along with an additional
on-board GigE adapter of the same type. (From now on we
use mesh to refer to a mesh with wraparound links unless
otherwise specified.) All performance data presented in this
paper are collected on the first cluster. Performance data
in Section 6 for Myrinet networks are collected on a 128-
node cluster of 2.0GHz Pentium 4 Xeon connected through
Myrinet LaNai9 adapters and a Myrinet 2000 switch that



has a full-bisection Clos [8] topology. Each GigE adapter
costs $140, with a total expenditure of $420 for network-
ing components on a single node, which is much less ex-
pensive than the price of single port (∼$1000) for either
Myrinet or infiniband networks. All nodes are running Red-
Hat Linux 9 with kernel version 2.4.26. The modified M-
VIA version is based on M-VIA 1.2 and the M-VIA driver
for Intel Pro/1000MT adapters is developed locally [6] and
is based on the Intel e1000 driver version 5.2. The M-VIA
GigE driver is loaded with options of 2048 transmission de-
scriptors and 2048 receiving descriptors to enhance the ca-
pability of pipelining and to reduce possible network con-
tentions. Furthermore, the GigE driver is tuned to utilize in-
terrupt coalescing of the Intel adapters by selecting appro-
priate values for some driver parameters such as interrupt
delay.

4. M-VIA and TCP

In order to understand the benefits of using M-VIA as a
low-level communication software on which MPI and QMP
are based, several key performance benchmarks for M-VIA
and TCP are presented. The benchmark results illustrate the
point that M-VIA is far superior in terms of performance to
that of TCP, and delivers high bandwidth and adequate la-
tency for multiple GigE adapters in mesh topology.

The modified M-VIA has two major changes made to the
existing M-VIA 1.2 in addition to a few bug fixes. The first
is to allow hardware/software checksum to be performed on
each Ethernet packet. The second is to enable packet switch-
ing so that non-nearest neighbor communications are possi-
ble. The Intel e1000 M-VIA driver developed at Jlab takes
advantage of Intel Pro/1000MT hardware checksum capa-
bility to checksum each packet without degrading perfor-
mance. The mesh geometry information is injected into the
M-VIA driver so that packet routing is possible.

4.1. Point-to-Point Latency and Bandwidth

Latency and bandwidth are the two most impor-
tant benchmarks to describe a communication system
[10]. A latency value describes how long it takes a sin-
gle packet to travel from one node to another node and
it comprises several components such as host send-
ing/receiving overhead and NIC processing time [9]. By
studying this benchmark closely, improvements may be
made to reduce the host overhead of a communication sys-
tem. The latency performance data are obtained as usual
by taking half the average round-trip time for various mes-
sage sizes.

Network bandwidth describes how much data can be
pushed through the network in a unit time and thus is critical
to parallel program performance because higher bandwidth

decreases occupancy and the likelihood of contention. In
contrast to the relative simple way to obtain latency values,
bandwidth values can be obtained in several different ways
which characterize different communication patterns. Two
types of bandwidth values are of interest: bidirectional ping-
pong bandwidth in which data travel in both directions al-
ternatively; bidirectional simultaneous bandwidth that sim-
ulates data transfers in both direction simultaneously. The
first type of bandwidth reveals an upper bound of the per-
formance because of no loaded CPUs are involved. On the
other hand, the second type of bandwidth can reveal the ef-
fect of CPU overhead on sending and receiving.
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Figure 2: M-VIA Point-to-Point Latency and
Bandwidth Values

Figure 2 summarizes both latency and bandwidth results
for M-VIA and TCP. The bandwidth results are sending
bandwidth alone not counting receiving data. The latency
and bandwidth results of M-VIA are consistently better than
those of TCP for all the test data sizes. The latency of TCP is
at least 30% higher than the M-VIA latency which is around
18.5µs for messages of size smaller than 400 bytes. This il-
lustrates that M-VIA, which has around 6µs of sending and
receiving host overhead [6] by eliminating memory copies
on sending and by using only one memory copy on receiv-
ing, can indeed deliver adequate latency for parallel appli-
cations. However, the M-VIA does not provide latency val-
ues approaching the sub 10µs range because of one mem-
ory copy on receiving and expensive kernel interrupts gen-
erated by GigE adapters. The simultaneous send bandwidth
of M-VIA is approaching 110MB/s for not very large mes-
sage sizes. It is 37% better than that of TCP in comparison
to the marginally better results for the other type of band-
width. This is not surprising since this type of test really
reveals host overhead and any reduction in sending and re-
ceiving overhead produces larger differences in the results.

4.2. Aggregated Bandwidth

Single link bandwidth values presented in the previous
subsection cannot address the issues of aggregated or usable
bandwidth, which is the sum of the simultaneous bandwidth



of each GigE link within a single user process of a node in
a mesh network topology. There are 6 GigE links in a 3-D
mesh meanwhile there are 4 GigE links in a 2-D mesh. Fig-
ure 3 presents aggregated send bandwidth values of a node
for a 2-D and a 3-D mesh.
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Figure 3: M-VIA Multi-dimensional Aggregated
Bandwidth Values

The M-VIA aggregated bandwidth for a 2-D mesh in-
creases smoothly and flattens off around 400 MB/s, which
is similar to the result obtained by PM/Ethernet-kRMA
[25], corresponding to roughly 100MB/s along each link.
In contrast, the aggregated bandwidth for a 3-D mesh peaks
around 550 MB/s and eventually drops to 400 MB/s. The
fall off of the M-VIA 3-D bandwidth values in the end of
the tested region is due to the overhead of one memory copy
in M-VIA upon receiving data in addition to difficulties of
fully pipelining the 6 GigE links in a single process.

From the above latency and bandwidth results, M-VIA
indeed provides excellent bandwidth and adequate la-
tency for parallel computing. In particular, the aggre-
gated bandwidth values for multiple connections in a 3-D
mesh are on par with bandwidth values of switched Myrinet
networks[29] at a fraction of the cost.

5. Message Passing Systems: MPI/QMP

To facilitate parallel message passing on the Jlab mesh
clusters, two message passing systems are implemented
on top of common components that are based on the cus-
tomized M-VIA system. One is QMP focusing on LQCD
calculations with a subset of functionalities of MPI. The
other is an implementation of MPI 1.1 specification. These
two systems perform the same on key benchmarks, there-
fore from now on we refer these two systems as MPI/QMP.

The MPI/QMP implementation over M-VIA in mesh
topology aims to maximize performance by utilizing M-
VIA communication support to eliminate overhead and to
overlap communication and computation. It provides a low-
cost point-to-point and collective communication system.
The basic design principles of MPI/QMP are listed below:

• high performance exploitation of M-VIA communica-
tion support such as remote memory access (RMA);

• low-latency and high-bandwidth point-to-point com-
munication with receiver-side message matching and
zero-copy communication using RMA; and

• efficient collective communication algorithms for
mesh network topology.

5.1. Point-to-Point Communication

The design of MPI/QMP point-to-point communication
is strongly influenced by capabilities of the underlying M-
VIA software. To achieve high bandwidth and low latency,
several important design choices have to be made. The fol-
lowing highlights our decisions.

First, each node creates and maintains 6 VIA connec-
tions to its nearest neighbors. Each connection has pre-
posted VIA sending and receiving descriptors along with
memory buffers used for copying applications’ small mes-
sages during data transfers.

Second, each connection maintains a list of tokens to reg-
ulate data flow on the connection, since M-VIA has no built-
in flow control mechanism. The number of tokens repre-
sents the number of VIA receiving buffers currently posted
on the receiving end of a connection. This number is con-
stantly updated to the sender by either a piggybacked appli-
cation message or an explicit control message.

Third, different communication schemes are used for
small and large messages. The RMA capability of M-VIA
enables MPI/QMP to implement zero-copy data transfers.
However, using the RMA capability of M-VIA in sending
and receiving implies synchronous or rendezvous commu-
nication semantics that means a send call is not completed
unless the corresponding receive call is issued. Therefore
RMA technique cannot be used for messages of small sizes
since synchronous communications increase application la-
tency. For messages of small sizes (<16K bytes), a so-
called eager protocol is used such that a sending mes-
sages are copied into pre-posted memory buffers which then
are DMAed into GigE adapters and received messages are
DMAed from GigE adapters to pre-posted buffers which are
copied to user receiving buffers when ready. For messages
of large sizes, bandwidth and reducing host overhead are
more important. A remote memory write and sender-side
matching technique [26] is therefore used.

Finally, communication to non-nearest neighbors is en-
abled by kernel-level packet switching provided by
the modified M-VIA. The routing algorithm is a sim-
ple Shortest-Direction-First algorithm which chooses
the direction that has the smallest number of remain-
ing steps for a packet.

Figure 4 presents some of point-to-point communica-
tion benchmark results. The small insert shows the usual



point-to-point half-way round trip latency values that are
around 18.5µs for small messages, which illustrates small
implementation overhead of MPI/QMP. The 2-D and 3-
D aggregated bandwidth results of MPI/QMP are clearly
less than that of M-VIA, which is partly due to flow con-
trol and synchronous RMA control messages. Nonetheless
MPI/QMP still exhibits around 400MB/s total bandwidth
for 3-D mesh. The sudden jump in bandwidth values around
16000 bytes is a direct result of switching from using mem-
ory copies to RMA in MPI/QMP implementation.
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Figure 4: MPI/QMP Point-to-point Performance

The packet switching for non-nearest neighbors is han-
dled at kernel interrupt level without copying data to and
from user space. This effectively removes some of the
M-VIA sending and receiving overheads and leads to
a ∼12.5µs node-to-node routing latency. Therefore the
point-to-point latency between any non-nearest-neighbor
is 12.5µs ×(n − 1) + 18.5µs, where n is the num-
ber of steps between the nodes.The switching throughput
is dictated by the aggregated bandwidth, which is around
500MB/s, of 6 GigE adapters. However the point-to-point
bandwidth of two non-nearest neighbors under no net-
work contention has the similar results of two nearest
neighbors.

5.2. Collective Communication

Collective communication [11] involves global data
movement and global control among all nodes in a clus-
ter and has received a lot of attention in parallel commu-
nity in the past few decades [22], but most algorithms have
been designed for the MPPs with mesh topology using ded-
icated routers or switches on each node [1][4]. Fortunately,
some of the fundamental algorithms can still be ap-
plied to a Linux cluster with 3-D GigE mesh connections
since each Linux node can behave as a store-and-forward
switching node with six full-duplex communication chan-
nels, and has multi-port capability which means at any
time each node can communicate with some of its neigh-
bors simultaneously. To simplify our discussions, we will

name a node i in the mesh with its coordinates, e.g.,
(xi, yi, zi) in the 3-D case, and use xdim, ydim, and zdim
as sizes of the mesh in dimensions x, y, and z respec-
tively.

A broadcast is implemented via a simple algorithm that
a broadcast message travels along a x axis first, then cross
an xy plane and finally through all yz planes. A reduc-
tion behaves very much like a reverse of a broadcast except
that each node carries out some reduction operations, such
as sum, before forwarding the reduced value to its neigh-
bors. The number of communication steps of the broadcast
and reduction algorithms are roughly xdim/2 + ydim/2 +
zdim/2.

A basic scheme of global combining algorithm [20] is
based on first reducing all messages to a node which then
broadcasts the reduced value to all the other nodes. This al-
gorithm takes roughly twice as many communication steps
as the broadcast algorithm does. A barrier synchronization
is implemented as global combining with a null reduction.

Figure 5 presents timing results of broadcast and global
sum of integers for different message sizes on a 4 × 8 × 8
mesh. The broadcast for messages of small sizes takes about
200µs for 10 communication steps, i.e., 20µs per step,
which is in line with the MPI/QMP latency value of 18.5µs.
The linear increase of the broadcast timing results is direct
related to the linear increase of point-to-point latency re-
sults. The timing results of global sum are roughly twice as
large as those of broadcasts, which confirms what the global
sum algorithm suggests in the previous paragraph.
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Figure 5: Broadcast and global sum performance
results

A typical LQCD calculation needs it own input data
which are initially stored at the root node. Before the par-
allel calculation begins at each node, a major preparation
step is to dispatch all input data from the root to the nodes
where they belong to. This is actually the one-to-all per-
sonalized communication (scatter) problem [11][2][3][17].
On average, a typical LQCD calculation involves sending



messages (small-size data) from the root to the messages’
corresponding destinations at least ∼250,000 times. This
makes it necessary and beneficial to design optimal or near-
optimal routing algorithms to handle the scatter communi-
cation problem. Moreover the algorithm for all-to-one per-
sonalized (gather) communication is simply the reverse of
the scatter algorithm.

The goal of the scatter problem is to dispatch, in the
store-and-forward (packet-switching) manner, all messages
from the root to their corresponding destinations in the min-
imum number of steps (hops). In general, an algorithm for
the problem must contain two components. The first com-
ponent is the selection of messages to send for each time
step. When the number of messages residing at a node is
more than the number of ports of the node, a message or
a set of messages has to be selected to be sent in the next
time step. The second component is the actual routing. Af-
ter a message is selected, a direction (among four in the 2-D
case and six in the 3-D case) needs to be chosen to send the
message in the next time step.

Our first algorithm is called Shortest-Direction-First
(SDF). At any time step when there are nodes in the mesh
holding messages that have not reached their destina-
tions, each of these nodes selects a message to send using
the First-Come-First-Serve principle and then send it along
a direction chosen by the Shortest-Direction-First prin-
ciple, i.e., the direction in which the message has the
smallest number of remaining steps will be chosen. The al-
gorithm does not dispatch messages in the shortest
amount of time, thus is not optimal. But its simple de-
sign makes the implementation relatively easy.

In the scatter problem, the root is the bottleneck for de-
lays since all messages are initially at the root and have to
be sent one by one (in the single-port mode) or group by
group (in the multi-port mode) toward their respective des-
tinations. Our second algorithm, OPT, achieves optimality
in several ways. First, each message will travel the short-
est distance possible. For example, in the 3-D case, the dis-
tance that a message i with destination (xi, yi, zi) will travel
is distance(i) = min{xi, xdim − xi} + min{yi, ydim −
yi} + min{zi, zdim − zi}, assuming that the root node is
the origin of the coordination system with zero coordinates
in all dimensions. Second, messages are selected using the
Furthest-Distance-First principle [17]. That is, a message
that will travel the furthest distance to reach its destination
will be among the first to be sent from each node. Third, and
most importantly, the algorithm minimizes potential net-
work contentions by a partitioning scheme. The mesh is first
partitioned into roughly equal-size regions, with one region
corresponding to one link leaving the root, and all nodes in
the region are accessible from the link in the smallest num-
ber of steps possible. Consequently, all messages are also
divided into groups, with one group corresponding to one

region and with all messages of destinations falling into the
region being put in the corresponding group. The partition
establishes the 1-1-1 correspondence among a link leaving
the root, a region of nodes, and a group of messages. To
spread out the congestion at the root, messages in group i
will be sent via link i to leave the root to enter region i.
And from then on, the message will stay within region i
and travel to its destination without any delay in the small-
est number of steps.

Let k be the number of ports at a node. Let p be the num-
ber of nodes in the mesh. Then the root will need at least
(p−1)/k steps to send out all p−1 messages. Our algorithm
OPT uses exactly (p − 1)/k steps to send out all messages
from the root and guarantees that once a message leaves
the root, it travels within its region without any delay in the
fastest way until reaching the destination. Furthermore, the
movement of messages in different region is parallel while
the movement of messages in the same region is sequential
in a streamline fashion without collisions among messages.
Therefore, OPT is optimal. The time (measured by the num-
ber of steps) needed for OPT to dispatch all messages to
their destinations is max{T1, T2}, where T1 = (p− 1)/k is
the time for the root to send out all messages to their regions
and T2 = max1≤i≤p−1{distance(i)}+c is the time to dis-
patch the message with the furthest distance to travel plus c,
which is the number of additional messages with the same
distance to travel in the same region. The term c is a very
small constant (usually 0 and sometimes 1), thus may be ig-
nored.
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Figure 6: Personalized one-to-all communications

We have implemented both SDF and OPT algorithms for
an 8 × 8 configuration and a 4 × 8× 8 configuration of the
mesh cluster currently deployed at Jlab. Figure 6 presents
the timing results of these two algorithms. SDF is easier
to implement and OPT requires more overhead cost in ob-
taining the partition beforehand. However, on average, OPT
dispatches messages to their destinations almost four times
faster than SDF does for either cluster configuration across
all tested message sizes. In addition our OPT algorithm



scales very well from the 8×8 configuration to the 4×8×8
configuration for most part of tested message sizes except
for the large sizes where simultaneous sends from the root
node using six links become difficult.

Finally an all-to-all personalized communication is im-
plemented as a parallel execution of every one-to-all per-
sonalized communication from all nodes.

6. Performance-to-cost Ratio

The Jlab Linux clusters with GigE mesh connections are
indeed less expensive than clusters that are using switched
architecture with expensive NICs due to much less expen-
sive adapters and absence of switches. However, whether
the clusters offer better performance-to-cost ratios needs
to be verified by real applications in addition to the band-
width and latency benchmarks. Therefore an LQCD bench-
mark application is carried out on a cluster with Myrinet
switched connections and the 4× 8× 8 GigE mesh cluster.
The benchmark application is compiled on the GigE clus-
ter using QMP/MPI and on the Myrinet cluster using ven-
dor supplied MPI. The benchmark results are normalized
to a single node for a fair comparison. The performance-
to-cost ratio values are calculated based on the costs at the
time of the GigE cluster installation. The results are sum-
marized in table 1.

Table 1: Normalized LQCD benchmark results and
estimated dollars per Mflop values

Lattice size 44 64 84

Myrinet(Gflops) 0.91 1.3 1.3
Myrinet($/Mflops) 3.29 2.3 2.3

GigE(Gflops) 0.73 0.95 1.12
GigE($/Mflops) 2.74 2.10 1.78

The LQCD benchmark code performs a little better in the
switched Myrinet cluster than it does in the GigE mesh clus-
ter since multiple GigE adapters post more host CPU over-
heads and QMP/MPI has higher latency values. The grad-
ual increase of GigE performance with respect to the lat-
tice size is clearly an indication of decreasing in surface-
to-volume effect [13]. Most of all, the estimated dollar per
mega-flops values of the GigE mesh cluster are certainly
smaller than those of the Myrinet cluster, which means bet-
ter performance-to-cost ratios for the GigE mesh cluster.

7. Conclusions

In this paper we present MPI and QMP message pass-
ing systems for Jlab production Linux clusters with mesh
connections using GigE adapters. They are based on a mod-
ified M-VIA, which provides excellent bandwidth and ade-

quate latency for parallel computing. Careful design and im-
plementation of MPI/QMP yields a high performance point-
to-point and collective communication system. Specifically,
MPI/QMP delivers an excellent aggregated bandwidth of
400MB/s for multiple GigE links in mesh topology, which
is on par with what a single Myrinet link offers in a switched
network architecture. In addition MPI/QMP provides ad-
equate latency of 18.5µs. Furthermore, MPI/QMP utilizes
efficient broadcast, reduction, and global combining algo-
rithms and an optimal scatter/gather algorithm to deliver
low collective communication latency. Most of all, LQCD
calculations using MPI/QMP in the Linux clusters with
GigE mesh connections achieve better performance-to-cost
ratios than the same applications can do using vendor-
supplied MPI implementation with a Myrinet switched net-
work architecture.

To further improve the performance of collective com-
munication, we have been investigating the possibility of
applying a technique called NIC-based or NIC-assisted
global reduction [19]. Since the Intel GigE adapters have no
on-board programmable processor and not enough RAM,
we are working on a scheme of interrupt-level based collec-
tive communication, in which intermediate collective com-
munications are carried out in the kernel space. This
method eliminates the overhead of copying data to user
space for the intermediate steps, therefore reduces the over-
all latency. In addition, we are investigating a possible new
M-VIA feature, that is similar to the NAPI [15] appeared in
Linux kernel 2.6, to reduce the cost of OS-interrupts gen-
erated by multiple GigE cards. Currently we are actively
integrating new features into the future QMP/MPI re-
leases and are porting M-VIA to Linux kernel 2.6.
The current MPI/QMP implementation can be found at
ftp://ftp.jlab.org/pub/hpc/QMP/QMP-mvia-mesh.tar.gz.
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