Efficient Subtorus Processor Allocation in a Multi-Dimensional Torus

Weizhen Mao
Department of Computer Science
College of William and Mary
Williamsburg, VA 23187-8795, USA
wm@cs.wm.edu

Abstract

Processor allocation in a mesh or torus connected multi-
computer system with up to three dimensions is a hard prob-
lem that has received some research attention in the past
decade. With the recent deployment of multicomputer sys-
tems with a torus topology of dimensions higher than three,
which are used to solve complex problems arising in scien-
tific computing, it becomes imminent to study the problem
of allocating processors of the configuration of a torus in
a multi-dimensional torus connected system. In this paper,
we first define the concept of a semitorus. We present two
partition schemes, the Equal Partition (EP) and the Non-
Equal Partition (NEP), that partition a multi-dimensional
semitorus into a set of sub-semitori. We then propose two
processor allocation algorithms based on these partition
schemes. We evaluate our algorithms by incorporating them
in commonly used FCFS and backfilling scheduling poli-
cies and conducting simulation using workload traces from
the Parallel Workloads Archive. Specifically, our simula-
tion experiments compare four algorithm combinations,
FCFS/EP, FCFS/NEP, backfilling/EP, and backfilling/NEP,
for two existing multi-dimensional torus connected systems.
The simulation results show that our algorithms (especially
the backfilling/NEP combination) are capable of produc-
ing schedules with system utilization and mean job bounded
slowdowns comparable to those in a fully connected multi-
computer:

1. Introduction

A tightly coupled multicomputer system consists of a
collection of processors (nodes) which are connected by
communication links (edges) in a topology such as a mesh
(without wrap-around edges) and a torus (with wrap-around
edges). As a comparison, a flat multicomputer system (flat
machine) contains processors connected in a topology of a
complete graph, where there is a link between any two pro-

Jie Chen and William Watson 111

The High Performance Computing Group

Jefferson Lab
Newport News, VA 23606, USA
{chen,watson } @jlab.org

cessors. This fully connected model is not the focus of dis-
cussion in this paper but will be used as a benchmark model
in our simulation experiments later on.

A typical job requires a certain number of processors for
its execution. In some applications, a job even specifies the
configuration of the processors it requires, e.g., a submesh
or a subtorus. A job is associated with an arrival time and
an (estimated) execution time. As jobs arrive, they are put
into a wait queue. Upon certain events such as job comple-
tion and job arrival, a job scheduling algorithm chooses a
job from the wait queue to execute and a processor alloca-
tion algorithm allocates the processors required by the job
from the current pool of idle processors. The goal for both
algorithms is to maximize the system utilization (or equiva-
lently, to minimize the makespan of the schedule) or to min-
imize the mean job slowdown (or equivalently, to minimize
the jobs’ average weighted response time).

The job scheduling algorithm decides which job cur-
rently in the wait queue to choose to schedule. To play the
fairness game, the job that arrives the earliest is usually cho-
sen. This is the FCFS (First Come First Serve) algorithm.
To increase the utilization (or reduce the makespan), the job
with the longest execution time is usually chosen. This is the
LPT (Longest Processing Time first) algorithm. To reduce
the mean job slowdown (or response time), the job with the
shortest execution time is usually chosen. This is the SJF
(Shortest Job First) algorithm. Among these job scheduling
algorithms, the FCFS algorithm is the most widely adopted
algorithm in multicomputer scheduling. In addition, other
algorithms have been proposed and adopted, such as the
backfilling algorithm, which allows a later-arriving job in
the wait queue to be chosen to schedule as long as its exe-
cution does not delay the earliest possible execution of the
earliest-arriving job in the queue. See [8] for a summary on
advances in parallel job scheduling research.

In a flat machine, processor allocation is a non-issue
since to schedule a job only the required number of proces-
sors are needed as any set of processors are fully connected
in a flat machine. However, processor allocation becomes

a challenging issue in a system of a mesh or torus topol-
ogy, especially when the topology is a multi-dimensional
torus and the allocated processors are required to be in a
torus configuration as well. Research on processor alloca-
tion, starting in the early nineties, mostly is on topologies
with low dimensions since some of the most popular multi-
computers are configured into low-dimensional topologies,
such as Symult 2010 (a 2-D mesh), Cray T3D (a 3-D torus),
and BlueGene/L [11] (also a 3-D torus). For example, [5]
and [12] study algorithms that allocate submeshes in a 2-D
mesh, and [4] and [15] present algorithms that allocate sub-
meshes in a 3-D torus. Other work related to processor allo-
cation in 2-D or 3-D topologies includes issues of network
contention [14], fault tolerance [2], and non-contiguous pro-
cessor allocation [13]. In contrast to the active research on
processor allocation in low-dimensional topologies, there is
little done on high-dimensional topologies. The only refer-
ence we are aware of is [1], which studies processor alloca-
tion in a multi-dimensional torus with additional communi-
cation links added to improve system utilization.

Many applications in scientific computing require the
use of a multi-dimensional torus. For example, to study the
theory of the strong nuclear force, known as quantum chro-
modynamics (QCD), a 5-D torus connected multicomputer
system (2 X 2 X 2 x 6 x 8) was deployed at the Jefferson
Lab in 2004, and a multicomputer system containing multi-
ple 6-D tori (2x 2 x 2 x4 x4 x8)[3] is in construction at var-
ious sites such as the Brookhaven National Lab, Columbia
University, and University of Edinburgh. The deployment
of these high-dimensional systems makes it a pressing is-
sue to study fundamental and new research problems asso-
ciated with these complex systems, among which are pro-
cessor allocation and job scheduling. We are thus motivated
to study allocating processors in the configuration of a torus
when the underlining multicomputer is initially configured
as a multi-dimensional torus. We are also interested in the
effect of processor allocation on the quality of schedules
measured by system utilization and mean job slowdowns.

We organize this paper as follows. In Section 2, we de-
scribe our problem model and give an overview of our job
scheduling and processor allocation algorithms. In Section
3, we discuss two partition schemes that are essential in our
allocation algorithms, specifically, how a multi-dimensional
torus with the number of processors required by a job can
be carved out from the configuration of idle processors. In
Section 4, we give our simulation results that show the ef-
fectiveness of our allocation algorithms. Finally, we sum-
marize our results and discuss future research in Section 5.

2. Problem Model and Algorithm Overview

As pointed out earlier, our work on processor allocation
is mainly motivated by scientific applications, such as the

QCD calculations, which typically require to use a multi-
dimensional torus connected multicomputer system. In this
section, we describe our problem model followed by an
overview of our job scheduling and processor allocation al-
gorithms.

2.1. Problem Model

As our problem falls in the category of resource alloca-
tion and job scheduling, we therefore follow the convention
to define our problem in three areas: system environment,
job characteristics, and performance metrics.

In the system environment, identical processors (nodes)
are connected in the configuration of a multi-dimensional
torus (with wrap-around edges). Ideally, the size of each di-
mension (which is defined to be the number of nodes in a di-
mension) is desired to be a power of two. However, in prac-
tice, it is likely that there is only enough fund to purchase
a certain number of processors that falls between two con-
secutive powers of two, as in the 384-node system currently
running at the Jefferson Lab. We thus assume, without the
loss of generality, that in our multi-dimensional torus the
sizes of all-but-one dimensions are powers of two and there
is a single dimension of an arbitrary size which can be writ-
ten as a power of two multiplied by an odd number (includ-
ing one).

Jobs are submitted by users over time. Each job is char-
acterized by its arrival time, the (estimated) execution time,
and the desired number of processors needed for the execu-
tion of the job. In some previous research such as [1], users
also specify configurations of processors for their submitted
jobs. In our problem model, which is inspired by QCD cal-
culations, users typically do not care about the specific con-
figurations of the requested processors although they usu-
ally prefer any toroidal configuration in a dimension no less
than three. We thus only allow the users to specify the de-
sired number of processors but not a particular configura-
tion when submitting a job. To schedule a job, any subtorus
with the requested number of processors will be allocated
and assigned to the job. A reasonable effort will be made to
allocate such a subtorus with a dimension no less than three,
although this is not a strict requirement.

We use the standard performance metrics [7] of utiliza-
tion and mean job slowdown to evaluation the quality of
a schedule. Note that utilization is defined to be the per-
centage of time when processors are busy in duration of the
schedule. If all processors are busy throughout the schedule
with no idle processors, then the utilization is 100%. The
mean job slowdown is one plus the ratio of the wait time of
a job over the job’s execution time. When a job is sched-
uled as soon as it is submitted, its slowdown is optimally 1
since it has a wait time of zero.

2.2. Job Scheduling Algorithms

We now discuss the job scheduling algorithms that will
be used in conjunction with our processor allocation algo-
rithms in the simulation experiments. They are the widely
adopted FCFS and backfilling algorithms.

In FCFS, the wait queue is ordered by nondecreasing ar-
rival times of the jobs that have arrived. Upon the events
such as job completion and job arrival, the first job in the
wait queue will be considered to schedule. If the job re-
quests more processors than what can be allocated in a
toroidal configuration, the job will stay in the front of the
queue to wait for more jobs to be completed.

In backfilling, however, in the case that the first job in the
wait queue fails to be scheduled due to the lack of enough
processors, other jobs in the wait queue can be considered
and scheduled as long as the execution of these jobs do not
delay the first job in the queue. Here we say that the first
job in the queue is delayed if it starts after its earliest possi-
ble start time, which is the time when there is just as many
idle processors as requested by the job in a toroidal topol-
ogy, which can be allocated to the job for its execution. Note
that the backfilling we consider in this paper is indeed the
aggressive backfilling as opposed to the conservative back-
filling, where all jobs (not just the first job) in the wait queue
are not allowed to be delayed.

2.3. Processor Allocation Algorithms

Allocating subtori in a multi-dimensional torus is a chal-
lenging problem that has not received much research atten-
tion. Here, we present an overview of our processor alloca-
tion algorithm design, which is also the main contribution
of this work.

The first step is preprocessing, done only once and before
any scheduling starts. Recall that the multicomputer system
we assume in our problem model is a torus with all-but-one
dimension sizes to be powers of two. That is, let the torus of
dimension d be 2™ x 22 x . . - x 2Md-1x 2™d.p wherep > 1
is odd. When p = 1, all dimension sizes are powers of two.
(Note that when we describe a torus in this paper, we do not
care about the orientation of dimensions, e.g., a X b is the
same as b x a.) The preprocessing step partitions the origi-
nal torus into a set of semitori with all dimension sizes to be
powers of two, where a semiforus is similar to a torus except
that some of the wrap-around edges may be missing. Note
that any torus or mesh is a semitorus. For example, if the
original torus is 2 X 2 X 2 x 6 x 8, then the fourth dimension
of size 6 can be writtenas 6 = 2-3 = 2-(2+ 1), where the
odd factor is expressed as a sum of powers of two based on
the odd factor’s binary representation. Therefore, this torus
can be partitioned into two semitori, 2 X 2 X 2 x 4 x 8
(with one wrap-around edge missing in the fourth dimen-

sion) and 2 X 2 X 2 x 2 x 8 We name the set of obtained
semitori as the initial available set.

When a job chosen by a job scheduling algorithm (FCFS
or backfilling) is being considered, its requested number of
processors will first be converted to the next nearest power
of two since this condition usually makes processor allo-
cation less tedious and users usually do not mind receiv-
ing more processors than they need. Assume the input con-
tains (1) the number of processors m = 2% requested by
the job being considered currently and (2) the set of cur-
rently available semitori, A, which is initialized by the pre-
processing step and maintained dynamically throughout the
schedule. Our allocation algorithms then follow the follow-
ing three steps.

e Semitorus identification: Identify a semitorus S € A
that has at least as many nodes as m and remove S
from A. If no such semitorus exists, the job cannot be
scheduled now. If such a semitorus S exists, let S be
2k L 2k If Z?zl k; =k, assign S to R and go
to the torus conversion step. If Z?Zl k; > k, go to the
semitorus partition step.

e Semitorus partition: (1) Partition scheme: Partition .S
into semitori, one of which has m nodes and (2) As-
sign the semitorus with /m nodes to R and add the re-
maining semitori in the partition to A.

e Conversion to torus: Combine (collapse) all dimen-
sions with missing wrap-around edges in R to get a
torus 7" that will be allocated to the job.

Two partition schemes are used in the partition step, re-
sulting in two processor allocation algorithms: allocating
with equal partition and allocating with non-equal partition.
We will discuss these schemes in details in the next sec-
tion.

In the conversion step, a semitorus R with the desired
number of nodes m is to be reconfigured into a torus with
the same number of nodes by reducing the number of di-
mensions. One approach is to take all the dimensions in R
with missing wrap-around edges and replace them with one
dimension. For example, a semitorus 22 x 23 x 2 x 22 with
the first two dimensions missing wrap-around edges can be
converted to a torus 2° x 2 x 22, where the 22 x 23 mesh
formed in the first and second dimensions in the semitorus
is made to be a ring of 2° nodes. This approach has the ad-
vantage to produce a torus with more dimensions. Another
approach is to pair a dimension that misses a wrap-around
edge with a dimension with no edge missing and replace
them with one dimension. For example, the same semitorus
22 x 23 x 2 x 22 can be converted to a torus 24 x 24, where
the first and fourth dimensions are paired and the second
and third dimensions are paired. This approach has the ad-
vantage to produce a more cube-like torus. See Figure 1 for
an example of the torus conversion step, in which a 2-D

semitorus with missing wrap-around edges in both dimen-
sions is converted to a 1-D torus (ring).

Figure 1: Conversion from a semitorus to a torus
(a mesh to aring)

Comparing to processor allocation, deallocation is rela-
tively easier, which is done every time a job finishes execu-
tion. In the allocation algorithms, we need to keep a record
of the chosen semitorus S in the identification step and its
children (these children are siblings to each other) which are
obtained in the partition step. When a job return its torus to
the available set A, the deallocation algorithm checks to see
if all its siblings are in A. If so all siblings together with the
returned torus are replaced by their parent .S, which is put
back to A.

3. Partition Schemes

In the semitorus partition step, a semitorus S of 251 x
.-+ x 2k is to be partitioned into a set of semitori, all with
powers of two sizes in all dimensions and one with exactly
m = 2F nodes, where m is the number of processors re-
quested by the job being scheduled.

In our Equal Partition (EP) scheme, S is partitioned into

h

p= 22i=1 ki /m semitori of identical topology (regardless
of the orientation of dimensions). There are many ways to
obtain an equal partition, however, we design the Equal Par-
tition scheme with a goal to obtain high-dimensional semi-
tori in the partition as much as possible since a job may pre-
fer to receive a higher-dimensional torus and furthermore
a higher-dimensional semitorus can easily be collapsed to
a lower-dimensional one if necessary. Specifically, in the
Equal Partition, if k¥ < h, each semitorus in the partition
is 2 x --- x 2 with k£ dimensions. If & > h, each semi-
torus in the partition has & dimensions with all dimensions
sizes to be as close as possible. For example, if m = 23
and S is 2 x 22 x 22 x 23, then each semitorus in the parti-
tionis 2 x 2 x 2. If m = 2% and S is 2 x 22 x 22 x 23, then
each semitorus in the partition is 2 x 2 x 22 x 22. See Fig-
ure 2(a) for an illustration of the Equal Partition scheme.

The Equal Partition scheme has an easy concept and is
easy to implement. However, it has the tendency to create
fragmentation. Each time, the Equal Partition creates a to-
tal of p semitori, only one of which is going to be allocated
with the other p — 1 to be put in the available set for fu-

ture use. In the unlikely extreme case when a job requires
only m = 1 = 2° processor, the entire semitorus S will
be disconnected into a set of single nodes, all of which may
be not usable at all. In an optimistic case, however, when
all jobs tend to request the same number of processors, the
Equal Partition scheme may be the way to go since all iden-
tical semitori resulting from the Equal Partition may be al-
located.

(a) Equal Partition

(b) Non-Equal Partition

Figure 2: Two Partition Schemes for Processor
Allocation

In our Non-Equal Partition (NEP) scheme, S is parti-
tioned into semitori of various sizes to reduce fragmenta-
tion. The Non-Equal Partition fully utilizes the power-of-
two property of the dimension sizes in the semitorus and
creates a much smaller partition of 1 + log p semitori. The
implementation is more complex than that of the Equal Par-
tition, so we will only use an example to explain how it cre-
ates a partition. Let S be 2 x 22 x 22 x 23 and m = 2. The
Non-Equal Partition scheme creates a partition containing 5
semitori (since p = 28/2* — 2% and 1 + logp = 5):

. 2x2Z2x2
2. 2x2%2x2
3. 2x22x2?
4. 2x22x2%2x2
5. 2x22x22x2?

To verify that the semitori given above do form a partition of
S, we merge the first two semitori of 2 x 22 x 2 in the parti-
tion to obtain 2 x 22 x 22. This semitorus, which can also be
expressed as 2 x 22 x 22 x 29, is then merged with the third
semitorus to become 2 x 22 x 22 x 2. Merging this new semi-
torus with the fourth semitorus 2 x 22 x 22 x 2 in the parti-
tion, we get 2 X 22 % 22 x 22, which is then merged with the

fifth semitorus to get 2 x 22 x 22 x 23. We see that this semi-
torus is indeed S. See Figure 2(b) for an illustration of the
Non-Equal Partition scheme.

4. Simulation Experiments

We use a simulation-based approach to evaluate the
effectiveness of the proposed partition schemes coupled
with different scheduling policies. An event-driven simu-
lator was developed to process actual job logs from vari-
ous supercomputing centers. We simulated a batch system
in which arriving jobs are placed in a queue in the order
of arrival. The processor allocation algorithms are invoked
along with corresponding job scheduling algorithms upon
every job arrival and job completion. We experimented with
both FCFS and backfilling scheduling policies. The results
of simulations for all four combinations of the aforemen-
tioned partition schemes and scheduling policies were then
studied to determine the impact of their respective meth-
ods. In this section we first describe briefly two multi-
dimensional torus multicomputers: one is called QCDOC
with 1024 node units installed at the Brookhaven National
Lab (BNL); the other is a Jefferson Lab (JLAB) 384-node
LQCD Linux cluster constructed as a 5-D torus using Giga-
bit Ethernet. We then discuss our simulation environment,
followed by an overview of the workload characteristics
for two job logs we consider in the simulation. Finally we
present the simulation results.

4.1. The QCDOC Machine and the JLAB LQCD
Cluster

The QCDOC machine under construction utilizes a 6-D
torus and computing nodes fabricated with IBM system-on-
chip technology. It contains multiple crates, each of which
isa2 x 2 x2x4 x4 x 8torus. The JLAB LQCD cluster
in operation, on the other hand, utilizes commodity Linux
based computing nodes connected via Gigabit Ethernet to
form a 5-D torus of 2 X 2 x 2 X 6 x 8. We use the above
two tori to perform simulation of our processor allocation
and job scheduling algorithms.

4.2. The Simulation Environment

The simulation environment models the above two tori.
The 6-D torus has all dimension sizes being values of power
of two. In contrary, the 5-D torus has all-but-one dimension
sizes being values of power of two. The event-driven sim-
ulator receives as input a job log, the type of process allo-
cation schemes (EP or NEP) and the type of job schedulers
(FCFS or backfilling) to simulate. There are two primary
events in the simulator: (1) an arrival event occurs when a
job is first submitted for execution and placed in the wait

queue; and (2) a completion event occurs upon the comple-
tion of a job, at which point the processors running the job
is deallocated back to the system. The processor allocation
and job scheduling algorithms are invoked at the occurrence
of these events.

A job log contains information on the arrival times, exe-
cution times, and sizes (numbers of processors required) of
all jobs. Given a torus of /N nodes, a job log of J jobs, and
for each job j, the arrival time ¢7, execution time ¢§, and
size s;, the simulation calculates the start time ¢ and fin-

ish time tf of each job. The following parameters are then
calculated for each job:

L W __ 45 _ 4a
1. Wait time tj ftj tj,

. L
2. Response time ¢} = t; — ¢4, and

%, where A is 10
<,

seconds to take care the cases when jobs have very
short execution time which may distort the slowdown

[9].

The system load can be characterized as
5,t$
L=\ 2375
at

where A is the inter-arrival rate of jobs. The mean job
bounded slowdown is defined as

1

In addition global system statistics are obtained. Especially,
the system utilization is determined, which is defined as

1 e
J

3. Bounded slowdown té’-s =

where the simulation time span is 7' = mawy, (t;) —
miny, (t5).

4.3. Job Logs

We obtained two job logs from the Parallel Workloads
Archive [10] [6]. The first log is from the NASA Ames’s
128-node iPSC/860 collected during 1993 and contains jobs
of sizes of powers of two only. The other log is from the
San Diego Supercomputer Center’s (SDSC) 128-node IBM
RS/6000 SP collected from 1998 to 2000 and consists of
some jobs of sizes that are not powers of two. In addition
this log has larger variation in job sizes compared to the
NASA log. We scaled all job sizes in the log files by a fac-
tor of either 8 or 2 (to fit our platforms of 1024 (QCDOC)
and 384 (JLAB) nodes) and rounded up any size that is not a
power of two to a nearest value of power of two. In addition

we generated logs of varying workloads by multiplying the
execution time of each job by a coefficient c, varying ¢ from
0.2 to 2.0 in increments of 0.05. Simulations were then per-
formed for all combinations of processor allocation and job
scheduling algorithms on each of the logs. In order to bet-
ter understand the impact of our algorithms, the simulation
using the same scheduling algorithms on the same job logs
was performed for a hypothetical fully connected (flar) ma-
chine with the same number of nodes as the two tori pro-
vide. The bounded slowdown as a function of system uti-
lization for both logs were then plotted.

4.4. Simulation Results

Figures 3 to 6 present plots of mean job bounded slow-
down versus system utilization for each of the combinations
of processor allocation and job scheduling algorithms, each
of the two job logs, and each of the two torus connected sys-
tems, along with the results calculated for the flat machines.
All four figures have similar shapes and the most significant
performance improvement is obtained through the combi-
nation of the Non-Equal Partition and backfilling. We will
examine results from each log for each torus separately.

2000 —

&— FCFS/EP

A—A FCFS/NEP

[*—% FCFS/Flat-Machine
G—© Backfill/EP

1600]— | Backfil/NEP _
%—x Backfill/Flat-Machine

1200 —

x

=]

S
|

Mean job bounded slowdown

400 X N

o & o

AAAAAA

Utilization

Figure 3: NASA iPSC/860 and QCDOC
2x2x2x4x4x8 torus

Figure 3 presents the results for the NASA log with the
QCDOC machine. All four processor allocation and job
scheduling combinations provide similar mean job bounded
slowdown for utilization up to 50%. The FCFS schedul-
ing strategy saturates at rather low utilization values. The
Equal Partition allocation scheme produces the lowest sat-
uration point at 65%, while the Non-Equal Partition allo-
cation scheme delivers a higher saturation point at 70%. In
contrast, the results from a flat machine with 1024 nodes has
the highest saturation point at 77%. This trend is directly re-

lated to the reduction of the fragmentation effect from the
Equal Partition allocation to the Non-Equal Partition alloca-
tion and to the flat machine that has no fragmentation effect.
The backfilling strategy coupled with either processor allo-
cation scheme, however, provides much higher saturation
points of system utilization. Especially, the Non-Equal Par-
tition scheme provides a high saturation point above 90%
and low mean job slowdown values, which are similar to
what the flat machine can provide.

800 ‘

&— FCES/EP

r | &—A FCFS/NEP

*—% FCFS/Flat-Machine
G—O Backfill/EP

B Backfil/NEP

X—X Backfill/Flat-Machine

=N

=}

S
T

Mean job bounded slowdown
=
[=3
(=]

[S]
=]
S

PPN ey PE %

0 Tl
0.3 1

Figure 4: NASA iPSC/860 and JLAB 2x2x2x6x8
torus

Figure 4 shows the results for the NASA log with the
JLAB LQCD cluster. According to our processor allocation
algorithms, the initial available semitori set consists of two
semitori of 2 X 2 x 2 x 2 x 8and 2 X 2 X 2 x 4 x 8§,
resulting from the preprocessing partition of the original
torus of 2 x 2 X 2 x 6 x 8, which has one of the dimen-
sion sizes being not a power of two. Indeed the backfill-
ing combined with the Non-Equal Partition allocation de-
livers very low job slowdown values until system utiliza-
tion reaches 80%. Similar to the previous configuration, it
provides the best performance that is on par with the per-
formance of the 384-node flat machine using the backfilling
scheduling algorithm.

Figure 5 presents the results for the SDSC log with the
QCDOC machine. The FCFS combined with the Equal Par-
tition scheme saturates at mere 45%. The FCFS combined
with the Non-Equal Partition scheme reaches saturation at
55%. These values are smaller than those produced from the
NASA log because the SDSC log has more varied job sizes
leading to more fragmentation effect. Nonetheless, back-
filling coupled with the Non-Equal Partition scheme once
again proves to be the best combination delivering high sys-
tem utilization with low job slowdown.

&— FCFS/EP
A—A FCFS/NEP

2000 —

*—% FCFS/Flat-Machine

r G—O Backfill/EP

B8 Backfill/NEP

X—x Backfill/Flat-Machine

1600

1200

®
=
=]

Mean job bounded slowdown

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Utilization

Figure 5: SDSC RS/6000 SP and QCDOC
2x2x2x4x4x8 torus

Finally, Figure 6 shows the results for the SDSC log with
the JLAB cluster. Backfilling combined with the Non-Equal
Partition scheme has high utilization saturation point near
95%. The FCFS scheduling saturates at relatively low 45%
and 55% utilization for the Equal and Non-Equal Partitions,
respectively, as expected.

800 T
T T T s T 'O'D

&— FCFS/EP
r | 4&—A FCFS/NEP () 4
*—% FCFS/Flat-Machine
G—O Backfill/EP

B Backfill/NEP

X—X Backfill/Flat-Machine

=N
S
S
T
|

N

0}
D

0)

Mean job bounded slowdown
S
(=]
T
|

%)
S
S

T

X

|

5 o o
o XA o o ol '='=in ‘ | |
0 =005 5-u-0-5-0 N i h I
0 0.1 0.2 0. 0.4 0.5 0.6 0.7 0.8 0.9 1
Utilization

Figure 6: SDSC RS/6000 SP and JLAB 2x2x2x6x8
torus

To further illustrate the effectiveness of the combination
of the Non-Equal Partition and backfilling, Figure 7 plots
the system utilization against system load for the SDSC log
with the QCDOC machine. The system utilization for FCFS
with the Equal Partition saturates at 55% starting at a low
system load value of 0.56. Similarly the system utilization
for FCFS with the Non-Equal Partition flattens around 60%
at a relatively low system load value of 0.62. In contrary,

the system utilization for backfilling with the Equal Parti-
tion starts saturation near 85% at a relatively high system
load value of 0.8 and the system utilization for backfilling
with the Non-Equal Partition exhibits a little saturation be-
yond a system load value of 0.9.

10 ‘ ‘

&— FCFES/EP
0.9 — | A—A FCFS/NEP —
*—% FCFS/Flat-Machine

[| GO Backfill/EP

0.8/~ | Backfill/NEP

%—x Backfill/Flat-Machine

e
9
|

Utilization
(=]
(=)}
|

54
53
|

0.4 _

0.3 —

|
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Load

Figure 7: System utilization versus system load

Overall, the backfilling scheduling combined with the
Non-Equal Partition allocation scheme is an effective way
of improving quality of service by reducing the fragmenta-
tion effect and increasing system utilization. Our simulation
shows that the system utilization achieved by this combina-
tion is approaching to the level delivered by the backfill-
ing scheduling policy for fully connected machines. Mean-
while, the mean job slowdown values resulted from this
combination are similar to the values offered by backfilling
for flat machines. Specifically, the simulation results show
that the system utilization on average is improved by 30%
compared to FCFS by backfilling alone, and is increased
by another 5% by the Non-Equal Partition compared to the
Equal Partition.

5. Conclusions

Our work in this paper is motivated by applications in
scientific computing where jobs that require parallel proces-
sors connected in a multi-dimensional torus are submitted to
a multicomputer system to be executed. This multicomputer
is a complex system of processors connected by communi-
cation links in the topology of a multi-dimensional torus.
We first define the concept of a semitorus, whose topol-
ogy is similar to that of a torus but may miss some wrap-
around edges. Under the reasonable assumptions that the
original torus for the multicomputer has all-but-one dimen-
sion sizes to be powers of two and that each job requires

a power-of-two number of processors, we propose two par-
tition schemes, the Equal Partition (EP) and the Non-Equal
Partition (NEP), that partition a semitorus into a set of semi-
tori and design two processor allocation algorithms based
on these partition schemes. To evaluate our processor al-
location algorithms, we incorporate them with two com-
monly used job scheduling algorithms, FCFS and back-
filling, to obtain four combinations, FCFS/EP, FCFS/NEP,
backfilling/EP, and backfilling/NEP. We conduct simulation
experiments of these four algorithm combinations using two
job logs from the Parallel Workloads Archive, the NASA
iPSC/860 and the SDSC RS/6000 SP logs, on two currently
running multicomputer systems, the QCDOC machine with
1024 nodes configured into a 6-D torus and the JLAB clus-
ter with 384 nodes configured into a 5-D torus. We use two
metrics to measure the quality of schedules generated, the
system utilization and the mean job bounded slowdown.
Our simulation results show that compared with using back-
filling on a flat machine where processor allocation is a non-
issue, our four algorithm combinations all produce sched-
ules with acceptable quality measured by the system uti-
lization and the mean job bounded slowdown. Furthermore,
as expected, the backfilling/NEP combination consistently
produce schedules with the best quality compared with the
other three combinations. It even performs comparably with
the backfilling algorithm on a flat machine.

Currently we are integrating our research results into
production batch systems. For future research, we are in-
terested in efficient processor allocation schemes satisfy-
ing job requests which require specific multi-dimensional
toroidal configurations.

Acknowledgment

This work is supported in part by the Department of En-
ergy, Contract DE-AC05-84ER40150.

References

[1] Y. Aridor, T. Domany, O. Goldshmidt, E. Shmueli, J.
E. Moreira, and L. Stockmeyer, Multi-Toroidal Inter-
connects: Using Additional Communication Links to
Improve Utilization of Parallel Computers, Proceed-
ings of the Workshop on Job Scheduling Strategies for
Parallel Processing, 2004.

[2] M. M. Bae and B. Bose, Spare Processor Allocation for
Fault Tolerance in Torus-Base Multicomputers, Pro-
ceedings of the International Symposium on Fault-
Tolerant Computer, pp. 282-291, 1996.

[3] P. A. Boyle, D. Chen, N. H. Christ, M. Clark, S. D. Co-
hen, C. Cristian, Z. Dong, A. Gara, B. Joo, C. Jung,
C. Kim, L. Levkova, X. Liao, G. Liu, R. D. Mawhin-
ney, S. Ohta, K. Petrov, T. Wettig, and A. Yamaguchi,

Overview of the QCDSP and QCDOC Computers,
IBM Journal on Resaerch and Development, Vol. 49,
No. 2/3, pp.351-365, 2005.

[4] H. Choo, S.-M. Yoo, and H. Y. Youn, Processor
Scheduling and Allocation for 3D Torus Multicom-
puter Systems. IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 11, No. 5, pp. 475-484, 2000.

[5] P.-J. Chuang and N.-F. Tzeng, Allocating Precise Sub-
meshes in Mesh Connected Systems, IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 5, No.
2, pp. 211-217, 1094.

[6] W. Cirne and F. Berman, A Comprehensive Model of
the Supercomputer Workload, Proceeding of the IEEE
Annual Workshop on Workload Characterization, pp.
140-148,2001.

[7] D. G. Feitelson and L. Rudolph, Metrics and Bench-
marking for Parallel Job Scheduling, Proceedings of
the Workshop on Job Scheduling Strategies for Paral-
lel Processing, pp. 1-24, 1998.

[8] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Parallel Job Scheduling — A Status Report, Proceed-
ings of the Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 1-9, 2004.

[9] D. G. Feitelson and A. M. Weil, Utilization and Pre-
dictability in Scheduling the IBM SP2 with Backfill-
ing, Proceedings of the International Parallel Process-
ing Symposium, pp. 542-546, 1998.

[10] D. G. Feitelson, Parallel Workloads Archive, http://
www.cs.huji.ac.il/labs/parallel/workload/index.html.

[11] E. Krevat, J. G. Castanos, and J. E. Moreira, Job
Scheduling for the BlueGene/L System, Proceedings
of the Workshop on Job Scheduling Strategies for Par-
allel Processing, pp. 38-54, 2002.

[12] K. Li and K. Cheng, A Two-Dimensional Buddy Sys-
tem For Dynamic Resource Allocation in a Partition-
able Mesh Connected System, Journal of Parallel and
Distributed Computing, Vol. 12, No. 1, pp. 79-83,
1991.

[13] V. Lo, K. Windisch, W. Liu, and B. Nitzberg,
Non-Contiguous Processor Allocation Algorithms for
Mesh-Connected Multicomputers, IEEE Transactions
on Parallel and Distributed Systems, Vol. 8, No. 7, pp.
712-726, 1997.

[14] S. Q. Moore and L. M. Ni, The Effects of Network
Contention on Processor Allocation Strategies, Pro-
ceedings of the International Parallel Processing Sym-
posium, pp. 268-273, 1996.

[15] W. Qiao and L. M. Ni, Efficient Processor Allocation
for 3D Tori, Proceedings of the International Parallel
Processing Symposium, pp. 466-471, 1995.

