The Physics of RHIC (4) d+Au Collisions HUGS 2007

Carl A. Gagliardi Texas A&M University

1

d+Au collisions at RHIC

- A control experiment to identify novel effects in Au+Au
 - Is jet quenching an initial-state effect or a final-state effect?
 - Shadowing in a new kinematic domain
 - Gluon shadowing is not well constrained by fixed-target data
- Has evidence been found for gluon saturation?

Phys Rev Lett 91, 072302/3/4/5

PHYSICAL Review Letters

Articles published week ending 15 AUGUST 2003

Mid-rapidity vs. forward rapidity

- Gluon density can't grow forever.
- Saturation should set in when gluons overlap.
- Where does this happen?

Geometric scaling in γ^* +p at HERA

- Scaling of the γ^* +p cross section for x < 0.01 may indicate the saturation scale is playing an important role
- Ambiguity with ep and pp measurements: What is the proper reference?

Glauber vs Color Glass Condensate

Hirano et al, PLB 636, 299

- Do we have Glauber matter distribution + perfect liquid, or Color Glass Condensate distribution + viscous matter?
- Is the gluon field in the Au nucleus saturated?
- Forward d+Au collisions provide information about the gluon density in Au at low gluon momentum fractions

Forward π^0 production at a hadron collider

• Large rapidity π production (η ~4) probes asymmetric partonic collisions

- Mostly high-x quark + low-x gluon
 - $0.3 < x_{\rm q} < 0.7$
 - $0.001 < x_q < 0.1$
- <z> nearly constant and high ~ 0.7-0.8
- A probe of low-x gluons

Gluon density in nuclei

e.g., see M. Hirai, S. Kumano, T.-H. Nagai, PRC 70, 044905

World data on nuclear DIS only constrain nuclear modifications to gluon density for $x_{qluon} > 0.02$

Models for the gluon distribution in Pb

- In the region without experimental constraints, the model predictions vary by large factors
- Can be explored at RHIC, LHC, EIC

Forward particle production in d+Au collisions

- Sizable suppression of charged hadron yield in forward d+Au
- Evidence for a saturated gluon field in the Au nucleus?

PHENIX and STAR report similar effects

- Charged particles and π^0 are suppressed in the forward direction
- pQCD+shadowing calculations overpredict R_{dAu} at $\eta = 4$

Expectations for a color glass condensate

Are the forward d+Au results evidence for gluon saturation at RHIC energies?

Recent saturation model calculation

(Dumitru, Hayashigaki, and Jalilian-Marian, NP A765, 464)

Good description of the p_T dependence for negatively charged hadrons at η = 3.2 and identified π^0 at η = 4.0, but the data prefer different K factors (K=0.8 gives best fit for STAR data)

$p+p \rightarrow \pi^0+X \text{ at } 200 \text{ GeV}$

- In p+p, the forward inclusive π^0 cross section is consistent with NLO pQCD for $p_T > \sim 1.7$ GeV/c
- At lower p_T, data trend from KKP fragmentation prediction to Kretzer fragmentation, as occurs at mid-rapidity.
- CGC calculation that treats the "target" in the extended scaling region gives a very good description of the data for all p_T .

Is saturation really the explanation?

Difficult to explain BRAHMS results with standard shadowing, but in NLO pQCD calculations $\langle x_g \rangle \sim 0.02$ is not that small (Guzey, Strikman, and Vogelsang, PL B603, 173)

In contrast, <**x**_g> <~ 0.001 in CGC calculations (Dumitru, Hayashigaki, and Jalilian-Marian, NP A765, 464)

Back-to-back correlations with the color glass

The evolution between the jets makes the correlations disappear.

(Kharzeev, Levin, and McLerran, NP A748, 627)

Forward-midrapidity correlations in d+Au

• STAR might see suppression for $\langle x_g \rangle \sim 0.006$

Alternative explanations

- Saturation is not the only proposed explanation
- Alternative explanations for suppression of forward yields and/or correlations:
 - Multiple scattering
 - Factorization breaking
 - Shadowing
 - Parton recombination
 - Black-disk limit
 - Incident parton energy loss
 -
 - Others that I've forgotten off hand

New detectors for the next d+Au run

STAR Forward Meson Spectrometer $2.5 < \eta < 4$

PHENIX Muon Piston Calorimeter $3.1 < \eta < 3.9$

- Significant improvements in forward detection capabilities
- Crucial for small-*x* physics (important for spin physics, too!)

p+p and d+Au $\rightarrow \pi^0 + \pi^0 + X$ correlations with forward π^0

Conventional shadowing will change yield, but not angular correlation. Saturation will change yield and modify the angular correlation.

Sensitive down to $x_q \sim 10^{-3}$ in pQCD scenario; few x 10⁻⁴ in CGC scenario.

p+p and d+Au $\rightarrow \pi^0 + \pi^0 + X$ correlations with forward π^0

Alternative analysis: Fix $\eta_{\pi,2}$ and vary $\eta_{\pi,1}$ over the range 2.75 < $\eta_{\pi,1}$ < 3.75; this spans 0.25 <~ x_q <~ 0.65 while keeping x_q ~ constant.

Tests for incident parton energy loss effects.

The next generation: RHIC-II and LHC

- Two possibilities:
 - RHIC-II explores the onset of saturation; LHC looks deep in the saturation domain
 - RHIC-II is dominated by other effects; LHC observes those other effects in combination with saturation
- In either case, RHIC-II and LHC will be complementary

- EM probes will provide important new observables (no fragmentation uncertainties):
 - Direct photons
 - Intermediate mass di-leptons
 - Drell-Yan
 - Will need RHIC II luminosities

Conclusions

- What is the nature of glue at high density?
 - How do strong fields appear in hadronic or nuclear wave functions at high energies?
 - What are the appropriate degrees of freedom?
 - How do they respond to external probes or scattering?
 - Is this response universal (ep, pp, eA, pA, AA)?
- Detailed understanding will require complementary high-precision measurements at RHIC-II, LHC, and EIC.

Do we understand forward π^0 production in p + p?

Bourrely and Soffer, EPJ C36, 371:

NLO pQCD calculations underpredict the data at low \sqrt{s} from ISR Ratio appears to be a function of angle and \sqrt{s} , in addition to p_T

Forward + mid-rapidity di-hadron correlations

• HIJING predicts similar correlations in d+Au as PYTHIA predicts for p+p.

- -- Sizable increase in the combinatorial background.
- -- Small reduction in the coincidence signal.